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Dedicated to Professor Junzo Wada on his 60th birthday

In this paper, localization for ultraseparability is introduced and a
local version of Bernard’s lemma is proven. By using these results it
is shown that a function in Op(/p, Re A4) is harmonic near the origin
for a uniformly closed subalgebra A of Cyp(Y) and an ideal I of A
unless the uniform closure cl7 of [ is self-adjoint; in particular, it is
shown that cl ] is self-adjoint if Re/ - Re I C Re A, which is not true
when 7 is merely a closed subalgebra of A.

1. Introduction. Let Y be a locally compact Hausdorff space, and
Co(Y) (resp. Cyo.r(Y)) be the Banach algebra of all complex (resp.
real) valued continuous functions on Y which vanish at infinity. If ¥
is compact, we write C(Y) and Cg(Y) instead of Cy(Y) and Cy gr(Y)
respectively. Thus C(Y) (resp. Cr(Y)) is the algebra of all complex
(resp. real) valued continuous functions on Y if Y is compact. For a
function f in Cy(Y), ||f|lco denotes the supremum norm on Y. We
say that A4 is a Banach algebra (resp. space) included in Cy(Y) with
the norm || - ||4 if 4 is a complex subalgebra (resp. space) of Cy(Y)
which is a complex Banach algebra (resp. space) with respect to the
norm || - || 4 (resp. such that || f]lcc < ||f|l.4 holds for every f in A4). It
is well known that the inequality || f||c < ||.f]l4 holds for every f in a
Banach algebra 4 included in Cy(Y) with the norm ||-|| 4. Thus we may
suppose that a Banach algebra included in Cy(Y) is a Banach space
included in Cy(Y). We say that E is a real Banach space included
in Co gr(Y) with the norm || - || if E is a real subspace of Cyg(Y)
which is a real Banach space with respect to the norm || - || such that
lullo < llulle holds for every u in E. A (resp. real) Banach space
or algebra included in Cy(Y') (resp. Cy g(Y)) is said to be trivial if it
coincides with Cy(Y) (resp. Co r(Y)).

If 4 is a Banach space included in Cy(Y) with the norm || - || 4 for
a locally compact Hausdorff space ¥, Red = {u € Cyr(Y): v €
Co.r(Y) such that u + iv € A} is a real Banach space with respect to
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the quotient norm || - ||gre 4 defined by

lullre 4 = inf{||f]|l4: f € A, Re f = u}
for u in Re A. Since the inequality

[ulloo < llullre 4

holds for every u in Re 4 by the definition of ||u||re 4, Re A4 is a real
Banach space included in Cy r(Y) with the norm || - [|[ge 4. Let B be
a (resp. real) Banach space included in Cy(Y) (resp. Cp g(Y)) with
the norm || - ||p for a locally compact Hausdorff space Y and K be a
compact subset of Y. We denote

{f € C(K) (resp. Cr(K): IF € B, F|K = f}

by B|K, where F|K is the restriction of the function F to K. B|K is
a (resp. real) Banach space included in C(K) (resp. Cg(K)) with the
quotient norm || - || 3¢ defined by

Ilfll8x = inf{||F|ip: F € B, FIK = f}

for f in B|K; in particular, B|K is a Banach algebra included in C(K)
if B is a Banach algebra included in Cy(Y). For a point x in Y,
B, = {f € B: f(x) = 0} is a (resp. real) Banach space included
in Cy(Y) (resp. Cp r(Y)) with the norm || - ||g; in particular, By is a
Banach algebra included in Cy(Y) if B is a Banach algebra included
in Cy(Y).

A is said to be a Banach function algebra on X if X is a compact
Hausdorff space and A is a Banach algebra included in C(X) which
separates the points of X and contains constant functions on X. A
function algebra on X is a Banach function algebra on X with the
supremum norm as the Banach algebra norm.

For any subsets S and T of Cy(Y) and for a point x in Y and for a
compact subset K of a locally compact Hausdorff space Y, we use the
following notations and a terminology in this paper.

S|K ={f € C(K): 3F € S such that F|K = f},
Sx={f€S: f(x)=0},
where F|K denotes the restriction of the function F to K.
ReS = {u e Cyr(Y): Fv € Cy g(Y) such that u + iv € S},
where i = /1.
clS = the uniform closure of S in Cy(Y),

S={f:feS},
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where ~ denotes the complex conjugation.

S T={fg: feS geT},
S+T={f+g:fe€S geT},
KerS={yeY: f(y) =0}

We say that S separates the points near x if there is a compact neigh-
borhood U of x in Y such that S separates the points in U.

It is a natural question to ask when a (resp. real) Banach space in-
cluded in Cy(Y) (resp. Cy r(Y)) coincides with Cy(Y') (resp. Co r(Y)).
The Stone-Weierstrass theorem is classical: A self-adjoint function al-
gebra on X coincides with C(X). Hoffmann-Wermer-Bernard’s theo-
rem on the uniformly closed real part of a Banach function algebra [2,
8] is well known: If 4 is a Banach function algebra on X and Re 4 is
uniformly closed, then 4 = C(X). L. Glicksberg [4] generalized their
theorem in the case of a function algebra on a metrizable X. J. Wada
[14] removed the metrizability on X. S. Saeki [10] extended the re-
sults of J. Wada in the case of a Banach algebra included in Cy(Y)
with certain conditions (cf. [13]). One of Saeki’s theorems in [10] is
as follows: Let 4 be a Banach algebra included in Cy(Y), and I be a
closed subalgebra of A such that /- Ag C I, where Ag = ANCyr(Y).
If cl(Rel) C ReA, then we have that cl/ is closed under complex
conjugation. If in addition, 4 N4 is closed in A, then I is uniformly
closed.

Wermer’s theorem about the ring condition on the real part of a
function algebra [15] is also well known: If the real part of a function
algebra is a ring, then the algebra is the trivial one. The theorem is
generalized in the setting of range transformations [7]. Suppose that
S and T are sets of complex or real valued functions on a set Z and
D is a subset of the complex plane. We denote

Op(Sp, T) = {h: h is a complex valued function on D such
that 4 o f € T whenever f € S has range in D}.

The central problem on range transformations is to determine the
class Op(Sp, T) (cf. [1]). The Stone-Weierstrass theorem asserts that
if Op(A4¢, A) for a function algebra 4 on X and for the complex
plane C contains the function z — Z, then 4 = C(X). A theorem of
de Leeuw-Katznelson [9], which is one of the generalizations of the
Stone-Weierstrass theorem, states that a continuous nonanalytic func-
tion is not contained in Op(A4p, A) for a non-trivial function algebra 4
on X and a plane domain D. W. Spraglin [12] removed the continuity
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assumption for functions in Op(Ap, A) by showing that every func-
tion in Op(Ap, A) is continuous if X is infinite. Wermer’s theorem
is generalized as follows [5, 11]: Op((Re 4);, Re A) consists of only
affine functions on an interval I for a non-trivial function algebra A.
Either of these theorems are generalized as the following.

