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THE INJECTIVE FACTORS
OF TYPEII;,,0 <A< 1
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Dedicated to the memory of Henry A. Dye

We give a new proof for Connes’ result that an injective factor of
type III;, 0 < A < 1 on a separable Hilbert space is isomorphic to
the Powers factor R;. Our approach is based on lengthy, but rela-
tively simple operations with completely positive maps together with
a technical result that gives a necessary condition for that two n-tuples
(&1,...,¢,) and (%, ..., 7,) of unit vectors in a Hilbert 17 *-bimodule
are almost unitary equivalent. As a step in the proof we obtain the
following strong version of Dixmier’s approximation theorem for III;-
factors: Let N be a factor of type III;, 0 < 4 < 1, and let ¢ be a normal
faithful state on N for which o = id (1o = —27/log A); then for every
X € N the norm closure of conv{uxu”|u € U(M,)} contains a scalar
operator.

1. Introduction and preliminaries. In [6, §7] Connes proved that, for
each A € ]0, 1[, there is up to isomorphism only one injective factor
of type III, (with separable predual), namely the Powers factor,

R, = Q) (M3, 93).

n=1

Here M, is the algebra of complex 2 x 2-matrices and ¢; is the state
on M, given by

X oxp2) 1
®; (le x22) =173 +l(1¢(x“) + 9(x22)).

(The notion R; was introduced by Araki and Woods in [1]. In Powers’
original work [19], R; denoted M,, where a = 4/(1 + 4).)

Connes’ approach for proving uniqueness of the injective factor of
type III; (A € 10, 1] fixed) is the following: By [4, §4] every factor N
of type III; has an essentially unique crossed product decomposition

N=Px,Z

where P is a Il -factor and 6 is an isomorphism of P for which 700 =
At, where 7 is a normal faithful semifinite trace on P. Moreover, N is
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injective if and only if P is injective. Hence, to prove the uniqueness
(up to isomorphism) of N, one needs to show that
(i) There is only one injective factor P of type Il.
(i) Any two automorphisms 6, 6, of the injective factor P in (i)
for which

1001’—:‘[002=}»T

are outer conjugate. Note that by [8, Chapter 3] outer conjugacy of
two automorphisms, for which 70 6; = 70 6, = A7 implies conjugacy,
i.e. there exists a € Aut(P) such that 6, = af,a"".

The proof of (i) was established by Connes previously in the same
paper [6, §5] by proving that “injective < hyperfinite” for factors on
a separable Hilbert space, and (ii) was proved one year earlier (1974)
also by Connes [5] by developing a powerful machinery for classifica-
tion of automorphisms of factors up to outer conjugacy. In [11] we
gave a simplified proof of Connes’ result “injective < hyperfinite”,
and recently Popa [18] has given a third approach to this important
biimplication in the type II case.

The purpose of this paper is to give an alternative proof of the
uniqueness of the injective factors of type III;, 0 < 4 < 1, which still
relies on the uniqueness of the injective factors of type II; and Il,
but which substitutes Connes’ analysis of outer conjugacy classes of
automorphisms with some lengthy, but relatively simple, manipula-
tions involving completely positive maps. The proof follows closely
the ideas of our proof of “Injective < hyperfinite” for II,-factors given
in [11, §§83, 4 and 5]. The tracial state in the II;-factor case is substi-
tuted by a normal faithful state ¢ on a III;-factor for which o, = id,
(to = —2m/logl).

In §5, we show that in case of an injective factor N of type III;
with separable predual, the identity map on N has an approximate
factorization through full matrix algebras (in the sense of Choi and
Effros [3, pp. 75-76]) of a very special form:

For m € N, let y,, denote the tensor product state

m m
Wm = ® 9, on My, = ®Mz-
i=1 i-1

Then for every finite set xy, ..., x, of operators in N and every ¢ > 0,
there exist completely positive maps,

S:N'—>M2m, T:Mzm_’N
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such that

S(H=1, T(1)=1,
YmoS =9, @oT =yp,
6/"0S =800/, al/oT=Toag’", teR,

and
T oS(xy)— x; a-strongly fork=1,...,n.

In §§2, 3 and 4 we prove a number of technical results, which enable
us to derive from this factorization result that given x{,...,x, € N
and ¢ > O there exists a finite dimensional subfactor F on N and
Yi,.--,¥Yn € F, such that

¢=9lr®plr- (F'=F'NN),
(F,p|lr) = (M, ¥m) for some m € N

and
lxe = villp <&, k=1,...,n,

where ||al, = ¢(a*a)!/? (cf. Lemma 6.4). From this one obtains quite
easily that the factor NV is isomorphic to the Powers factor R; and that
the isomorphism can be chosen such that ¢ corresponds to the infinite

product state
o0
W, = ® (7%
i=1

on R;. It should be noted that once the uniqueness of the injective
factor of type III, (A € 10, 1] fixed) is established, one can derive
Connes’ outer conjugacy result (ii) above by using [4, Theorem 4.4.1
(0]

In a subsequent paper [13] we will apply similar techniques to give
a new approach to Connes’ result [7] that injective factors with trivial
bicentralizers are isomorphic to the Araki-Woods factor R.,. This
result was the key to settle the uniqueness problem for injective factors
of type III; (cf. [12]).

We give below some preliminaries on factors of type III;, 0 < 1 < 1,
which can be extracted from Connes’ paper on classification of type
ITI-factors [4]:

Let M be a factor of type III,. By [4, §4], M has a normal faithful
semifinite weight w, such that ¢’ = id (¢p = —27/logA), and such that
the centralizer M, is a factor of type II,. Moreover, the restriction
of w to M, is a semifinite trace. Let e be a finite projection in M, for
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which w(e) = 1. Then w, = w|cpe 1S @ normal faithful state on eMe
and a,‘;"’ = id. If M is o-finite, then the projection e is equivalent to
1, and hence eMe = M. Therefore:

Every o-finite factor N of type 111, admits a normal faithful state ¢,
such that o) =1id (to = —2m/logA).

Let (N, ¢) be as in Proposition 1.1 and let Tr be the trace on B(H),
where H is an infinite dimensional separable Hilbert space. Then
p ® Tr is a “trace generalisée” in the sense of [4, §4]. Hence, it follows
from [4, Theorem 4.2.6] that:

Let N be a factor of type 111, and let ¢ be a normal faithful state on
N for which o} =id (tp = —2n/logA). Then

(a) sp(A) = {A"|n € Z} U {0)}.

(b) The centralizer M, of ¢ is a factor of type 11,.

(c) MyNnN =CL

Note that (b) implies that ¢ is inner homogeneous in the sense of
Takesaki [22]. If ¢ is a normal state, such that o) = id, then

1

1)
e(x) = 5/0 o/ (x)dx

defines a normal faithful g-invariant conditional expectation of N
onto M,. Hence, if N is injective, so is M,. By the equivalence of
“injectivity” and “hyperfiniteness” for II,-factors, one gets:

Let N be an injective factor of type 111, acting on a separable Hilbert
space, and let ¢ be a normal faithful state for which o] = id (ty =
—2n/logA). Then M, is isomorphic to the hyperfinite factor of type
II;.

2. Almost unitary equivalence in Hilbert N-bimodules. In this sec-
tion we will prove a technical result which generalizes [11, Theorem
4.2] to Hilbert W*-bimodules.

Throughout this section N is a von Neumann algebra, and H is a
normal Hilbert N-bimodule, i.e. H is a Hilbert space on which there
are defined left and right actions by elements from N:

(x,6) = x§
9t} xem cen

such that the above maps N x H — H are bilinear and
(x¢)y =x(y), x,yeN, (e€H

Moreover x — L,, where L, = x¢, £ € H, is a normal unital *-
homomorphism, and x — R,, where R,¢ = &x, £ € H, is a normal
unital *-antihomomorphism (see, €.g., [16, §2]).
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DEFINITION 2.1. Let N be a von Neumann algebra, let (N, H) be a
normal Hilbert N-bimodule, and let € R,. Two n-tuples (&;,...,&,)
and (7q,..., nn) of unit vectors in H are called J-related if there exists
a family (a;);c; of operators in N, such that

Za;*a,- = Zaiaf =1
el iel
and
> llaik —meail* <6, k=1,...,n.

iel
REMARK 2.2. Note that if ), ;aja; = > ,c;a;a; = 1, then for all

$neEH,
Y lai€ — nail* = llagn — &a;|?
iel iel
because the left side is equal to
IEIP + Inll* — 2 3 Re(aié, nay),
iel
and the right side is equal to
IEI* + lInl* — 23 _Re(&a; . ain),
iel
and it is clear that
Re(a;£, na;) = Re(aida;, n) = Re(Ca;, ain).

