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In this paper, localization for ultraseparability is introduced and a
local version of Bernard's lemma is proven. By using these results it
is shown that a function in Op(ID, Re A) is harmonic near the origin
for a uniformly closed subalgebra A of CΌ(F) and an ideal I of A
unless the uniform closure cl / of / is self-adjoint; in particular, it is
shown that cl / is self-adjoint if Re / Re / c Re A9 which is not true
when / is merely a closed subalgebra of A.

1. Introduction. Let Y be a locally compact Hausdorff space, and
Co(Y) (resp. CO,R(Y)) be the Banach algebra of all complex (resp.
real) valued continuous functions on Y which vanish at infinity. If Y
is compact, we write C(Y) and CR(Y) instead of Co(Y) and C^R{Y)

respectively. Thus C(Y) (resp. CR(Y)) is the algebra of all complex
(resp. real) valued continuous functions on Y if Y is compact. For a
function / in CQ(Y), \\f\\oo denotes the supremum norm on Y. We
say that A is a Banach algebra (resp. space) included in CQ(Y) with
the norm || \\A if A is a complex subalgebra (resp. space) of Q ( Γ )
which is a complex Banach algebra (resp. space) with respect to the
norm || \\A (resp. such that ||/||oo < II/IU holds for every / in A). It
is well known that the inequality ||/||oo < II/IU holds for every / in a
Banach algebra A included in Q ( Γ ) with the norm || \\A. Thus we may
suppose that a Banach algebra included in CQ(Y) is a Banach space
included in CQ(Γ). We say that E is a real Banach space included
in CQ9R(Y) with the norm || | |^ if E is a real subspace of C^R{Y)

which is a real Banach space with respect to the norm \\-\\E such that
IMIoo - \\U\\E holds for every u in E. A (resp. real) Banach space
or algebra included in Q ( Γ ) (resp. CQ>R(Y)) is said to be trivial if it
coincides with CQ(Y) (resp. CQ^Y)).

If A is a Banach space included in CQ(Y) with the norm || \\A for
a locally compact Hausdorίf space Y, Re A = {u e C0,R{Y): 3V e
CQ}R{Y) such that u + iv e A} is a real Banach space with respect to
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the quotient norm || \\RQA defined by

for u in Re A. Since the inequality

IMIoo < I N I
holds for every u in Re A by the definition of ||w||Re^, Re^4 is a real
Banach space included in CQ>R(Y) with the norm || \\KGA- Let B be
a (resp. real) Banach space included in Q ( Γ ) (resp. CQ>R(Y)) with
the norm || ||# for a locally compact Hausdorff space Y and K be a
compact subset of Y. We denote

{/ G C(K) (resp. CR(K): 3F e B, F\K = /}

by B\K, where F\K is the restriction of the function F to K. B\K is
a (resp. real) Banach space included in C(K) (resp. CR(K)) with the
quotient norm || H ^ defined by

\\f\\Blκ = mf{\\F\\B:FeB, F\K = /}

for / in B\K\ in particular, B\K is a Banach algebra included in C(K)
if 5 is a Banach algebra included in Q ( Γ ) . For a point x in 7,
Bx = {f e B: f(x) = 0} is a (resp. real) Banach space included
in Q ( Γ ) (resp. CQ,R(Y)) with the norm || \\B; in particular, Bx is a
Banach algebra included in CQ(Y) if i? is a Banach algebra included
in C0(Y).

A is said to be a Banach function algebra on X if X is a compact
Hausdorff space and A is a Banach algebra included in C(X) which
separates the points of X and contains constant functions on X. A
function algebra on X is a Banach function algebra on X with the
supremum norm as the Banach algebra norm.

For any subsets S and T of CQ(Y) and for a point x in 7 and for a
compact subset ΛΓ of a locally compact Hausdorff space Y, we use the
following notations and a terminology in this paper.

-S|A: = {fe C(K) :3FeS such that F\K = /},

Sx = {feS:f(x) = 0},

where JP|AΓ denotes the restriction of the function F to K.

ReS = {WG 0 ) ^ ( 7 ) : 3v e CO>R(Y) s u c h t h a t u + iv eS},

where / = v^T.

= the uniform closure of S in CQ(Y),

= {f:feS},
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where ~ denotes the complex conjugation.

S T = {fg:feS,geT),

S + T = {f + g:feS,geT},

We say that S separates the points near x if there is a compact neigh-
borhood U of x in Y such that S separates the points in U.