THEOREM [7; Corollary 1.1]. Let A be a non-trivial function algebra
and D be a plane domain. Then every function in Op(Ap, Re A) is
harmonic.

For certain non-trivial function algebras 4 and B, Op(A4p, Re B)
contains non-harmonic functions (cf. [7]). In this paper we show that
a result analogous to the above theorem holds when B is uniformly
closed and A4 is an ideal of B. Our main result is the following.

THEOREM 2. Let A be a uniformly closed subalgebra of Cy(Y) for
a locally compact Hausdorff space Y and I be an ideal of A. Let D
be a plane domain containing the origin. Suppose that Op(Ip, Re A)
contains a function which is not harmonic on any neighborhood of the
origin. Then, for every compact subset K of Y —KerI, I|K is uniformly
closed and self-adjoint (i.e., closed under complex conjugation) and cl I
is self-adjoint.

As a corollary of Theorem 2 we prove a result analogous to a theo-
rem of Saeki: Let 4 be a uniformly closed subalgebra of C(Y) and I
be an ideal of 4. If Re - Rel C Re A4, then cl/ is self-adjoint.

The concept of ultraseparation was introduced by A. Bernard and
it was used to provide, for example, a solution of a problem on range
transformations (cf. [2]). The so-called Bernard’s lemma is the es-
sential tool there. In the next section we introduce localization of
ultraseparability and prove a “local” Bernard’s lemma, which is used
to prove Theorem 2 in the last section.

2. Local property of functions in a Banach space included in Cy(Y)
or Cyor(Y). Let E be a (resp. real) Banach space included in Cy(Y)
(resp. Cyp r(Y)) with the norm Ng(-), where Y is a locally compact
Hausdorff space. Let A be a discrete topological space. We denote
the space of all bounded (with respect to the norm Ng(-)) E-valued
functions on A by EA. Then we see that E2 is a Banach space with
the norm

(Ne)“™f) = NE(f) = sup{Ne(f(@)): a € A}



RANGE TRANSFORMATIONS 93

for f in EA. If E is a Banach algebra, then EA is also a Banach
algebra. Let K be a compact subset of Y. Then (E|K)~A = EA|KA
and (Ngjk)~(-) = (N§)g(-), where Ngk(-) is the quotient norm
with respect to Ng(-) and K and (N2) (") is the quotient norm with
respect to N2(-) and KA. On the other hand we may suppose that every
E-valued function f in EA is a complex (resp. real) valued function
on Y x A by defining

fe2) = (f@A))

for (x,4) in Y x A. Since every function f in E satisfies the inequality
Il flleo < Ng(f) we may suppose that every E-valued function f in EA
is a complex (resp. real) valued bounded function with respect to the
supremum norm on Y x A. So we may suppose that

EA c c(h),

where we denote by Y2 the Stone-Cech compactification of the direct
product Y x A of Y and A. Let x be a point in Y. We denote

FA=[IGx Al

where G varies over all the compact neighborhoods of x and [-] denotes
the closure in YA. We denote

QMEx) ={peF2: f(p)=0forVf e E}}.

Let (x,4) be a point in {x} x A and fbea function in EA. Then
we have f (1) € Ex for every A € A and so (f(4))(x) = 0. By the
definition of QA(E,) we see that

{x} x A c QME,) c FA
SO
[{x} x Al C Q*(Ex) C F}

since QA(E,) is closed in YA, For a function f in E we denote by
(f) the function on A with the constant value f.

We assume from Lemma 1 through Lemma 5 that E is a (resp. real)
Banach space included in Cy(Y) (resp. Cp r(Y)) for a locally compact
Hausdorff space Y and that A is a discrete topological space.

LEMMA 1. Let a and b be different points in Y. Then FANFA = @.

Proof. Since Y is a locally compact Hausdorff space we can choose
disjoint compact neighborhoods G, and G}, for a and b respectively.
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By the definition of F2 and F2 we have
FANFP C[G, x AIN[Gy x A]
while [G; x A]N[Gy, x A] = & since G, N G, = . Thus we have
FAnFp=0.
LEMMA 2. Let K be a compact subset of Y. Then

U FlcikxAlc | F
y€lntK yeK

where Int K is the interior of K.

Proof. Let y be a point in Int K. By the definition of F J‘} we see
that

F} C[K x Al
so we have
U F}clkxA]L
y€IntK
Let p be a point in [K x A]. The functional
f = p)

on C(K) is linear and multiplicative, so there is a unique #(p) in K
such that

(M) =1t(p))
for all f in C(K). We will show that p € F t/(‘p). Suppose not. By the
definition of F t'(\p) there is a compact neighborhood G of ¢(p) in Y
such that
D &[G x Al

Since Y2 = [G x A]U[G* x A], where G¢ is the complement of G in
Y, we see that
D €[G° x Al

By Urysohn’s lemma there is a function g in Cy(Y) such that
g(t(p))=1 and g(y)=0
for every y in G¢. Since p is in [G° x A] we have

(g)(p) =0.
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On the other hand
(&)(p)=g(p) =1,

which is a contradiction. Thus we conclude that p € F ;(\p). It follows
that

[KxAlc |J F
yeK

LEMMA 3. |,y F} C YA where the union is disjoint. In particular,
if Y is compact, then

U F}=7"A
yeyYy

Proof. The first assertion is trivial by the definition of F ;‘ and
Lemma 1. If Y is compact, then by Lemma 2 we see

U Fr=7*
yeyYy

since Y =IntY.

LEMMA 4. Let a be a point in Y and G be a compact neighborhood
ofainY. Then

F2 c{pelGx AL {f)(p) = f(a) for¥f € E}.

In particular, if E separates the points near a, that is, there is a compact
neighborhood U of a such that E separates the points in U, then we see
that

F={pe[UxAl:(f)(p) = f(a) forVf € E}.

Proof. Let p be a point in F2. Then p € [Gx A] since FA C [GxA].
Suppose that there is a function f; in E, such that

(fo)(p) # fo(a).

Then
G ={y € G:|fo(y) - fola)| < I/2},
where J = |(fo)(p) — fo(a)|, is a compact neighborhood of a and

p &[G x Al
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Thus we have p ¢ FA since FA C [G x A], which is a contradiction.
We conclude that

F} c{pel[GxAl: {f)(p) = f(a) for Vf € E}.