Hence, J-relatedness is symmetric with respect to permutation of the
two n-tuples.

THEOREM 2.3. For every n € N and every ¢ > 0, there exists a
0 =d(n,e) > 0, such that for all von Neumann algebras N and all -
related n-tuples (&, --- &), (1 -+ - nn) of unit vectors in a normal Hilbert
N-bimodule there exists a unitary u € N such that

luée — meull <e, k=1,...,n
The proof of Theorem 2.3 is divided into a series of lemmas:

LEMMA 2.4. Let N be a von Neumann algebra, and &, n be two vec-
tors in a normal Hilbert N-bimodule H. For r > 0, put

(t)—{l’ 0<t<r,
= iz, i
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Ifae N, and b = g,(aa*)a, then
|16 = nb|1* + ||b*n — &b* |1 < ||a& — nall* + lla*n - a*||*.

Proof. Let M,(H) be the set of 2 x 2-matrices & = (¢;;); j=1,2 With
elements in H and with norm

n
IEIZ = D2 il
ij=1
M,(H) is a normal M,(H)-bimodule, where left and right action 1is
defined by formal matrix multiplication. Put
_ (¢ 0 _ (0 a
{= (0 ’7) € My(H) and h= (a 0 ) € M>(N).

Then h =h*and forn=0,1,2,...
p2nel _ ( 0 a*(aa*)”>'

(aa*)"a 0
Put
’ AR <,
pr(t) = tgr(tz) =/{ t, _rl/2 <t<rl2,
ri/2, t>rl/2,

By approximating g(¢) uniformly with polynomials on sp(aa*) we get

o= (g s “H7)-(3 )

Since 0 ¢
_ a*n —¢&a*
hc_{h“(aé—na 0 )
we have
S = Ch)1* = ||a& — nall* + lla*n — Ea*||*.
Similarly

lgr(h) = Lo (m)|1* = ||BE — nb||* + (|b*n — &b*||*.
Thus, we only have to prove that
lor(h)E = Lor(W)I* < 1A — Ch>.

Let L, (resp. R;) be the operator on M;,(H) defined by left (resp.
right) multiplication with 2 on M,(H). Since L, and R, com-
mute, there exists a representation n of the abelian C*-algebra
C(sp(h) x sp(h)) into B(M,(H)), such that

n(f®8)=LmReny, [ &€ C(sp(h)).



INJECTIVE FACTORS OF TYPEIII;, 0 < A< 1 271

Since (¢(s) — ¢ (2))? < (s—1)2, 5, € R and since 7 is order preserving,
(Lo, hy = Ry,m)* < (L — Rp)*.

Hence
lor(R)E = LormlI* < 1RE = R
This completes the proof of Lemma 2.4.

LEMMA 2.5. Let N be a von Neumann algebra and let {, n be two

o-related unit vectors in N. Then for every r € N there exist r operators
by,....,b € N, such that |bj|| < 1,i=1,...,r and

r 2 r
(o) <2 (5o )
i=1 i=1

D NbiE —nbill> < 85, > |Ibin — &b < 84

i=1 i=1

2
12
< )
r

Proof. By Definition 2.1 there exists a family (a;),;c; of operators in

N, such that
Za;*ai = Zaia}‘ =1
iel iel
and
> llaig - nail* < 6.
iel

Moreover, by Remark 2.2 also

> llain —&ail? <&

iel

Therefore we can choose a finite subset ay, ..., a, of (a;);cs, such that
14 1 D 1
;(aiaif, >1-5 ;(aia,. )< 5
Clearly
4 P
Za?aiﬁl, Zaia;-*gl
i=1 i=1

and

p p
S llaid —nadl? <6, S llatn - &a | < &
i=1

i=1
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Let Q = {(s1,...,8p)|s; € C,|s;| = 1} be the p-dimensional torus

and let dw be the normalized Haar measure on Q. For w € Q we let
si(w), ..., sp(w) denote the coordinate functions. Put

p
A(w) = Zs,,(a))a,,, w e Q.
v=1
As in the proof of [11, Lemma 4.3] one gets

/ A(w)*'A(w)dw = ia}‘ai <1,
Q i=1

/ A(w)A(w)* do = iaia}‘ <1,

Q i=1
and
/}A@@ﬁ«w»Zmugz, /XA«mAamvzmugz.
Q Q
Let g be as in Lemma 2.4, and put
B(w) = g (A(w)A(w)*)A(w), w e Q.

Since tg,(t)? < r, we have B(w)B(w)* < r1; thus

|B(w)| < r'/?, we Q.
Put
t, 0<t<r,
) =tg (1) = - =
o =rgp={ " =
Then

B(w)B(w)" = fr(A(w)A(w)").

Moreover, since
B(w) = A(w)gr(A(w)* A(w))

we have also
B(w)*B(w) = f;(A(w)" A(w)).

Therefore,
(B(w)*B(w))* < (A(w)*4(w))*,  a>0,

and
(B(w)B(w)*)* < (A(w)A(w)*)*, a>0
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which implies that
/ B(w)*B(w)dw < 1, / B(w)B(w)*dw <1,
Q Q

/ (B(w)*B(w))? dw < 2, / (B(w)B(0)*) do < 2.
Q Q .

It is easy to check that
fri@®)>t—1*/4r,  t2>0.
Therefore

[ Bors@gdo> [ (4w a@g.e) - kI
Q
p
= (Zaaléé))——ﬂ—%
i=1

and similarly
/(B(w)B(w)*n, nNdw>1- %
Q

Put Q" =Q x --- x Q (r factors). Then arguing as in the proof of [11,
Lemma 4.3] one gets

2
) B(w;)¢|| dw; ---dw,

2

_ * 2 _ *

— [ (B B@)¢ &) dw+r(r-1) ( [ B@rBwe dw) \

<2r+r(r—=1)=r(r+1).

Therefore

2
(% B(w;)*B(w;) — 1) dw; ---dw,

< 2 [ (B@) B ) do < 2,
and similarly
1 r
/ (; > Blwi)B(@:)" - 1) n
' i=1
Using that (sy, ..., s,) are orthogonal vectors in L?(Q, dw) one gets

14
| 14(@)E = na@)P deo = 3 la ~ nai|P < 6
i=1

2
dwl "'dwr < %.




274 UFFE HAAGERUP
and )

| 14(@yn - eay | do = > llan - il <
Hence by Lemma 2.4 .

[ 1B@ - np() do < 26
[ 1@y n - eBy|P do < 26

Therefore

1 r
/, r Z | B(@,)¢é — nB(w))||? dw, - - - dw, < 26,

/ ZHB )*n — EB(w;)*||*dw, - - - dw, < 26.

Put now

2

Elz{(wl ..... w,) € Q' ( ZB i)*B(w;) )é }
1 ¢ ?

Ezz{(wl,...,a)r)eﬂ’l (723((0:‘)3(0}1‘)*—1)’7 }

E3={<w1,... en'|—ZnB DE = an,>||2>85}

v
s

W
2[5

E; = {(wl,...,w,) € Q'|7 Z |B(w;)*n — EB(w;)*||* > 86} .

i=1

By the inequalities proved above,
/dwl‘--dw,<l, i1=1,2,3,4
E, 4

Therefore Q" \ (E; U E; U E5 U E4) is non-empty.
Choose now (wy,...,w,) € Q" \ (E1 UE,UE;3UE,), and put b; =
r~12B(w;). Then ||b; || <1,i=1,...,r, and the four inequalities in
the lemma are satisfied.