It is a natural question to ask when a (resp. real) Banach space in-
cluded in C0{Y) (resp. COιR(Y)) coincides with C0(Y) (resp. COtR(Y)).
The Stone-Weierstrass theorem is classical: A self-adjoint function al-
gebra on X coincides with C(X). Hoffmann-Wermer-Bernard's theo-
rem on the uniformly closed real part of a Banach function algebra [2,
8] is well known: If A is a Banach function algebra on X and Re A is
uniformly closed, then A = C(X). I. Glicksberg [4] generalized their
theorem in the case of a function algebra on a metrizable X. J. Wada
[14] removed the metrizability on X. S. Saeki [10] extended the re-
sults of J. Wada in the case of a Banach algebra included in CQ(Y)
with certain conditions (cf. [13]). One of Saeki's theorems in [10] is
as follows: Let A be a Banach algebra included in Co(Y), and / be a
closed subalgebra of A such that / ΆR c /, where AR = A n COtR(Y).
If cl(Re/) c Re A, then we have that cl/ is closed under complex
conjugation. If in addition, A Π A is closed in A, then / is uniformly
closed.

Wermer's theorem about the ring condition on the real part of a
function algebra [15] is also well known: If the real part of a function
algebra is a ring, then the algebra is the trivial one. The theorem is
generalized in the setting of range transformations [7]. Suppose that
S and T are sets of complex or real valued functions on a set Z and
D is a subset of the complex plane. We denote

Op(Sj), T) = {h: h is a complex valued function on D such

that h o / G T whenever / e S has range in D}.

The central problem on range transformations is to determine the
class Op(Sr>, T) (cf. [1]). The Stone-Weierstrass theorem asserts that
if Op(Ac,A) for a function algebra A on X and for the complex
plane C contains the function z κ i , then A = C{X). A theorem of
de Leeuw-Katznelson [9], which is one of the generalizations of the
Stone-Weierstrass theorem, states that a continuous nonanalytic func-
tion is not contained in Op(AD, A) for a non-trivial function algebra A
on X and a plane domain D. W. Spraglin [12] removed the continuity
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assumption for functions in Op(AD,A) by showing that every func-
tion in Op(AD,A) is continuous if X is infinite. Wermer's theorem
is generalized as follows [5, 11]: Op((ReA)ItReA) consists of only
affine functions on an interval / for a non-trivial function algebra A.
Either of these theorems are generalized as the following.

THEOREM [7; Corollary 1.1]. Let Abe a non-trivial function algebra
and D be a plane domain. Then every function in Op{AD, Re A) is
harmonic.

For certain non-trivial function algebras A and B, Op(AD, Re B)
contains non-harmonic functions (cf. [7]). In this paper we show that
a result analogous to the above theorem holds when B is uniformly
closed and A is an ideal of B. Our main result is the following.

THEOREM 2. Let A be a uniformly closed subalgebra of CQ{Y) for
a locally compact Hausdorff space Y and I be an ideal of A. Let D
be a plane domain containing the origin. Suppose that Op(//>, Re A)
contains a function which is not harmonic on any neighborhood of the
origin. Then, for every compact subset K of Y — Ker /, I\K is uniformly
closed and self adjoint (i.e.y closed under complex conjugation) and cl /
is self adjoint.

As a corollary of Theorem 2 we prove a result analogous to a theo-
rem of Saeki: Let A be a uniformly closed subalgebra of CQ(Y) and /
be an ideal of A. If Re/ Re/ c Re^4, then cl/ is self-adjoint.

The concept of ultraseparation was introduced by A. Bernard and
it was used to provide, for example, a solution of a problem on range
transformations (cf. [2]). The so-called Bernard's lemma is the es-
sential tool there. In the next section we introduce localization of
ultraseparability and prove a "local" Bernard's lemma, which is used
to prove Theorem 2 in the last section.

2. Local property of functions in a Banach space included in Co(Y)
or CQ,R(Y). Let E be a (resp. real) Banach space included in CQ(Y)

(resp. CofR(Y)) with the norm Λ^( ), where Y is a locally compact
Hausdorff space. Let Λ be a discrete topological space. We denote
the space of all bounded (with respect to the norm iY#( )) /^-valued
functions on Λ by EA. Then we see that EA is a Banach space with
the norm

= NE(I) = sup{NE(f(a)): α e Λ}
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for / in EA. If E is a Banach algebra, then EA is also a Banach
algebra. Let K be a compact subset of Y. Then (£|A:)~A = EA\KA

and (#£|Λ:)~ Λ ( ) = (NE)\KΛ')> where NE\K( ) is the quotient norm
with respect to NE(-) and K and (Λ^)|£Λ( ) *S the quotient norm with
respect to &£(•) and KA. On the other hand we may suppose that every
^-valued function / in EA is a complex (resp. real) valued function
on Y x Λ by defining

for (x, λ) in Y x Λ. Since every function / in E satisfies the inequality
11/11 oo < NE(/) we may suppose that every ^-valued function / in EA

is a complex (resp. real) valued bounded function with respect to the
supremum norm o n Γ x Λ . So we may suppose that

EA c C(ΫA),

where we denote by ΫA the Stone-Cech compactification of the direct
product Y x Λ of Y and Λ. Let x be a point in Γ. We denote

where G varies over all the compact neighborhoods of x and [•] denotes
the closure in ΫA. We denote

QA(EX) = {peFA: f(p) = 0 for V/ e EA).