Suppose that E separates the points in U. Let p be a point in [U x A]
such that (f)(p) = f(a) for every f in E. By Lemma 2 thereis y € U
such that pe F j} By the above argument we see that

(NMp)=r1()
for every f in E. Since

(f)(p) = f(a)
for every f in E and we see that a = y since E separates the points
in U, so we conclude that p € FA.

LEMMA 5. Let a be a point in Y and G be a compact neighborhood
ofainY. Then

QME,) c {p €[Gx Al: f(p) =0 forVf € (Ez)~"}.

In particular, if E, separates the points near a, that is, there is a compact
neighborhood U of a such that E, separates the points in U, then

QME,) ={p €U x Al: f(p) =0 forVf € (E;)~A}.

Proof. The first assertion is trivial by the definition of Q*(E,). Sup-
pose that E, separates the points in U. Since (f) is in (E,)~? for every
f in E; we have

{p €[U x Al: f(p) =0 for Vf € (E,)~"}
c{pel[UxA]: (f)(p)=0forVf € E,}.

E, is a (resp. real) Banach space included in Cy(Y) (resp. Cop r(Y))
with the restriction of the norm E to E,;. We see by Lemma 4 that

{p €U x Al: {(f)(p) = 0 for Vf € Eg} = F}
since f(a) = 0 for every f in E,. So we conclude that
{pelUxA]: f(p)=0forVf e (E,)~*} c FA
We see that
QMEa) ={p €U x Al: f(p) =0 for Vf € (E,)~"}.
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When A = N, the space of all positive integers we write E,Ng(+),
Q(Ex), Y and F instead of EN, N¥(-), QV(Ex), YV and FY respec-
tively (cf. [7]).

DEFINITION 1. Let E be a (resp. real) Banach space included in
Co(Y) (resp. Co r(Y)). We say that E is ultraseparating if E separates
the points of Y. We say that E is ultraseparating near a point x
in Y if there is a compact neighborhood K of x such that E|K is
ultraseparating with respect to the quotient norm, that is, (E|K)~ of
E|K with the quotient norm separates the points of K.

It is easy to see that if F is ultraseparating on Y, then Y is compact
and E separates the points of Y and E # E, for every point y in Y.

LEMMA 6. Let E be a (resp. real) Banach space included in C(X)
(resp. Cr(X)) for a compact Hausdorff space X. Then the following
are equivalent.

(1) E is ultraseparating.

(2) E separates the points in X and E is ultraseparating near x for
every x in X.

(3) E separates the points in X and E separates the points in F for
every x in X.

Proof. (1) — (2) and (2) — (3) are trivial. So we show (3) — (1).
Suppose that (3) is satisfied. By Lemma 3 we have X = U,y Fx,
where the union is disjoint. Let p and g be different points in X. We
consider two cases. If there is x € X such that p and g are points
in F,, then E separates p and g by (3). If p € Fy and q € F,, for
different points x and y in X, then there is a function f in E such
that f(x) # f(») since we suppose that (3) is satisfied. It follows that

() p) # ()a)

since (f)(p) = f(x) and (f)(¢) = f(»). In any case we see that E
separates p and q.

PROPOSITION 1. Let E be a real Banach space included in Cy r(Y)
for a locally compact Hausdorff space Y. Let x be a point in Y. If E
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is ultraseparating near x, then the following condition is satisfied:

*) There is a compact neighborhood G of x which satis-
fies the condition that there are a natural number m
and a & > 0 such that if Y| and Y, are disjoint com-
pact subsets of G, then we can choose fi, f>,..., fm and
g1,82,.-.,8m in the unit ball of E satisfying

Ms

(Ifil —lgil) > on Yy,
1

(Ifil = l&il) < =9 on Y.

~.

[V]s

Il
—_

i
If (%) is satisfied, then E|G is ultraseparating.

LEMMA 7. Let E be a real Banach space included in Cgr(X) for a
compact Hausdorff space X such that E separates the points of X and E
contains constant functions. Then the space of all linear combinations
of |f| for f in the unit ball of E is uniformly dense in Cg(X).

Proof. Let 6 > 0 and g5 be a C*°-smoothing operator supported in
(=6, d), that is, g5 is a nonnegative real valued function of class C*
on the real line supported in (—J, §) with integral 1. Put

)
hs(x) = /_ b= tlos0yd.

Then A; is a function of class C*. For every positive ¢ and for every
positive integer m there exist a d > 0, a C°°-smoothing operator oy
and a real number ¢ with || < ¢ such that

(d™/dx™)hs(t) # 0

since | - | is not a polynomial near the origin. We denote the uniform
closure of the space of all linear combinations of the absolute value of
functions in the unit ball of £ by V. Let g1, &,..., & be functions
in the unit ball of E. Then

hs(g151+ &S2+ -+ gusn +1) EV

for real numbers sy, 5;, ..., Sy, t with sufficiently small absolute values,
provided J < 1. Thus we see that

{hs(gis1+ &2+ -+ gusSn + 1)
— hs(gs2+ &383+ -+ guSn + 1)} /51
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is in V. In particular, fixing 55, s3,...,5, and letting s; — 0 we have
g1(d/dx)hs(gasy + -+ gnSn +1) EV.
Continuing in this manner,

8182 gn(d"[dx")hs(t) €V
and since we may suppose that (d"/dx")hs(t) # 0 we have

818 &€V
It follows by the Stone-Weierstrass theorem that

V = Cr(X).

Proof of Proposition 1. Suppose that the condition (*) is satisfied.
We show that E|G with the quotient norm is ultraseparating on G. Let
a and b be different points of G and U, and U, be disjoint compact
neighborhoods of a and b respectively. Let

Uk =U,n(Gx {k})
and

UF = Uy N (G x {k}).
Then we see that USNUF = @ and a € [U2, UX], b € [Uf2; UF]. Let
t be the map 3

t:G—-G
which satisfies
()= f(t(p))

for every f in C(G) and for every p in G. Since ¢(UX) and t(U,’;)
are disjoint compact subsets of G, by the condition (%) and by the
definition of the quotient space we can choose fi x, f2x,..., fmi and
&1k &k -+ &myk in the unit ball of E|G for every positive integer k
satisfying

> (1 fikl = gikl) > 6/2 on t(Uf),

i=1

Y (U fikl = 18ixkl) < =6/2  on t(Uf).