LEMMA 2.6. Let A be a unital C*-algebra and let U(A) be its unitary
group. Let &, n be two unit vectors in a (unital) Hilbert A-bimodule
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H. Assume that for every y > 0, there exists a finite set of operators
bi,...,b, € A, such that

()
i=1

2 2

<7

o (g
i=1

and
bi& =nb;, bin=2b;, i=1,...,r
Then
inf - = 0.
e u& —nul| =0
Proof. The left and right actions can by standard techniques be
extended (uniquely) to normal left and right actions of A** on H. In
this way H becomes a normal Hilbert 4**-bimodule. As in the proof
of Lemma 2.4 we can consider the 2 x 2-matrices with elements in
H as a normal Hilbert M,(A**)-Hilbert bimodule. Let { be the unit

vector in M,(H) given by
(5 )
v2\0 7

P ={x e My(A*)|x{ = {x and x*{ = {x*}.
Then P is clearly a von Neumann subalgebra of 4**. Let 7 be the
vector functional on P given by {. For x,y € P,

(xp8, 0) = (xCy, §) = (X, {y) = (xC, y*{) = (¥x(, {),

so 7 is a tracial state on P. Therefore the support projection e of 7 is
a central projection in P, and eP is a finite von Neumann algebra. It
is clear that the two projections

1®e“=<(1) 8) and 1®e22=<8 (1))

in M,(A**) are contained P. We will prove that e(1®e;;) and e(1®e;;)
are equivalent projections in P. Since 7 is a faithful trace on eP it is
sufficient to prove that for every central projection f in P, f < e, one
has

and put

(f(1®en)) =1(f(1 ®exn)).

Let y > 0. By the assumptions there exist by, ..., b, € N such that

|G} < (=)

<7

2
< ‘
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and
bi& =nb;, bin=Eb}, i=1,...,r

Put

bi 0
One checks easily that ¢;{ = {¢; and ¢;{ = (¢, i.e. ¢; € P fori =
1,...,r. Moreover

r r r r
ZC?C,‘ = (Zb;b,) ®eq, ZC,‘C;‘ = (Zb,b;‘) ® e7).
i=1 i=1 =1 i=1

Therefore

r 2
‘(ZC?C,'—1®€11)C =
i=1

z=<0 O)EMz(A**), i=1,...,r

s[(Seit-)el <3

and

r 2
|(Eoer-r00) ] -2l <
i=1

Hence for every central projection f € P, f < e we get

(s (Eeeroe)) <3
T (f (Z::cic; ~1 ®e22)) < (%)1/2.

However 7(f(>/_, cici)) = t(f(X;_; cic})), because t(f-) is a trace
on P. Hence

lt(f(1®e11)) — 1(f(1 ®ex))| < (27)'/%
Since y > 0 was arbitrary, we get
(f(1®en)) =1(f(1®en))

which proves that e(1 ® e;;) ~ e(1 ® €57) in P.
Let w € P be a partial isometry in P for which

ww=e(l®e), ww'=e(lRen).

Since w*w < 1 ® e1; and ww* < 1 ® ey;, w is of the form

00
w=vQe); = v 0
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for some v € 4**. Clearly v is a partial isometry, and since w{ = {w,
we have v¢ = nv. Moreover

(1 =v*0),, &) =2((1® e —w'w)l,{) =27((1 —e)(1®ey)) =0.
Therefore
[v€ + nv|| = 2||ve|| = 2|I¢|| = 2.
Thus, by Kaplansky’s density theorem,
sup{lac + nallla € 4, [ja]| < 1} = 2.

By the Russo-Dye-theorem [20] the unitball of A4 is the norm closed
convex hull of U(A4). Hence also

sup{||u¢ + nul|ju € U(4)} = 2.
By the parallellogram identity
1€ — mull? + [|ug + nu||* = 4
for all u € U(A). Therefore

inf —nu|l = 0.
o A)Ilui nu||

Proof of Theorem 2.3. Let us first treat the case n = 1: Assume that
Theorem 2.3 is false for » = 1. Then there exists an g, > 0, such that
for any y > 0 there exists a von Neumann algebra N, a normal Hilbert
N-bimodule H and two y-related unit vectors &, #, such that

inf - > &.
uellljl(N) luc = null 2 &
Hence we can choose a sequence (N,;)men of von Neumann algebras,
a sequence (H,,)men of normal Hilbert N, bimodules and two se-
quences (&) men of unit vectors such that for each m € N, &, and 7,
are (1/m)-related unit vectors in H,,, and such that for all m € N
inf - > €.
et lu€m — nmull = &o
Choose now a free ultrafilter w on N, and let H,, be the ultraproduct of
the Hilbert spaces (H,;)men along w (cf. [15]), i.e. H, is the quotient
Banach space
where
57 = { Cmenléh € Hn, sup ] < o
meN
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with norm
(&) menll = sup |5, |l
meN

and I, is the closed subspace,
Io = {(&)men € 7| lim |5,]| = 0}.
The quotient H,, = #/I,, is a Banach space with norm
"o 1: !
1€ = lim {11,

where (X,,)nen 1S any representing sequence for x. Moreover H,, is a
Hilbert space with inner product

(" n') = lim (&, ).

Put 4 = @;,_; Ni in the von Neumann algebra sense. Then H,, is
a Hilbert A-bimodule with the following definition of left and right
action:

If x € 4, x = (Xxm)me~ and & € H, has representing sequence
(&) men, then x&' has representing sequence (X<, )men and &'x has
representing sequence (&), Xm)men. The bimodule will in general not
be normal, so therefore we will only consider 4 as a C*-algebra.

Let y > 0, and choose r € N, such that 12/r < y. By Lemma

2.5 we can for each m € N find r operators bfm), ...,b!™ such that
16" <1,i=1,...,r,and
d 1
MZ@”%@—Q@ <=,
i=1
i SRy
MZ%WW%—QW <
i=1

r
(m) myp2 _ 8
i—zl ”bim Em — ’7mbim - < m’

f myer2 < 8
;mﬂ%W—@@hW<a

Let &, n € H, be the two unit vectors in H, with representing se-
quences (&y)men and (7m)men, and let by, ..., b, be the elements in
A defined by the sequences (b)) en, i = 1,...,r. Then ||b] < 1,
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? 12
<_
r <7

i=1,...,r,and
“(Zb;“bi—l)é <—<y, ”(be—l)
i=1
blé_r’bl’ b;ﬂ—ébi, i=1,...,r

Hence by Lemma 2.6, there exists a unitary u € 4 such that
l|u& — nul| < &.
The operator u is of the form u = (#,,) men, Where u,, € U(N,,). Since

B (tm&m =ttt = [[1E = ] < 2o
we must have
lumém — Nmtml|| < &
for some m € N, contradicting that

i — > for al .
uegg\]m) |u&m — nmu|| > ey forallmeN

This proves Theorem 2.3 for n = 1. Let now n > 2. The Hilbert space
H"=H®---@® H (n terms) is a normal Hilbert N-bimodule, where
the left and right action is defined by

Cx(E) = (L, (E)x = (EX)L,

for x € N and (&y,...,&,) € H™. Let (&,...,&,) and (11,...,7,) be
two d-related n-tuples of unit vectors in H. Then

é=%<él,...,5n), n=%(m,---,nn)

are two unit vectors in H". Moreover, £ and 7 are J-related, because
for any set (a;);c; of operators in N

n
Sl ~ nail® = - 323" ik - meail?

iel i€l k=1
< max E a; —navz.
= [<hn (,- 1” lék k z“ )

Since Theorem 2.3 is valid for n = 1, we can for every ¢ > 0 choose
a 0 > 0, such that when &, 7 € H” comes from two J-related n-tuples
as above, then there exists u € u(N), such that ||ué — nu|| < ¢/\/n or
equivalently

1 & &2
» D e — meul* < -
i=1



280 UFFE HAAGERUP

Hence
lué, — neu|l < e, k=1,...,n
This completes the proof of Theorem 2.3.
3. A relative Dixmier property for factors of type III;. Let N be a
(o-finite) factor of type III;, and let ¢ be a normal faithful state on

N for which g, = id (fp = —2n/logA). Then the centralizer M), of ¢
has trivial relative commutant

Mé,nN:CI,

(cf. §1). Since the unitary group U(M,) leaves the faithful state ¢
invariant, it follows from [17, §2, Theorem 1] that for every x € M
the o-weak closure of

conv{uxu*|u € U(M,)}

contains a scalar operator. We prove below that already the norm
closure of the convex set contains a scalar operator. It is not known
whether the same holds if y is an unbounded (normal semifinite faith-
ful) weight on M with a};’ = id, i.e. ¥ is a “trace généralisée” in the
sense of Connes [4, §4.3]. By a result of Halpern, Kaftal and Weiss
[14, Theorem 4.6 and §5] one has in this case that the norm closure of
conv{uxu*|u € U(My,)} contains a scalar operator for all x € M for
which ¢ — g (x) is norm-continous.