Let (x, λ) be a point in {x} x Λ and / be a function in EA. Then
we have f{λ) e Ex for every λ e A and so (/(A))(JC) = 0. By the
definition of QA{EX) we see that

W x Λ c Q\EX) c FA

so
[ W x Λ ] c β Λ ( ^ ) c F , Λ

since QA(EX) is closed in ΫA. For a function / in E we denote by
(/} the function on Λ with the constant value / .

We assume from Lemma 1 through Lemma 5 that E is a (resp. real)
Banach space included in C0(Y) (resp. CO,R(Y)) for a locally compact
Hausdorff space Y and that Λ is a discrete topological space.

LEMMA 1. Let a and b be different points in Y. Then FAnF£ = 0.

Proof, Since Y is a locally compact HausdorίF space we can choose
disjoint compact neighborhoods Ga and Gb for a and b respectively.
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By the definition of F^ and Ffr we have

while [Ga x Λ] Π [G# x Λ] = 0 since Ga Π G# = 0. Thus we have

LEMMA 2. Let K be a compact subset of Y. Then

F£c[KxA]c
yelntK yeK

where intK is the interior ofK.

Proof, Let y be a point in Int K. By the definition of Ffi we see
that

so we have

yelntK

Let /? be a point in [AT x Λ]. The functional

on C(AΓ) is linear and multiplicative, so there is a unique f(/?) in K
such that

</>(/>) = /(*(*))

for all / in C(K). We will show that p e Fftp). Suppose not. By the

definition of Fft x there is a compact neighborhood G of t(p) in 7

such that

^ [ G x A ] .

Since ΫA = [GxΛ]U[Gc xΛ], where Gc is the complement of G in
7, we see that

/? G [Gc x A],

By Urysohn's lemma there is a function g in Cb(Γ) such that

g(t(p)) = l and ^(y) = 0

for every y in Gc. Since p is in [Gc x Λ] we have

<*>(/>) = 0.
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On the other hand

which is a contradiction. Thus we conclude that p G Fft y It follows
that

[KxA]c
yeK

LEMMA 3. \JyeY F
A c ΫA where the union is disjoint. In particular,

if Y is compact, then
Fy = γ A

yeY

Proof. The first assertion is trivial by the definition of FA and
Lemma 1. If Y is compact, then by Lemma 2 we see

yeY

since Y = Int Y.

LEMMA 4. Let a be a point in Y and G be a compact neighborhood
of a in Y. Then

F£ c{pe[GxA]: (f)(p) = /(*) for V/ e E}.

In particular, ifE separates the points near a, that is, there is a compact
neighborhood U of a such that E separates the points in U, then we see
that

F£ = {P e [U x Λ]: (f)(p) = f(a) for V/ e E}.

Proof Let p be a point in FA. Then p e [GxA] since FA c [GxΛ].
Suppose that there is a function / 0 in Ea such that

Then
σ = {yeG:\fo(y)-Ma)\<δ/2},

where δ = \(fo)(p) - fo(a)\, is a compact neighborhood of a and

p £ [G1 x A].
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Thus we have p $. FA since FA C [G X Λ], which is a contradiction.
We conclude that

FA c{pe[GxA]: </)(/?) = f(a) for V/ e E).

Suppose that E separates the points in U. Let p be a point in [U x Λ]
such that (f)(p) = /(α) for every / in E. By Lemma 2 there is y e U
such that /? € FA. By the above argument we see that

for every / in E. Since

for every f in E and we see that α = y since J? separates the points
in C/, so we conclude that p e F£.

LEMMA 5. Let a be a point in Y and G be a compact neighborhood
of a in Y. Then

QA(Ea)c{pe[GxA]:f(p) = O for V/ e (^)^ Λ }.

In particular, ifEa separates the points near a, that is, there is a compact
neighborhood Uofa such that Ea separates the points in U, then

QA(Ea) = {pe[UxA]: f{p) = OforVf e (£.Γ Λ } .