i=1

It follows that

>_U{fimd@)] = [(gin)(@)]) > 6/2

i=1
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and

Z (KSfin)()] = [(&in) (D)) < —6/2,

where (f;,) and (g, ) are functions in E such that (f;,)(y,k) =

fik(y) and (8in)(y.k) = & x(y) for every (y,k) in G x N respec-
tively. Thus we see that at least one of (f ,), (fo.n),..., (fmn) and
(81.n),(&2.n)s---,(8mn) separates a and b. We conclude that E|G is

ultraseparating.
To prove the reverse implication we suppose that E|G’ is ultrasep-
arating for a compact neighborhood G’ of x. We consider two cases:
(1) E|G' contains constant functions.
(2) E|G’ does not contain non-zero constant functions.
First we treat the case (1). Suppose that () is not satisfied with G = G'.
Then for every positive integer n there are disjoint compact subsets
Y, ,and Y, , of ¢’ such that

Z(lfz |g:)) > 1/n on Yy,

or

n
Y (fil-lgh <~-1/n onY,,
i=1

are not satisfied for every f1, f>,..., fn and g1, £,..., g, in the unit

ball of E|G'. Put
[U Yl n X {I’l} ]
and

= I:U(YZ,n X {n})} .
n=1

Since ¥, and ¥, are disjoint compact subsets of G’ there are f in the
unit ball of C(G’) such that

f(7)=1 forevery y in ¥,
f(7)=-1 forevery  in V5.

By Lemma 7 there are a finite number of functions fi, f5,..., £
and g, &,..., & in (E|G)~ with the norm less than 1/2 respectively

which satisfy
Z(Ifz |&il) <1/3.
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Thus we see that
v
> (fil -1z >2/3 on¥,
i=1
and

Z(lf, 12:) < =2/3 on ,.

By the definition of the norm of (E|G’)™ there are functions f ,, f2 ,,
. funand g ,, &.n,..., &, in the unit ball of E such that

fz(”) = finlG,
gi(n) = gi,an’
for every positive integer n and i = 1,2,...,v. It follows that

> (1 finl = |&inl) >2/3 on Yy,
i=1

and

v
> (finl = 18inl) < =2/3 on Yy,
i=1
which is a contradiction to the definition of Y; , and Y, , for large n.
Thus we have that () is satisfied with G= G'.

Next we consider the case (2). Let E' = E|G + C, where C is the
space of all the real valued constant functions on G. We identify a
real number ¢ and the function on G’ with constant value ¢. Then B
is a real Banach space included in Cg(G’) with the norm defined by

If +cller = Ifllee + lel,

where || f||g is the quotient norm for f in E|G’ and |c| is absolute
value of a real number ¢. By (1) we see the following:

There are a natural number m and a 6’ > 0 such that if Y| and
Y} are disjoint compact subsets of G', then we can choose f| + cj,
fH+cen,.... fm+cemand g +d, g,+da, ..., g, + dn in the unit ball
of E' satisfying

(|f’+cz| lgf +dil)>d¢" onYj,

Ms i Ms

(Iff +cil — g + dil) <—6" on Y3,
1

-
I
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There is a function u# in E|G such that u(x) = 1 since E|G is
ultraseparating. Put M = ||u||gc. Take the compact neighborhood

G={yeG:|1-u(y) <d'/4m}

of x. Then we see the following:

If Y, and Y; are disjoint compact subsets of G, there are functions
(f] + ciu)/(M + 1) and (g/ + d;u)/(M + 1) in the unit ball of E’ and
that

Y T + ciu)/2(M + 1) — |(&] + diw) /2(M + 1)]}
i=1
> d'/4(M + 1)
on Y, and

m
S I+ cou) /2(M + 1)| = (g} + diu)/2(M +1)]}
i=1
<-=0"/4(M + 1)
on Y,. By the definition of the quotient norm of E|G there are func-
tions f1, f2,..., fm and g1, &, ..., & in the unit ball of E which sat-
isfy
filG= (fi + ciu)/2(M + 1),
&G = (g +diu)/2(M + 1)
fori=1,2,...,m. Put § = 6'/4(M + 1). The condition (x) holds on
G with m and §.

COROLLARY 1. Let E be a (resp. real) Banach space included in
Co(Y) (resp. Cor(Y)). Let K be a compact subset of Y. Then the
Jfollowing are equivalent.

(1) E|K is ultraseparating.

(2) (E|K)™A is ultraseparating for a discrete topological space A.

(3) (E|K)™~? separates the points of K* for a discrete topological
space A whose cardinality is infinite.

(4) ((E|K)~M)~N separates the points of (KM)™~ for discrete topo-
logical spaces A and A, where at least one of the cardinalities of A and
A is infinite.

Proof. Suppose that E is a Banach space included in Cy(Y). By
the definition of the quotient norm of Re E we see that (Re E|K)~A =
Re((E|K)~A). Thus (1), (2), (3) and (4) are equivalent to the following
respectively.

(1) Re E|K is ultraseparating.
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(2) (ReE|K)~M is ultraseparating for a discrete topological
space A.

(3) (Re E|K)~A separates the points of K2 for a discrete topological
space A with infinite cardinality.

(4) ((Re E|K)~A)~A" separates the points of (KA)~A" for discrete

topological spaces A and A’, where at least one of the cardinalities of
A and A’ is infinite.
So without loss of generality we may consider only the case that E is a
real Banach space included in Cy g(Y). By Lemma 6 (1) is equivalent
to the condition that E|K separates the points of K and E is ultrasep-
arating near x for every x in K with the relative topology induced by
Y. Thus by Proposition 1 (1) is equivalent to the condition that E|K
separates the points of K and (*) of Proposition 1 is satisfied for every
x in K. In the same way as in the proof of Proposition 1 we see that
(2), (3) and (4) are equivalent to the above condition respectively.

Now we show a local version of Bernard’s lemma.

THEOREM 1. Suppose that E is a (resp. real) Banach space included
in Co(Y) (resp. Co r(Y)) for a locally compact Hausdorff space Y. Let
x be a point in Y. Suppose that A is a discrete topological space with
cardinality not less than that of an open base for x. Then the following
hold.

(1) EA separates the different points in F2 if and only if E is ultra-
separating near x.

(2) EAM|F) is uniformly dense in C(F2) (resp. Cr(F2)) if and only
if there is an interpolating compact neighborhood G of x for E; i.e.,
E|G = C(G) (resp. Cr(G)).