THEOREM 3.1. Let N be a factor of type 111;, and let ¢ be a normal
Jaithful state on N for which o,, = id (to = —2n/logA). Then for every
xX€eN

9(x)1 e conv{uxu*|lu € U(M,)}

(norm closure).
Following [22] we put
N, = {x € N|of(x) = A", t € R}
and we let ¢, be the projection of norm 1 of N onto N, given by
to X
en(x) = l/ o} (x)A~ ™ dt.
fo Jo

Note that Ny = N, and that:

e(l)y=1, @og, =1 forn#0,
poegy=¢, @oe, =0 forn#0.
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Every x € N has a formal expansion

o0

X ~ Z en(x).

n=-—00

The sum is in general not g-strongly convergent. By standard Fourier
analysis one gets that for x,y € N,

xX=y&ex)=¢e,(y) forallnelZ

We prove first

LEMMA 3.2. If x € N, n # 0, then
0 e conv{uxu*|lu € U(M,)}

(norm closure).

Proof. If x € N then x* € N_,, so it is sufficient to consider the
case X € N,, n > 0: let x = u|x| be the polar decomposition of x.
Since x*x € Ny = N,, and since

-1/2

u=Ilimx(x*x +¢) (o-strongly),

&E—

it follows that # € N,. Hence by [22, Lemma 1.6],
p(uu*) = A"p(u u) < A"
Choose an integer m € N, such that
I/m<1-24"

Since N, is a II;-factor with trace ¢, we can choose projection g <
1 — uu*, such that

p(q)=1/m.
Note that
gx =q(l —uu*)ulx| =0.
By comparison theory there exists m orthogonal projections ¢y, ..., qm

in N, with sum 1, such that g = g, and
e(g;) =1/m, i=1,...,m
Moreover we can choose a unitary u € M, such that

uqiu* = qiy1, i=1,....m-—1,
ugmu* = qi.



282 UFFE HAAGERUP

Put x; = w/x(u/)*, j=1,..., m. Since gnx = gx = 0, we have
q;x; = (W gm(w!)*)(w x(u/)*) =0
for j=1,..., m. Moreover ||x;|| = |x].

Let £ € H (the Hilbert space on which N acts), then

DTN = gpEll? =D (1 - gp& &)
j=1 i=1

= m||¢|)? - Z(ij,f) = (m - 1)|i&||*

i=1

Since Xig;=0,j=1,....,m,it follows that

m
>_xi¢
j=1

Yo xi(l—g))é
j=1

" V2 oo 1/2
< (Z lejllz) (Z (1 - w)éllz)
J

j=1
< m'?|x||(m - 1)),

which shows that

m m
Dol = 25| < m'Pm - 1))
j=1 j=1
Put
1 & 1 &
y= ;,;Z“jxuj = EZXJ
j=1 j=1
Then

1/2
bis(i-4) x

Since u; € M,, y € Ny, so we can iterate the argument and get that
for every / € N, there exist

ai,...,o € conv{ad(u)lu € U(M,)}
such that
112
lapoar-yoroatl < (1-5) Il

Since (1 — 1/m)"? — 0 for | — oo, Lemma 3.2 is proved.
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LEMMA 3.3. Let n > 0 be an integer for which
47 <1- 4.
If x € N and ¢, (x) =0 for |k| < n, then
0 e conv{uxu*|u € M,}

(norm closure).

Proof. Let r; (resp. s;) be the support projection (resp. range pro-
jection) of &, (x), k € Z. By the proof of Lemma 3.2
o(ry) < ik k>0,
and since &_;(x)* = ¢(x*), we have also
o(s_) <Ak, k>o.

Moreover, ry, s, € M, for all k € Z. Put

o= (0n) ¢ (T)

Since ¢ is a trace on M,

0(a) < 300+ p(50) < 1

k=n

IN
1)

Hence we can choose a projection p € M,, p < 1 — g, such that
o(p)=1/2.
Clearly

&(x)p=0, k < -n.

Since ¢, (x) = 0 for |k| < n, we get
per(x)p=0 forall k € Z
Moreover, since p € M, = Ny,
ex(pxp) = pe(x)p forall k € Z,

which implies that pxp = 0.
Since ¢(p) = ¢(1—p) = 3, there exists a selfadjoint unitary u € M,,
such that
upu*=1-p.
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Put
y = $(x + uxu*).

Then
lpypll = | puxu* p|| < 3lix],
and since (1 — p)u = up, we get also
(1= p)y(1 = p)ll = 3(1 = p)x(1 = P)I| < 3l1x]|.
Put next v = 2p — 1, and put
z=3(y +vyv*)=pyp+(1-p)y(1-p).
Then

Izll = max{[lpyp|l. (1 - p)y(1 = P)[I} < 3llx|

and
z € conv{uxu*|lu € U(M,)}.

It is clear that
&(z)=0 forlk|<n,

so by iterating the argument as in Lemma 3.2, we get
0 e conv{uxu*|lu € U(M,)}.

Proof of Theorem 3.1. Let x € N, and let n be as in Lemma 3.3.
Then

X = gy(x) + Z e (x)+x'
0<|k|<n

where
e (x')=0 for |k| <n.

Let ¢ > 0 and put 0 = ¢/2n. Since &y(x) € Ny = M,, and since
p(eo(x)) = @(x), it follows by the Dixmier approximation theorem
for II,-factors (cf. [9, Chapter III, §5]) that there exists

ag € conv{ad(u)|u € M,}

such that
lao(eo(x)) — p(x)1]| < @.
Using that every

a € conv{ad(u)|lu € M,}
commutes with every ¢, kK € Z, we can by Lemma 3.2 find

ai,...,azp—2 € conv{ad(u)|lu € M,}
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such that

llaraoer(x)|| <o,
lazaiapea(x)|| < o,

lan—1n—2 - apg(en—1(x))|| <o,
lanon—1---ap(e-1(x))|| < o,
lantian - - ap(e—2(x))|| < o,

lazn—2024—3 - ag(é—ps1 (X))l < @
Since for |k| < n,
ex(a2p—200,-3 - ag(x"))

= ay_202,-3 - ag(gr(x) =0

we can by Lemma 3.3 find
az,—1 € conv{ad(u)|lu € M,}

such that

loazn—1a2p—2 - ap(x")|| < @
Put f = ar,_1024—2 - - ap. Then

1B(eo(x)) — @(X)1]| <o,
1BGex(x))]| <o for0< k| <n,

1B(x)l <o
Hence
1B(x) = @(x)1|| < 2no =e.
This completes the proof of Theorem 3.1.

It is clear that by repeated use of Theorem 3.1one gets the following
“Relative Dixmier averaging process” (cf. [9, Chapter III, §3, proof
of Lemma 5]):

COROLLARY 3.4. Let N and ¢ be as in Theorem 3.1. Then for every
finite set x1, ..., xn of operators in N and every € > O there exists a con-
vex combination a of inner automorphisms implemented by unitaries
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from M,, such that
llo(xi) — p(xi) 1| < &
Jork=1,...,n

4. A result on g?-invariant completely positive maps. Let N be a
von Neumann algebra with a faithful normal state ¢, and let F C N
be a von Neumann subalgebra for which

al(F)=F, teR
We say that a linear map 7': F — N is g?-invariant if
T(a!(x)) = af (T (x)), xeF
Note that if F is a finite dimensional subfactor of N, then N = F ®
F¢, where F¢ is the relative commutant of F in N. In this case the
condition

(i)
is equivalent to

(ii)

9 =9¢|F ®¢|F-.
Indeed, the implication (ii) = (i) is obvious, and if F satisfies (i), then
by [21] there is a (unique) normal faithful conditional expectation
g: N — F for which
poe=9.
For x € F and y € F°,
p(xy) = @ o &(xy) = p(xe(y)).

But ¢(y) must commute with every element in F, and so &(y) = Al
for some 4 € C. Moreover

A=goe(y)=0()
Hence
p(xy) = o(x)p(y)
which shows that (i) = (ii).
The main result of this section is the following generalization of
[11, Proposition 5.2] to factors of type III;:

THEOREM 4.1. Let N be a factor of type 111;, let ¢ be a normal
faithful state on N, such that o] = id (g = —2n/logl). Let F be a
finite dimensional subfactor of N for which

¢ =0|F ®9|F



INJECTIVE FACTORS OF TYPEIII,, 0 < A < 1 287
andlet T: F — N be a a?-invariant completely positive map, satisfying
T(l)=1 and ¢oT = g¢|f.