Proof. First we prove (1). Since a Banach space A4 included in Cy(Y)
is ultraseparating near a point x in Y if and only if Re 4 with the
quotient norm is ultraseparating near x, so without loss of generality
we may assume that E is a real Banach space included in Cy z(Y).
Suppose that E is ultraseparating near x. By Proposition 1 we see that
there is a compact neighborhood G of x which satisfies the condition
that there are a positive integer n and a positive real number J such
that for every pair of disjoint compact sets G; and G, of G, there are
functions fi, f>,..., f» and g1, &,..., & in the unit ball of E such
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that .
Y (fil-lgl)>6 onGy,
i=1

n

Y (fil-l&) <=6 on G,

i=1
Let p and g be different points in F2A. Let U, and U, be disjoint
compact neighborhoods in G* of p and g respectively. So we have
that #(U5) and ¢(Uy) are disjoint compact sets in G for every o in A,
where Uy = UpN (G x {a}) and Ug = U;N(G x {a}) and ¢ is the map
from [G x A] onto G satisfying

(f)(a) = f(1(a))

for every f in C(G) and a in [GX A]. There are functions fi ,, /2.4, -»
Sno and g1 4,824, -- -, &ne Iin the unit ball of E with

Y (fial = 18ial) >3 on ¢(Up),
i=1
Y (Ifial = 18ial) <=6 on £(Ug)

i=1

for every a in A. Let f; and g; be E-valued functions in E2 such
that fi(a) = fia and gi(a) = gio for i =1,2,...,n and for every a
in A. Since we may suppose that every E-valued function in EA is a
function in C(¥) by defining

f(x,a) = (f(a))(x)

for every (x,a) in Y x A and since p is a point in [|J, U] and ¢ is
a point in [, Ug] we have that f;(p) # f;(q) or &;(p) # &;(q) for
some 1 < j<n.

On the other hand, suppose that EA separates the points of F A so
there is a g in E such that g(x) = 1 since E2 separates the points
in {x} x A. Since (g) = 1 on FA we see by Lemma 7 that the linear
combinations of absolute value of functions in EA|FA, is uniformly
dense in Cg(F2). Let {G,} be a family of compact neighborhoods of
x such that {IntG,}, the family of all the interiors of G,, is an open
base for x with the cardinality not greater than that of A. Without loss
of generality we may assume that the two cardinalities coincide. We
shall show that there are a compact neighborhood G of x and a posi-
tive integer ng with the following property: For every pair of disjoint
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compact subsets Y, and Y, of G, there are functions fi, f3,..., fu,
and g, &,..., &, in the unit ball of E such that

SN - e > 1/2 on ¥y,
i=1

No

S (fil-lgh <-1/2 onYa.

i=1
Suppose not. For every compact neighborhood G, in {G,} and posi-
tive integer n, there are disjoint compact subsets Y{" and Y5" of G,
such that for every f1, f>,..., fn and g1, £2,..., & in the unit ball of
E we have

n
S-(fil - l&h() £1/2 for vy, e Yo"
i=1
or

Z(Iﬁ — &) () = —1/2 for ¥y, € Y2,

Let f,, be a real valued continuous function on Y with || fy,5llco < 1

and
Jan=1 on Y},

Jan=-1 onY3"

Let ® be a homeomorphism from a discrete space A onto a discrete
space A x N, where N is the discrete space of all positive integers. Let
f be a E-valued function in £ such that

f@) = fow

for every y in A, so f|FA e C(Fy A). Thus by Lemma 7 there are a

finite number of functions f;, f>,..., fwand &1, &, ..., &, in EA with
NA(fi) < 1and N(g) < 1fori=1,2,...,m such that

m
Z |fil —1&h) - F| < 1/8
on FA. Let U be an open neighborhood of F2 such that

dUfil— &) - f] < 1/4
i=1

on U. By the definition of F2 there is a compact neighborhood G in
{G,} such that
U D [Gg x Al
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Thus we see that

DW= 180D - F(»)| < 1/4

i=1

on Gg. We have that

(/i@ (B, m))| - |&:(@~"' (B, m)}) > 3/4 on YF™,

m
Z l
S

Z (1@ (B, m)| - (@~ (B.m))]) < =3/4 on YF™,
which is a contradiction, proving (1).

To prove (2) we need the following. One can prove it by the stan-
dard argument on Banach spaces.

LEMMA 8. Let Ty and T, be Banach spaces with the norms Ni(-)
and N, () respectively. Let ¢ be a bounded linear transformation on T\
into T,. Suppose that there exist an ¢ with 0 < ¢ < 1 and a positive
constant My such that for every u in the unit ball of T, there is v in T;
such that Ny(v) < My and Ny(u — ¢(v)) < ¢&. Then ¢ is onto.

Proof of (2) in Theorem 1. Clearly existence of an interpolating
compact neighborhood of x implies EA|FA = C(FA) (resp Cr(FL)),
so we need only prove the reverse implication. Assume £4 |F{ A is uni-
formly dense in C(F2) (resp. Cr (F A)). Without loss of generality we
may suppose that Y is compact. £ separates the points of F2 since
EA|FA is uniformly dense in C(F2), so E is ultraseparating near x by
(1). Thus without loss of generality we may suppose that E separates
the points of Y. Let {G,} be a family of compact neighborhoods of x
such that {Int G, } is an open base for x. Without loss of generality we
may assume that the cardinalities of {G,} and A coincide. First we
show that there are a compact neighborhood Gg in {G,} and a natural
number n; such that for every f in the unit ball of C(Y) (resp. Cr(Y))
there is an 4 in E with Ng(h) < n; and

Il f1Gg — h|Gglleo < 1/2.

Suppose that it is not true. Then for every compact neighborhood G,
in {G,} and natural number #, there is an f, , in the unit ball of C(Y)
which satisfies the condition that || fo,»|Gy — #|Gallec < 1/2 for h € E
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impli~es Ng(h) > n. Let ® be a homeomorphism from A onto A x N.
Let f be a C(Y)-valued function in C(¥2) = (C(Y))~2 such that

) = fou)
for every y in A. Since EA|FA is uniformly dense in C(F2), we see
that
IFIF = g1F Moo < 1/4
for some £ in EA. Thus we see that
U={xe¥* |f(%) - &) <1/3}
is an open neighborhood of F2. So there is a G in {G,} such that
U D [Gg x A]. Thus we have

17(@1(B,n))|G — &(@' (B, n))|Gglloo < 1/2,
so Ng(g(®~1(B,n))) > n, which is a contradiction since § € EA. Let
T be the linear transformation of E|Gg into C(Gg) (resp. Cr(Gg))
defined by
Tf=f

for f in E|Gg. Then T is bounded since the inequality

I/ lleo < f ll£1G,

holds for every f in E|Gg. By the above argument the hypotheses of
Lemma 8 hold with ¢ = 1/2 and M = n;. Thus we see that

E|Gg = C(Gg) (resp. Cr(Gp)).

PROPOSITION 2. Let E be a (resp. real) Banach space included in
Co(Y) (resp. Cor(Y)) for a locally compact Hausdorff space Y and
Xx be a point in Y. Let A be a discrete space. Suppose that E is
ultraseparating near x. Then we have that

[{x} x Al = Q™(Ex).

Proof. Since E is ultraseparating near x, EA separates the points of
{x} x A, so there is a g in E such that g(x) = 1. Suppose that f is a
E-valued function in EA. We see that

J={(f(@)(x)g)
is in EA, where ((f())(x)g) is an E-valued function such that
(F(@)(x)g)(7) = (f(y))(x)g for every y in A. That does not prove
Proposition 2 but the rest of the proof is the same as the proof of
Lemma 4 in [7].

3. Results of range transformations. In this section we prove the
main results.
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THEOREM 2. Let A be a uniformly closed subalgebra of Cy(Y) for
a locally compact Hausdorff space Y and I be an ideal of A. Let D
be a plane domain containing the origin. Suppose that Op(Ip, Re A)
contains a function which is not harmonic on any neighborhood of the
origin. Then I|K is uniformly closed and self-adjoint for every compact
subset K of Y — KerI and clI is self-adjoint.

Proof. Let h be a function in Op(Ip, Re 4) which is not harmonic on
any neighborhood of the origin. If Y is not compact, then Y denotes
the one point compactification of Y and oo denotes the pointin Y — Y.
If Y is compact, then we add oo as an isolated point and Y denotes
Y U{oo}. We may suppose that A4 is a closed subalgebra of C(Y) such
that f(co) = O for every f in 4. Let Y be the quotient space obtained
by identifying the points in Y which cannot be separated by 4. Let Y
be the quotient space obtained by identifying the points in Y which
cannot be separated by I. Let p be the point in Y which corresponds
to the equivalence class in Y containing co. We may suppose that
Y, is the quotient space obtained by identifying points in Y; which
cannot be separated by / and that p corresponds to Ker /. We may
also suppose that each point in Y, — {p} corresponds to a point in
Y, — Ker I, that is, we may suppose that Yo — {p} =Y, — KerI. Let
I' = clI + C be the sum of the uniform closure of I and the space of
constant functions C. Then I is a function algebra on Y. Let Ch(I’)
be the Choquet boundary for I’. We consider two cases: (1) There is
no accumulation point of Ch(I’) or p is the only accumulation point
of Ch(I') in Y. (2) There is an accumulation point of Ch(I’) which
is not p.

Case (1). Let S denote the closure of Ch(I’) in Y, that is, S denotes
the Shilov boundary for I’. By the condition every point in S — {p}
is isolated. Thus I'|S = C(S), so we have I’ = C(Y,) since S is the
Shilov boundary for I’. It follows that clI is self-adjoint. Since A4 is
uniformly closed and 7 is an ideal of 4 we have

IC(?()) clL

Thus we conclude that 7|K is uniformly closed and self-adjoint for
every compact subset K of Y — Ker/.

Case (2). First we show that 4 is continuous near the origin. Sup-
pose that 4 is not continuous on any neighborhood of the origin. There
exists a positive number J such that {z: |z| < d} C D. Take g to be
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an accumulation point of Ch(Z’) other than p. There is a function &
in 7 such that
k(q)=d>0, lklloo < 1

for a positive number d since p # g. There is a point of discontinuity
zo of h with |zy| < §/2 such that there is a function g in I such that

g@) =20 gl <9/2

since p # q and we suppose that 4 is not continuous near the origin.
Since ¢ is an accumulation point of Ch(/’) we can choose a sequence
{yn} of Ch(I') which satisfies the condition that p is not contained in
the closure of {y,} and

18(vn) — 8(@)l < 1/m
and

lk(yn) —k(a)| < 1/n
for every positive integer » and the y, have disjoint neighborhoods

V, for every positive integer n. Let gy be an accumulation point of
{yn}. So we have go ¢ {y,} since V,,NV) = & if n # k. Then we have

8(q) = 8(40) and k(q) = k(qo) so
1g(yn) — &(q0)l < 1/n,  |k(yn) —k(qo0)| < 1/n
for every positive integer n. Now we need Lemma 9.

LEMMA 9. There are a positive number M and a subsequence {y )}
of {¥n} such that for every convergent sequence {c,} of complex num-
bers with limit O there is a function f in clI such that

f(ym(n)) = Qp, [ fllc £ M - sup |en|.

n

Proof. Since {y,} is a sequence in Ch(/’) there is a function f, in
I for every positive integer n with the property

Jnyn) =1, fu(@0) =0, |Ifullow <2
|fa(¥)| < 1/2™* for Vy € V[

since each y, is a point in the Choquet boundary, where V¢ is the
complement of V, in Y. Let {g,} be the countable set of all polyno-
mials of {f,} with rational coefficients and vanishing constant term.
For integers m and j put

Kmj={x€Yy:|gi(q) - g(x)| < 1/m},

Km=[)Kn,
j=1
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Choose a subsequence {y,(»)} of {yx} such that
Ym(k) € Ki 0 {yn}

for every positive integer k. Let g; be an accumulation point of
{¥mm}. Let I be the uniform closure of {g,}. Then I, is a closed
subalgebra of cl/ and

Jim g(ym(n) = 0 = 8(do)

for every g in ;. Let J be a bounded linear transformation of /; into
¢y, where ¢y denotes the Banach space of all convergent sequences of
complex numbers with limit O, such that

J(G) = {G(ym(n))};o:I'
We show that J is onto. Let {a,} € ¢y with sup,, |a,| < 1. Then

f= Z anfm(n)

n=1

isin I; and || f|lcc < 4 and

|f(.Vm(n)) —ap| < 1/2.

Thus we see that J is onto by Lemma 8. It follows by the open
mapping theorem that Lemma 9 holds.

Sequel of proof of Theorem 2. Since z is a point of discontinuity
for h, there is an gy > 0 and a sequence {z,} in {z: |z| < d} such that
zy, — zo and

|7(z0) — h(zn)| > &0
for every positive integer n. Without loss of generality we may assume

sup |z, — zo| < do/(18M).
n

Let {g,} be a subsequence of {y,,(,)} such that
{an} = {ymm} N {x € Yo:|g(x) — 20| < d6/(18M),
|k(x)—d| <d/3}.