Then for every 6 > O there exists a sequence (a;)2, of operators in the
centralizer M, of ¢, such that

[o.¢ o0

*
Za;‘ai = Zaiai =1
i=1 i=1

and
<d|x|| forall x € F.

o)
“ T(x) - Z a;xa;
i=1

LEMMA 4.2. Let N be a Ill;-factor and ¢ a normal faithful state on
N for which 6} =id (to = —2n/logi). If e, f are two projections in
the centralizer M, such that

o(f)=2"p(e)
for some n € Z, then there is a partial isometry u € Ny, i.e.
of(u)=A"y, teR,

such that e = u*u, f = uu*.

Proof. Let w be the functional on M, given by

0 1

Let (ers);-1,2 be the matrix units in M,. Then ¢’ =id. Let x = 9 ®@w.
Since ¢} = id and since N ® M, = N is of type III;, the centralizer
M, is a II;-factor. Put

w = Tr(h), whereh=<'1n O).

~

é=eQe, f=fQen.
Then N 5
é,.feMy, and x(é)=4~"t(e)=1(f)=x(/)
Since x is a scalar multiple of the unique tracial state on AM,, we
have & ~ f in M,. Hence, there exists v € M, such that

(8 g>=v*v, (g 2):1}1}*.

Since v*v < 1 ®e;; and vv* < 1 ®ey;, v is of the form v = u R ey
for some u € M. Clearly

wu=e and uu*=f
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Moreover, since v € M,
ol (u) ® aP(es) = u® ey, teR
But 6 (ey;) = h''ey h™" = A~ ite, ;. Hence

ol (u) =A™y, teR

LeEMMA 4.3. Let N be a factor of type 111;, let ¢ be a normal faithful
state on N such that a,, = id. For each n € Z there exists a finite set
vy,...,V, partial isometries in

N, = {x € N|o/(x) = A™x,t € R}
such that

P
*

E viv; = 1.

i=1

Proof. The case n = 0 is trivial (take p = 1 and v; = 1). Assume
next n > 0. Since M, is a II;-factor with trace ¢, we can choose a
projection f € M,, such that p(f) = A". By Lemma 4.2 there exists
an isometry v € N, for which v*v = 1 and vv* = f, so p = 1 and
v; = v can be used. Let now n < 0. Then A" > 1. Let g (resp. r) be
the integer part (resp. fractional part) of A":

AM=g+r, geN, 0<r<1.

Choose g orthogonal projections ey, ..., e, in M, with p(e;) = 17",

and put
q
€+1 = 1 - Zej.
j=1

Then ¢(e,41) = A7"r. Let f € M, be a projection for which ¢(e) =r.

By Lemma 4.2 there exist partial isometries vy,..., V4,1 € Ny, such
that

viv; =ej, j=1...,g+1
and )

. {1, j=1,...,q
Vvt = .
OO j=a+l

Clearly



INJECTIVE FACTORS OF TYPEIII;, 0 < A < 1 289

LEMMA 4.4. Let N be a factor of type 111, let ¢ be a normal faithful
state on N, for which g, = id. Let F C N be a finite dimensional
subfactor, such that

9 =9|F ®9|F
and let T: F — N be a a?-invariant completely positive map. Then
there exists a finite set a, ...,a; € M, such that

I
T(x)=) ajxa;, x€M,.
j=1

Proof. Let h be the Radon-Nikodym derivative of ¢ = ¢|r with
respect to the trace Tr on F. We can choose a system (€s),s=1...m Of
matrix units for F, such that

m
h=Y A€y, AL...,Am€R,
r=1

Since o, = id, it follows that
ArjAs € {A"|n € Z}.
Let n, € Z be the integer for which
ArfAp =A™
Note that for r,s € {1,..., m},
0% (ers) = 0 (eys) = hierh™it = Aitm=n)g,
Since T is completely positive, the operator

m
a=Y) T(es) ®es

rs=1

in N ® F is positive (cf. [3, Lemma 2.1]). Let b = a!/2. Then b is of
the form

m
b= Zbrs@)ers, bseN

r,s=1
and

m
T(e,s)=Zb;rbks, rs=1,...,m.
k=1

Put
m
Ck[=Z€,[bkr, k,1=1,...,m.
r=1
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Then a simple calculation (cf. [11, proof of Proposition 2.1]) shows
that

m
ZczlerSCk] = T(ers).
k!

Hence,

m
T(y)= > cqyyeu, VEF
k=1

Let w be the positive functional on F given by
w(y)=Tr(h"'y), ye€eF.
Then
atw(ers) = /l_lt(n'_m)ers.
Since T is o?-invariant,
O-t(p(T(ers)) = T(Ut(p(ers)) = iit(n'_n‘)ers.
Hence
7% (T (ers) ® €xs) = T(ers) ® e,

and therefore a € M,g,. Thus also b = a'/? € M,g,,, which implies
that

atw(brs) =/1it(n,~n:)’ rs=1,..., m.
Therefore
of (ciy) = A=)k l=1,...,m.
Hence we have shown that there exist d = m? operators ci,...,c; in

N, such that
d
T(y)=) ¢jyej, yE€F
=1

and integers ny,..., nyg, such that
al(cj))=A"l¢;, teR,j=1,....d

Since N = F ® F¢ = M, ® F¢, F¢ is also a factor of type III;.
Moreover, a/'* is just the restriction of g/ to F*. Particularly g/ =
idg.. Therefore we can apply Lemma 4.3 to the pair (F¢, ¢|r.) and
obtain:

For j =1,...,d there exists a finite set v;;,...,v; ,(; of operators
in F¢ for which

af (v;) = A~
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and
r(J)
D v =1
=1

Put

aj =vjcj, j=1,...,d,l=1,...,p(j).
Then o/ (a;) = a;; for all j and /. Moreover, since v; € F¢, we get
for x € F:

d
j=1 j=1
d

p(J)
= Za}‘,xaﬂ .
j=1 \UI=1

This proves Lemma 4.4.

=1

d p{J)
T(x)=) cjxcj= ch* vyxvj | ¢;

LEMMA 4.5. Let N, ¢ and F be as in Lemma 4.4 and let ¢ be the
(unique) g-invariant conditional expectation of N onto F. Then for
everyae N

e(a) € conv{uau*|u € U(F° N M,)}

(norm closure).
Proof. Using that ¢ = ¢|r ® ¢|F- it is easily seen that
e(xy)=xp(y), x€FyerF-

m be a system of matrix units for F. Then

m
a= Z €;ija;j

ij=1

Let (e;});,j=1

.....

where a;; € F¢. Hence

m
e(a) = E p(a;j)e;.
ij=1

Let 6 > 0. By Corollary 3.4 there exists a convex combination « of
inner automorphisms of F¢ given by unitaries in F NM,|p. = FNM,
such that

llo(aij) — p(ai)]| < 6/m?

fori,j=1,...,m. Let f =idr ®a. Then

B € conv{ady(u)|lu € U(F°)}
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and

Bla) = ejjo(ai).

ij=1
Hence

m
18(a) = e(@)]] <D _ lledas)) — p(a)1|| < &
iLJj
This proves Lemma 4.5.

Proof of Theorem 4.1. At this stage we can almost copy the proof
of [11, Proposition 5.2]:

By Lemma 4.4 there exists a finite set by, ..., b; of operators in M,
such that

d
T(x)=Y _ bixb;, x€F
i=1

Particularly
d
> bhi=T(1) =1
i=1

Let ¢: N — F be as in Lemma 4.5. Since ¢ o T = ¢p|r, we get for
xekF:

(el vl

Since 8(2?':1 b;br) € F, and since ¢ is faithful, this equality implies

that
d
& (Z b,b,*) =1
=1

By Lemma 4.5 there exists a convex combination « of inner auto-
morphisms

a=) Ajad(u)),

j=1



INJECTIVE FACTORS OF TYPEIII;, 0 <A< | 293

where u; € U(F¢ N M,), such that

d
(¢ (Z b,b,*) -1
i=1

Put b,‘j=/1}/2ujb,', i= 1,...,d,j= 1,...,r.
Then as in [11, p. 194]

> obibii=1,
iJj

< d/2.

<d/2

Y bibyi—1
Lj

and
T(x) = Zb*xb,,, xeF
Let us reindex the b; j-operators to
by,...,b,, where p=dr.

Put next
ai=(1 —6/2)'/217,-.

Then

Za a;<1-4/2 and Za a; < (1-8/2)(1+6/2) < 1.
i=1

Since a; € M(,, which is a II;-factor we can by [11, Lemma 5.1] find
operators (4;){2 ,,; in M, such that

Za,*-‘ai = Zaia,’f =1
i=1 i=1

Since 72 ., aja; = 6/2, we get as in [11, p. 195] that

[o.¢]
T(x)- Z a; xa;

i=1

<dlx|. x eF

For the applications of Theorem 4.1 in §6 we shall need the following:

PROPOSITION 4.6. Let N be a factor of type I11;, 0 < A < 1, and let
@ be a normal faithful state on N for which a,‘f)’ =1id. Let m € N and
let w = Tr(h-) be a normal faithful state on M, for which at'f = id.
Then there exists an isomorphism « of M,, onto a subfactor F of N,
such that
and y=¢oa.
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Proof. We can assume that / is a diagonal matrix
m
h=21j€]j, Al,...,AmGR_F.
j=1
The condition ¢, = id implies that 4;/4; € {4"|n € Z}. Clearly
m
S h=w)=1,
j=1

and since M, is a II;-factor we can choose orthogonal projections
f1,..., fm € M, with sum 1, such that

o(fj) =4, j=1,....,m

Moreover, by Lemma 4.2 there exist partial isometries vy,...,v, € M,
such that
vivi=fi, wvjvi=f; and of(v;)=A""v;, teR,

where n; € Z is given by A = 4;/4;. Put now
Jrs = vy, rs=1,...,m.

Then {fs|r,s =1,...,n} form a system of matrix units, and

Zfrr = Zfr =L
r=1 r=1

Moreover, .
al (frs) = Al=n)t teR,
so o/ leaves the factor
F =span{fslr,s=1,...,m}
globally invariant. Hence by the remarks in the beginning of §4

9 =0¢lr ®9|F-.
Since g/ (v;) = A"™'v;, we have by [22, Lemma 1.6] that for r # s

9(frs) = o(vrv5) = A" p(vivr).
Thus ¢(f,) = 0, because v, and v; have orthogonal range projections.
Ifr=s
o(fis) = 0(f;) = hr
This shows that if a: M,, — F is the isomorphism given by a(es) =

frs, then
poa=Trh)=wy.
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5. Completely positive factorizations through matrix algebras. In [3,
pp. 75-76] Choi and Effris proved that a von Neumann algebra N
is semidiscrete (= injective by [24]) if, and only if, the identity map
on N has an approximate factorization through full matrix algebras
in the sense that there exists a net (m,) of integers, and two nets of
o-weakly completely positive maps

So: N —-M,,, T,.M, — N,

such that S,(1) = 1, T,(1) = 1 and T, o S, converges pointwise g-
weakly to the identity map on N. In this section we shall show that in
case of an injective factor N of type III;, the approximate factorization
can be chosen in a special form, which takes the modular automor-
phism group of a fixed state on N into account. For any faithful state
@ on a von Neumann algebra N, we put

lall, = p(a*a)'’?, aeN

THEOREM 5.1. Let N be an injective factor of type III;, 0 < A < 1
with separable predual and let ¢ be a normal faithful state on N for
which a,‘f)’ = id (g = —2xn/logA). Let ¢, be the state on the 2 x 2-
matrices M, given by

X11 X12
o (3132 ) = o+ 3

and put Y, = ¢, - -@@; (m times). Then for every finite set x1, ..., Xn
of operators in N and every ¢ > 0, there exists m € N and completely
positive maps,

S:N—>M2m, TZMzm—-)]V,

such that
s=1, T)=1,
YmoS =g, poTl =ym,
o6/"0S=So00f, oloT=Tog!
fort e R, and

IToS(xe) —xkllp <&, k=1,....n

Let (N, ¢) be as in Theorem 5.1. As in the preceding sections
N, = {x € N|a? (x) = A"x, t € R}
and ¢,: N — N, is given by

en(x) = / A IntG (x) dt.
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LEMMA 5.2. Let (N, ¢) be as in Theorem 5.1.
For p e N, put

p—1
velx)= Y (1—M>sn(x), xeR

Then y, is a completely positive map on N,
p()=1, goypy=9

and
Jim [lp(x) - xlly =0 Vx €M

Proof. 1t is easily seen that g3(1) = 1, p ogg = ¢ and for n # 0,
en(1) =0, poe, =0. Hence
yp(1)=1 and ¢@oy,=0.
Put
gp(u) = Z (l—l—n—l) e, peN,uekRk
In|<p p
Then g, is the Fejér kernel from the theory of Fourier series (cf. [10,

p. 79)):
_ 1sin’*(pu/2)

D osin®(u/2)
Note that g,(u) > 0 for all € R, g is periodic with period 2z, and

1 2n
ﬂ[) gp(u)du=1.

gp(u) u¢22nl.

Since A = e~ h,
Z <l - |_n_|> AT = o (2mt/tp).
Inj<p~1 P
Hence g
0
n(x) = [ eCu/w)of (x)dr,  xeN
0

The complete positivity of y, follows now from the positivity of
the function g,. For x e N

1 [
170(x) = Xl = “5 [ sot2nt/to)at (x) - )

4
1 [h
<: /0 2,(2nt/10) || (x) - x|l dt

—0 forp— o0
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because (gp),en form an approximate unit in the sense that
N N
lim >— [ g,(u)f(u)du = £(0)

p—o 21 [
for every continuous function f on R with period 27.
LEMMA 5.3. Let (N, ¢) be as in Theorem 5.1, and let (R, T) be the

hyperfinite 11,-factor with tracial state t. For every finite set x, ..., X, €
N and every & > 0, there exist completely positive maps

S:N—R and T:R—- N

and a normal faithful state w on R, such that h = dy/dt has finite
spectrum and

AJAr € A" neZ} forall Ay, Ay € sp(h).

Moreover
S(l) =1, T()=1,
yoS=9, @goT=y,
6/ oS=So0!, of/oT=Tog/,
fort €R, and

IT oS(xk) = xkllp <&  k=1,....n

Proof. By Lemma 5.2, we can choose p € N, such that
7o (Xk) — Xkl <&, k=1,...,n.

Let M, be the algebra of p x p complex matrices with matrix units
(€rs)rs=1,..,p and let w be the state on M), given by

P
w =Tr(hy), wherehg=c-» Vey,
r=1
and c is the normalization constant ¢ = (3_7_ A")~".
Note that forr,s =1,..., p:

o’ (ers) = h(l;tersho—it = A=),

Particularly 6/’ = id. Put x = ¢ ® w on N ® M. Then also g7 = id.

Since N ® M, = N is a factor of type IIl;, the centralizer M, is a
I1,-factor. Moreover, since N ® M, is injective with separable predual,
M, is injective with separable predual. Hence M, = R.
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Forxe N,andr,s e {1,...,n}:

gl (x ®ers) = A0/ (x) ® ers.
Therefore

14
M, = {Z Xrs ® s € N ® My|x,s € NS_,}

rs=1

where (N,),cz are the subspaces of N defined in the beginning of §3.
Moreover, since at’(f = id, the y-invariant conditional expectation of
N ® M, onto R is given by

14
gy(x) = %-/0 ol (x)dt.