Let g; be an accumulation point of {g,}. Then we have g(q;) =

&(4g) = 8(qo)- Let an = (zn — 8(4qn))/k(4n). Then |an| < 6/(6M) and
ap — 0 as n — oo. So by Lemma 9 there is an f in cl/ with
\

flan) =an,  |Ifllo < MS/(6M) = /6.
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We have fk + g € I since cl/ C A and I is an ideal of 4. We also
have

Ik + glloo <26/3,  (fk+8)(an) = zn, (fk+8)(q5) = 2o
since ¢ is an accumulation point of {g,}. While
ho(fk+g)eRed

since range of fk + g is contained in D, we also have

ho (fk + g)(gn) = h(zn),
ho (fk + g)(qg) = h(z0),
which is a contradiction since

| (zn) — h(z0)| > &

for every positive integer #, while g is an accumulation point of {g,}.
Thus we conclude that 4 is continuous near the origin.
Now we need Lemma 10.

LEMMA 10. Let B be a uniformly closed subalgebra of Cy(Y) for a
locally compact Hausdorff space Y which separates the points of Y. Let
D be a plane domain containing the origin. Suppose that x is a point in
Y such that By # B. Suppose also that there is a function f in Cy(Y)
with f(x) # 0 which satisfies that

where f-B = {fg: g € B}. Ifthere s a function h in Op((f-B)p, Re B)
which is continuous near the origin but is not harmonic on any neigh-
borhood of the origin, then there is a compact neighborhood G of x
with

B|G = C(G).

Before we prove Lemma 10 we show the rest of the proof of The-
orem 2 by using Lemma 10. By the definition of Y; we may suppose
that A4 is a uniformly closed subalgebra of C(Y ) which separates the
points of Y. Let x be a point in Y| — Ker/. Then we have that
A # A, and that there is a function f in I such that f(x) # 0. Since

I is an ideal of A4, f - A is contained in I, so we have
Op(Ip, ReA) c Op((f - A)p, Re A4).

Thus 4 is a function in Op((f - 4)p, Re A) which is continuous near
the origin but is not harmonic on any neighborhood of the origin. It
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follows by Lemma 10 that there is a compact neighborhood G in Y,
of x such that
A|G = C(G).

Without loss of generality we may suppose that G C Y —Ker, so we
have
I|G=C(G)

since I is an ideal of A. The same conclusion holds for every point in
Y, —Kerl. Since we may suppose that Y, —KerI = Y, — {p} we see
that
I'=C(Y))

by Corollary 2.13 in [3]. We conclude that cl/ is selfadjoint. Since A4
is uniformly closed and I is an ideal of 4. We see that I - C(Y,) c 1.
Thus we conclude that I|K = C(K) for every compact subset K of
Yo — {p}, in short, I|K is uniformly closed and self-adjoint for every
compact subset K of Y — Ker/.

Proof of Lemma 10. Without loss of generality we may assume that
h is continuous on {z: |z| < 1} since f - B is closed under constant
multiplication. We may also suppose that ||f]l.c = 1. We denote
f By = {fg: g € By} by B. We see that B is a Banach space with
respect to the norm defined by

”u”% = lnf{”g”oo g e By, u= fg}

for u in M. It is trivial that ||u||c < |||z for every u in B. Now we

need Lemma 11, which can be proven in the same way as the proof
of Lemma 1.2 in [7].

LEMMA 11. Let B, = {u € B: ||lulls < 1/2}. Then there are a
positive integer ny and a real number ¢ with 0 < ¢ < 1/2 and a function
v in B, such that

{geB:|g—vln <e} CB

and there is a dense subset U in {g € B: ||g — v|s <&} withy inU
which satisfies the following:
For every g in U we have

hogeReB and |hog|res < ho.

Sequel of the proof of Lemma 10. First we show that B is ultrasepa-
rating near x. Let g,(-) be a smoothing operator of class C* supported
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in {z:|z| < n} for a small n > 0. Put
hy(z1,22) = / h(zy — zow)oy(w) dx dy (w=x+1iy)
and
Ly(zy, 23, 0) = [a*Ay (hy(z1, 22)| 22]*),

where A; is the Laplacian with respect to x; = Rez; and y; = Im z;.
By Lemma 5 in [7] we see that

L,(fg2. fg3.8) €clReB

for every g, g, and g3 in B with ||g;|lcc < 1/2 for i =2 and 3 and a
small # > 0. Thus we see that

Co,r(Y)A(hy(f82. f83)|fg3]*) € cRe B
by the Stone-Weierstrass theorem. Since /4 is not harmonic near the
origin we see that
|Ly(z, w, 1)| 2 (1/2)|Ly(0, z2, 1)| # O

on {(z,w) € C%:|z| < €, |lw — z5] < &'} for a small # > 0 and a
smoothing operator g, and an &' > 0 and a z, with sufficiently small
non-zero absolute value. Choose g; and g3 in B with ||g;|lcc < 1/2 for
i = 2 and 3 such that

&(x)=0,  fg(x)=z.
Let

G={yeY:|fWI=1fX)I/2,|fe0») <,
|fg3(y) — fe3(x)| <¢€'}.

So G’ is a compact neighborhood of x with

L,(fg:2(y), fg3(¥), 1) #0

for every y in G'. We show that B|G is ultraseparating. Let Y, and Y,
be compact subsets of G’. By the definition of G’ there is a function
u in clRe B such that
lulloo < 2,

u(y)>1 forvyeY,,

u(y)< -1 forvVyeY,
since Co r(Y)-Ly(/82. /83, 1) CclRe B and since L, (fg2(y). f83(¥). 1)
# 0 for Vy € G’. We see that there are functions #’ and v in Re B with

[#lle0 < 3,



114 OSAMU HATORI

u'(y)>1/2 forVyeY,

u'(y)<—1/2 forVyeY,,
and ' + iv € B. Then we have exp(«’ + iv) € B since B is uniformly
closed and we have

llexp(u’ + iv)|leo < €xp 3,

lexp(u’ + iv)(p)| > exp(1/2) forVy € Yy,
lexp(¥' + iv)(¥)| < exp(—1/2) forVy € Y.
Let a and b be different points in G’ and U, and U, be disjoint compact
neighborhoods of a and b respectively. Put UX = U, N (G x {k}) and
U{; = U, N (G’ x {k}) for every positive integer k. Then we see that
UknUF =@ forevery k anda e Uy, UZ, b e Uy, Uy Let ¢ be the
map )
t: G -G
which satisfies (g)(p) = g(¢(p)) for every f in C((G’) and for every
p in @, since ¢(UX) and ¢(Uf) are disjoint compact subsets of Y for
every k. For every positive integer k choose a function f; in B such
that '
[ fklloo < exp 3,
|fe(»)| > exp(1/2) for Vy € t(Uy),
|fi(¥)] < exp(~1/2) for ¥y € t(Uy).
It follows that f separates a and b, where f is a function in (B|G)~
such that f(n) = f,|G for every n. Thus we conclude that B|G’ is

ultraseparating on G’. Let f - B|G' = {fg|G’: g € B}. Then f - B|G' is
a Banach space included in C(G’) with the norm defined by

|ull r.5)6 = inf{||glloo: & € B, f3|G' = u}

for u € f - B|G'. Since f never equals zero on (7, (f - B|G')~|F, =
(B|G')~|F, for every y in G’ by Lemma 4, so f-B|(G’ is ultraseparating
by (3) of Lemma 6.