Hence for x,s € N,

p p
&y (E Xrs & ers) = Z Es—r(Xrs) ® ers.

rs=1 rs=1

Define now linear maps S: N — M, and T: M, — N by

p
Sx)=>Y &, (x)®es, XxEN,

rs=1

p
1
T Zyrs®ers = -
rs=1 pr.s:

Clearly S(1) = 1 and 7(1) = 1. We show next that S and T are
completely positive:

Let ¢y € M, be the orthogonal projection on the 1-dimensional
subspace of C" spanned by the vector (1,1,...,1). Then
P

p
Vrs» Vrs € Ny_r.
1

€ I 14
0= — rs.
p 1

rs=

Hence
S(x) = pey(x @ ep), X €N,

which shows that S is completely positive. Let w, be the pure state
on M,, given by

wo(z) = Tr(epz2), z € My,
Then wqy(es) =1/p forr,s =1,..., p. Therefore
T(y) = (idy ®@o)(»)
for all y € M, C N ® M. This shows that T is completely positive.
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The number of pairs (r,s) € {1,..., p}? for which s—r = k is p—|k|
when |k| < p, and 0 when |k| > p. Hence for x € N,

& k
Tos) =1 3 e = ¥ (1= B o) = 7,00
p rs=1 lk|<p p
where y,: N — N is the map defined in Lemma 5.2. Hence
T oS(xk) —xillp <& fork=1,...,n

Puty =¢poT. ThenyoS =¢oy,=¢. For y,s € Ny_,,

p 1 p
v D e | = > > o)

rs=1 rs=1

because ¢ vanishes on N, when k # 0. Hence
1
w(y) = ;(w ®Tr)(y), YEM;CNQM,

Let 7 be the tracial state on M, i.e. 7 is the restriction of x to M.
Then

(y)=(p@w)(y) = (9 ®Tr)((1® ho)(¥))
Since hy € M, it follows that

dy [(de\7' 1 .
(@) =p0enh

sp(ho) = {cA,cA?,..., cAP}
for some ¢ > 0. Hence & = dy/dt has finite spectrum, and

A/Ay € {MMn € Z)

By definition

for all 4;, 4, € sp(h).
It is clear that ¢?®T" = ¢¥ ® id leaves M, globally invariant. Since
w is the restriction of (1/p)(¢ ® Tr) to M, it follows that

ol (y)=(of ®id)(y),  y e M,.
Hence, by the definition of S and T

0/ o0(x)=Soal(x), X EeM,
g/ oT(y)=Toa/(y), yeEM,.

Since M, = R we have proved Lemma 5.3.
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LEMMA 5.4. Let R, be the Powers factor with infinite tensor product
state w,. If y is a normal faithful state on the hyperfinite 11,-factor R
of the form

v =1t(h),
where T is the tracial state on R, and h is a positive self-adjoint operator
with finite spectrum for which

A €{AM\neZ} forall /A, €sp(h),
then there exists a a®:-invariant subfactor P of R;, such that

(R, y) = (P wy|p).

Proof. By the assumptions on 4,

r
h = Zlie,‘
i=1

where ¢;, ..., e, are orthogonal projections in R with sum 1, and 4,/4;
is of the form A", n€ Z fori,j=1,...,n. Put a; = 4;7(e;). Then

r r
doai=) wle)=1
i=1 i=1

Since R; is of type III;, the centralizer of w; is a II;-factor, so we can
choose orthogonal projections f, ..., frin My, suchthat) /_, fi=1,
and
a),l(f,-)=a,~, i=1,...,r
Put = Y7_, A f;, and put x(x) = w;(k~'x), x € R;.
Then y is a positive normal faithful functional on R;. In fact yx is
a state, because

x(f)=iloi=1(e), i=1,....r
which implies that (1) = 1. Moreover,
of(x) =k "o (x)k™",  x€R,;.

By the assumption on 4;/4;, ki is a scalar operator () =
—2n/logl), and therefore a,’g = id. Since R; is an injective factor
of type III,, the centralizer P = M, is isomorphic to the hyperfinite
factor of type II,. Let a be a *-isomorphism of R onto P, and put
ej =a(e;), i=1,...,r. Clearly £ o a = 7 by uniqueness of the trace.

Hence
/

x(e) =t(e)=x(fi), i=1....r
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so e/ ~ f; (equivalence in P). Choose partial isometries v; € P for
which
e =vjv;, fi=vv}

and put u =3, v;. Then u € U(P) and
ueju* = fj, i=1,...,r

Hence f = ad(u)oa is an isomorphism of R onto P for which S(e;) =
fi and therefore also f(h) = k. Thus

w;o B =xkp())=1(h)=y
which proves that
(R, y) = (P wlp).

Finally k£ € M,,, implies that y is 0“* -invariant, and thus P is (glob-
ally) o%-invariant.

Proof of Theorem 5.1. Let (N, ¢) be as in Theorem 5.1, let x, ..., x,
€ N and let ¢ > 0. Choose

S:N —R, T:R— N

and ¥ € R}, such that the conditions in Lemma 5.3 are satisfied.
By Lemma 5.4 we may realize R as a g%-invariant subfactor of N,
such that ¥ = w;|g. Let ¢ be the (unique) w;-invariant conditional
expectation of R, onto R (cf. [21]). Let S’ be the map S considered
as map from N to R; and put 7' = T o ¢ (from R, to N). Then

S'H)=1, T'1)=1,
w,; 08 =¢, poT =wy,
6% 0S8 =8o00!, ofloT' =T oo
for t € R. Moreover
1T 08" (x) — xkllp < e, k=1,...,n

For m € N, let F,, be the subfactor of R, given by the tensor product
of the first m copies of M, in R; = @, ,(M>, ¢;). Then the infinite
tensor product state w; satisfies

W) = Wy|F, ® W|F:.

Let ¢, be the w;-invariant conditional expectation of R; onto F,.
Then
llem(x) — x||w, — O for all x € R;.
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Put now
Sm = 8m OS,, Tm = T’IFm

and let y,, be the restriction of w; to F,,. Then

are completely positive.

Sm(1) =1, Tm(l)=1,
YmoSm =0, poTy=Ym,
6/ oSy =8moa?!, oloT=Tog/
for t € R. By the Schwarz inequality for completely positive maps
S'(x)*S"(x) < S§'(x*x), x € N. Thus

HS,x”au < “-x”qz, xXeN

and similarly,
IT'vllp < 1¥llw:» ¥ ERy,
Hence
| Tom 0 Sm(xi) = T' 0 S'(xk)||¢ = |IT"(em o S"(xx) — S’(xk))”(ﬂ
<l|lemoS(xk) = S(Xp)|lw, = 0 for m — oo.

Therefore we can choose m € N, such that
”Smon(xk)“‘Xk”¢<8, k= 1,...,72.

This completes the proof of Theorem 5.1, because

(Fm, W) = Q)(Ma, 9).
k=1

6. Injective factors of type III;, 0 < A < 1, are Powers factors.
Throughout this section R; denotes the Powers factor of type III;,
ie. .

R; = Q)(M>, 9;)
n=1
where @, is the state on the 2 x 2 complex matrices given by
xip ox2) _ 1
(0)» (le x22) - 1 +A(Axll +x22)

We let w; denote the infinite tensor product state w; = @;>; ¢; on
R;. Note that o, = id for tp = —2n/log .
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THEOREM 6.1. Let N be an injective factor of type 111, with separable
predual, and let ¢ be a normal faithful state on N for which a,f =
id. Then N is isomorphic to the Powers factor R;. Moreover, the
isomorphism a of N onto R; can be chosen such that ¢ = w; o a.

We prove first three lemmas:

LEMMA 6.2. Let (N, p) be as in Theorem 6.1. For every finite set

Uy,...,up, € U(N) and every 6 > O there exists m € N, a completely
positive map T from My = Q7' M, to M and unitary operators
Vi, ..., Up in Mym, such that w = ¢ o T is equal to @, ¢,

6/ oT=Toag/, teR
and
T (vi) — ugllp <9, k=1,...,n
Proof. Let € > 0 be such that ¢ + (2¢)!/2 < §. Choose m € N, and
S:N =M, T:Mpm—N

satisfying the conditions in Theorem 5.1 with respect to (uy, ..., u,, €),
and put
Vi = S(uy), k=1,...,n

Then ||yx|| <1 and
1T (i) —wuiclly <&, k=1,....n
Using the Schwarz inequality for completely positive maps, we have
IT(Vlle < llyiclly
(cf. proof of Theorem 5.1). Therefore
IVelly 2 lluxlly —e =1~
We can find unitary operators vy, ..., v, € M), such that
yk=vkhk, k=1,...,n
where . = (y;yx)!/?. Note that |||l = ||yklly. Since 0 < Ay < 1,
hE+(1-h)? <1
Hence

vk = yelly = 110 = Aully, < 1—JlAgell3,
<1-(1-¢)?<2e
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Using again the Schwarz inequality for 7, it follows that
17 (o) — uilly < NT (Ve = yi)llo + 1T (Vi) — uklly
<Qe)?+e<d
fork=1,..., n. This proves Lemma 6.2.

If Ni, N, are von Neumann algebras with states ¢, ¢, on N; and
N,, respectively, we write

(N1, 91) = (N2, 902)

if there is an isomorphism « of N; onto N, for which ¢, = a o ¢,.

LeMMA 6.3. Let N be an injective factor of type I11;, 0 < A < 1, with
separable predual, and let ¢ be a normal faithful state on N for which
o) =id (g = —2mn/logd). Let uy,..., u, € U(N) and let 6 > 0. Then
there exists a finite dimensional subfactor F C N, unitary operators
Vi,...,v, € U(F) and a sequence (a;)2, of operators in M, such that

() 9 = olr ® 9k,
(ii) (F ¢|r) = QL (M, ;) for some m € N,

(iii) 3272, afa, = 322, aiay = 1,
(iv) o2 lvga; — auells < 8 fork =1,..., n.

Proof. By combining Lemma 6.2 and Proposition 4.6 we get that
there exists a finite dimensional subfactor F of N, such that (i) and
(i1) hold, and a completely positive map 7: F — N for which

T()=1, poT =op|r,
and there exist vy, ..., v, € U(F), such that
1T (03) — ully < 5/4.
By Theorem 4.1 there exist (a;){°, in M,, such that

oo oo

* *
Zaiai = Za,-ai =1
i=1 i=1

and

)
< gl xeFR

“T(x) - i a; xa;
i=1

Since ||x||, < ||x|| for all x € M we get in particular

<6/4.

o0
T(ve) — > ajvia
i=1 P
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Hence
<d/2.

o0
Uy — E a;via;
i=1

9
Moreover,

oo [e o
Yo llaiuelly =Y o(uaiaiu) = p(upue) = 1
i=1 i=1
and since a; € M, we have also
o0 o0 o0
Y llveaillz =3 o(aiviveas) = Y plaiaivive) = p(vivy) = 1.
Therefore

oo [0
> llaiu — veailly =2 -2 Rep(upajvea;)

i=1 i=1

o0
=2Reyp (u,*( (uk — Za;‘vkai>)
i=1

00
Uy — Z a;*vkai

i=1

< 0.
[

< 2fluclly

LEMMA 6.4. Let (N, ) be as in Lemma 6.3, let x,,...,x, € N, and
let ¢ > 0. Then there exists a finite dimensional subfactor F of N and
operators yi,...,yn € F, such that

9 =0|lrQ0|F,

m
(F9) = Q) (M, 0;) for somemeN,
=1
and
Iy —xillp <&,  k=1,...,n

Proof. We can assume that N acts standardly on a Hilbert space H,
so that ¢ is the vector state given by a cyclic and separating vector &,.
Let S = JA!/2 be the modular conjugation associated with (N, &,) in
Tomita-Takesaki Theory. Then JNJ = N’, and H becomes a normal
N-bimodule, where right action on H is defined by

ta=Ja*JE, ae N, Ee€H
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Since N is spanned by its unitary operators, it is sufficient to con-
sider x,,...,Xx, unitary. So let u;,...,u, € U(N), and let ¢ > 0.
Choose 0 = d(n, ¢), such that the conditions of Theorem 2.3 are ful-
filled. By Lemma 6.3 we can choose a finite dimensional subfactor
F CN,vy,...,v, € U(F) and (4;)2, in M,, such that

¢ = ¢|Fr ® ¢|F,

m
(Folr) = Q)(M,, p;) for some m €N,
=1

o0 oo o0
Stara; =) aai =1, Y |vea; — aul} <.
l:l i=1

= i=1
Put
Sr=uméy and m=1v¢, foru=1,...,n

Note that ||&|| = |||l = 1. Since a; € M,,
aiéy =Ja;JEy =&ya.

Therefore

o0 o0
D laig — mail® = Y laiuéy — viaidy |
i=1

i=1
o0
= llasw, — veailly < 6.
i=1
Hence, if we consider H as an M,-bimodule, we get from Theorem
2.3 that there exists a unitary operator w € U(M,), such that
I€ — w*nw|| < e, k=1,...,n
Equivalently
lug — w*vwily < e, k=1,...,n

Put F; = w*Fw. Then F is a finite dimensional subfactor of N,
and w*v,w € U(F,) for k = 1,...,n. Moreover, since w € U(M,),
@ 1s also a tensor product state for Fi,

9 =9lF, ® ¢|F:

and
m

(F1,9lF) = (F 0lr) = Q)(Ma, 93).
j=1
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Proof of Theorem 6.1. Theorem 6.1 follows from Lemma 6.4 by a
procedure, which is standard in the type II;-case (see, e.g., [9, Chapter
II1, §7.4]):

Let d, denote the metric on N given by

do(x,¥)=lx=»ly. x.yEN.

Note that d, induces the o-strong topology on bonded subsets of
N. Let (x4)2, be a sequence that generates a g-strongly dense *-
subalgebra of N. We will construct a sequence of commuting finite
dimensional subfactors (Fy,)5°_, of N, such that

(a)
S 1
d¢ (X1,®Fk) <a, meN, [=1,..., m.
k=1

(b) For each m e N
¢ = 9lF, ®9lF;
(c) For each m e N

K,
(Fm. 0lF,) = Q)(M;, 9;) for some K, € N.
k=1

It is clear from Lemma 6.4 that we can choose F; C N, such that
(a), (b) and (c) are fulfilled for m = 1. Assume next that we have

found commuting finite dimensional subfactors F1,..., F,, such that
(a), (b) and (c) are fulfilled for m = 1,...,n, and let us construct
Fn+1. Put

n
F=(FlU---UF,)" = @) Fn.
m=1

By (b), each F,, is g¥-invariant. Hence F is g-invariant, which
implies that
9 =0lr @ 9|
(cf. §4). Let (e;;)¢,_, be a set of matrix units for F. Then each Xy,
can be written in the form

g (m)

m

Xm = Z €ijXj
ij=1

where x{7" € F¢. Put

m
K=Y lleijlly-

ij=1
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By applying Lemma 6.4 to (F¢, ¢|r-), we get that there exists a finite
dimensional subfactor F,,; of F¢ and operators yfj'-") € F,py (m<
n + 1), such that

(m) __(m) 1
(B ||¢<m

fori,j=1,...,dand m=1,...,n+ 1, and such that

¢l = 9lF,., ® 9l(FnF,..)

and
p

(Fue1, 9) = Q (M, 9;)
k=1

for some p € N. Since ¢? and ¢?/F* coincide on F¢, F"*! is g?-
invariant and, therefore,

¢ = @|F,.. ®OlF,, )

Put
m
ym=Ze,-jyfj'."), m=1,...,n+1.
ij=1
Then
n+1
Ym € (FUFy) = ®Fk
k=1
and

m
bem = vllp < D7 lleillollxl™ = v llo
ij=1
form=1,...,n+ 1. (Here we have used that ¢ = ¢|r ® ¢|g..) This
shows that (a), (b) and (c) are fulfilled for m = n + 1, so by induction
we get a sequence (Fy,)%°_, of commuting subfactors satisfying (a),
(b) and (c).

Let ¢, denote the g-invariant conditional expectation of N onto
®~, F;. Since ¢, is an orthogonal projection with respect to the
inner product

(X, ¥)p = 0(¥*x),

it follows from (b) that for m >/

llem (1) — xillp < dy (x1’®Fm> :

k=1
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Since d, induces the g-strong operator topology on bonded sets, we

get that
00 "
=1

is strongly dense in N. By (b) the restriction of ¢ to @)~ F; coincides

with
m
® ¢IF/
[=1

for every m € N. This implies that

o0

(N, 9) = Q(F1, 0lFr)

I=1
so by (c) we get

o0

(N, 9) = Q) (M, 9;) = (R;, ;).

m=1
This proves Theorem 6.4.

COROLLARY 6.5. Let ¢y, ¢, be two normal faithful states on the
Powers factor R; for which 6" = a}” =id (to = —2mlogA). Then there
exists an automorphism o of R;, such that ¢, = ¢ o c.

Proof. By Theorem 6.1 there exists oy, a; € Aut(R;), such that

Y = wj;oaq, i=1,2.

Hence a = aya] ' can be used.

REMARK 6.6. Corollary 6.5 is probably well known, and it can be
proved by other means. In fact it is not hard to see that Corollary 6.5
holds for any g-finite factor N of type III;, 0 < A < 1, for which the
fundamental homomorphism

mod(a): Aut(N) — Aut(Fy,)
defined in [8, p. 549] is surjective.
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