Let A be a discrete space whose cardinality coincides with that of
an open base for x. We will show that

cl(BAIFM) = C(FM).

Let oF2 be the quotient space of F by B2, that is, the space defined
by identifying the points of F2 which cannot be separated by BA.
Since B is ultraseparating near x we see that QA(B,) = [{x} x A] by
Proposition 2 and Q”(By) is the only subset of F2 with more than
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one point which corresponds to a point in oF2. Let § be the point
in oF which corresponds to QA(By). Let B’ be the function algebra
on oFA generated by BA|oF2 and the constant functions. Let % be a
point in o FA — {G}. There is an f in B2 with

(NfE)=s#0,

where s is a complex number with small absolute value. Without loss
of generality we may suppose that

Ay (hy(0,5)) # 0,

where 7 is a small positive number such that 7 < &/(2|.f]lc) (€ is the
constant in Lemma 11) and

hy(z1,22) = / h(z) — zyw)oy(w)dx dy (w=x+1y)

for some smoothing operator g,(-) of class C* supported in {z: |z| <
n}. We can choose an ¢ > 0 such that

A1 (An(z, w))| 2 (1/2)|A1(hy(0, 5))]

on
{(z,w) e C*:|z| <&, |lw—s]| <&}

Put
Y'={y €oFL: () (§) - (/) (X)| < min{e'/2,|s]/2}}.

Then Y’ is a compact neighborhood of X% in oF2 with § ¢ Y’, so we
may suppose that Y’ is a compact subset of F2. Let & be a function
in (BA)~. For a complex number # with sufficiently small absolute
value and a complex number w with |w| <  we have that

Em)(@)(fF(@)*B - fF(aw
is in B for every positive integer n and every a in A and
I(B(m)(@)(f f(@)*B - [ fe)w]s <&

So for every small positive ¢”, positive integer #» and « in A there is a
function g, , », in U which satisfies the condition that

ly + (2(m)()(f F(2))*B — f(@)w — geranlls <&",
where  is the function in Lemma 11. We see that

h &) gg“la,n E RCB
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and
|71 0 &er,a,nllRe B < Mo
Thus we see that
hog,.. € Re(BA)™,
where g, is a function in (BA)~ such that (£,.(n))(a) = ge.a.x for
every n and «. Since the inequality |||/ < ||#||g holds for every u in
B and since /4 is continuous we see that

h(((¥)) + (NS B = () )w)

is in cl(Re(B*)~), where () (resp. (f)) is the constant function in B4
with constant value y (resp. f) and {(()) (resp. ((f)f)) is the constant
function in (BA)~ with constant value (y) (resp. (f)f). Thus we have

that X i
hy (W) + (N 2B (N F))

is in cl(Re(B%)~) for a complex number f with sufficiently small ab-
solute value. It follows by Lemma 5 in [7] that

Ly(((w)), (N 1), &) = |181PLy(((w)), (), 1)
is in cl(Re(B%)™). Since (y) = 0 and (f) = f(x) on F} we see that

|12Ly(0, f(x)(F). DIY’

is in cl(Re(BA)~)|Y". Since f is in B2 we see that

Ly(0, f(x)(f). 1) =0
on {x} x A x N by Lemma 5 in [7]). Thus we conclude that

1817Ly (0, £ (). DIT

is in cl(Re(B2)™)|Y’. Since B is ultraseparating near x, (B)™ sepa-
rates the points in [F2 x N], in particular, in Y’ by Corollary 1. By

the definition of Y’ we see that L, (0, f(x)(f), 1) never equals zero on
Y'. It follows by the Stone-Weierstrass theorem that

Cr(Y') C cl(Re(BR|Y')™)

since (cl(Re(B2)™))|Y" c cl(Re(B2|Y')™), so by Bernard’s lemma we
have
Cr(Y') = Re(BR|Y')
SO
c(Y'y=BMNY'
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by a theorem of Hoffman-Wermer-Bernard [2, 8]. We conclude that
B' = C(oFD)
by Corollary 2.13 in [3]. It follows that
c(BAFMY = C(FM.

We conclude by (2) of Theorem 1 that there is a compact neighbor-
hood G of x such that ¢’ O G and

B|G = C(G).

REMARK 1. Let A be a function algebra on a compact Hausdorff
space X which contains an infinite number of points and B be a Ba-
nach function algebra on X. Then every function in Op(A4p, Re B)
for a plane domain D is continuous on D (cf. Remark 2 in [7]). This
is not the case for a point separating closed subalgebra of C(X) which
does not contain the constant functions. Let X = {0,1,1/2,1/3,...}.
Let A = {f € C(X): f(0) = 0} and D = {z: |z| < 1}. Take any
sequence {4,} in D with 4, # 0 but 4, — 0 and let

z if ze {A,},

h =
(2) {o if 2 ¢ {A,).
Then we see that discontinuous function # is in Op(Ap, Re A4). (This
example was corrected by the referee.)

REMARK 2. The condition that 7 is an ideal is necessary in Theorem
2, that is, if I is merely a subalgebra of 4 or even if I is a closed
subalgebra of 4, there may be a continuous function # in Op(/p, Re A)
which is not harmonic near the origin (cf. Remark 1 in [7]).

COROLLARY 2. Let A be a function algebra on a compact Hausdorff
space X and I be an ideal of A. Let D be a plane domain. Suppose
that cl11 is not self-adjoint. Then every function in Op((I + C)p, Re A)
is harmonic on D.

COROLLARY 3 (cf. [13]). Let A be a uniformly closed subalgebra of
Co(Y). Suppose that I is an ideal of A or the sum of an ideal of A and
the space of the constant functions. If

Rel -Rel Cc Re A,
then cl1 is self-adjoint.
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Proof. If ReI - ReI C Re A, then we see that

z — (Re z)?

is in Op(I¢, Re A4), but is not harmonic.
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