Proof. The first assertion is trivial by the definition of QA(EX). Sup-
pose that Ea separates the points in U. Since (/) is in (Ea)~A for every
/ in Ea we have

{pe[UxA]ι f(p) = 0 for V/ e (EaΓ
A}

c{pe[UxA]: (f)(p) = 0 for V/ e Ea}.

Ea is a (resp. real) Banach space included in Co(Y) (resp. CQ
with the restriction of the norm E to Ea. We see by Lemma 4 that

{p e \fj x A]: (/)(/?) = 0 for V/ e Ea} = FA

since f(a) = 0 for every / in Ea. So we conclude that

{p e [U x Λ]: f(p) = 0 for V/ e (Eay
A} c FA.

We see that

QA(Ea) = {pe[UxA]: f(p) = 0 for V/ 6 (^)^Λ}
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When Λ = N, the space of all positive integers we write E,NE(-),
Q(EX), Ϋ and Fx instead of EN, #/(•), QN(EX), ΫN and F? respec-
tively (cf. [7]).

DEFINITION 1. Let £ b e a (resp. real) Banach space included in
Co(Y) (resp. Cotκ(Y)). We say that E is ultraseparating if E separates
the points of Ϋ. We say that E is ultraseparating near a point x
in Y if there is a compact neighborhood K of x such that E\K is
ultraseparating with respect to the quotient norm, that is, (E\K)~ of
E\K with the quotient norm separates the points of K.

It is easy to see that if E is ultraseparating on 7, then Y is compact
and E separates the points of Y and E φEy for every point y in Y.

LEMMA 6. Let E be a (resp. real) Banach space included in C(X)
(resp. CR(X)) for a compact Hausdorff space X. Then the following
are equivalent

(1) E is ultraseparating.

(2) E separates the points in X and E is ultraseparating near x for
every x in X.

(3) E separates the points in X and E separates the points in Fx for
every x in X.

Proof. (1) -• (2) and (2) -* (3) are trivial. So we show (3) -> (1).
Suppose that (3) is satisfied. By Lemma 3 we have X = \JxeχFx,
where the union is disjoint. Let p and q be different points in X. We
consider two cases. If there is x G X such that p and q are points
in Fx, then E separates p and q by (3). If p e Fx and q e Fy for
different points x and y in X, then there is a function f in E such
that f(x)φf(y) since we suppose that (3) is satisfied. It follows that

since (f)(p) = f(x) and (f)(q) = f(y). In any case we see that E
separates p and q.

PROPOSITION 1. Let E be a real Banach space included in COfR(Y)
for a locally compact Hausdorff space Y. Let x be a point in Y.IfE



98 OSAMU HATORI

is ultraseparating near x, then the following condition is satisfied:

(*) There is a compact neighborhood G of x which satis-
fies the condition that there are a natural number m
and a δ > 0 such that if Y\ and Y2 are disjoint com-
pact subsets ofG, then we can choose f\,f2,. ,fm and
g\>g2, ' ,gmin the unit ball ofE satisfying

m

\gi\)<-δ onY2.

//*(*) is satisfied, then E\G is ultraseparating.

LEMMA 7. Let E be a real Banach space included in CR(X) for a
compact Hausdorff space X such that E separates the points ofX and E
contains constant functions. Then the space of all linear combinations
0/I/I for f in the unit ball ofE is uniformly dense in CR(X).

Proof. Let δ > 0 and σδ be a C°° -smoothing operator supported in
(-δ,δ), that is, σδ is a nonnegative real valued function of class C°°
on the real line supported in (-δ, δ) with integral 1. Put

rδ

hδ(x)= / \x-t\σδ{t)dt.
Js

Then hδ is a function of class C°°. For every positive ε and for every
positive integer m there exist a δ > 0, a C°°-smoothing operator σδ

and a real number t with \t\ < e such that

(dm/dxm)hδ(t) φ 0

since | | is not a polynomial near the origin. We denote the uniform
closure of the space of all linear combinations of the absolute value of
functions in the unit ball of E by V. Let g\,g2,...,gn be functions
in the unit ball of E. Then

+ g2$2 + "• + gnSn + t) E V

for real numbers s\, s2,... ,sn, t with sufficiently small absolute values,
provided δ < 1. Thus we see that

{hδ(glS{ + £2^2 + + gnSn + 0

- hδ(g2S2
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is in V. In particular, fixing S2,s^,...,sn and letting S\ —> 0 we have

gl(d/dx)hδ(g2S2 + -' + gnSn + t) € V

Continuing in this manner,

g\g2 -gn(dn/dxn)hδ(t)eV

and since we may suppose that (dn/dxn)hδ(t) Φ 0 we have

g\g2'"gne V

It follows by the Stone-Weierstrass theorem that

V = CR(X).

Proof of Proposition 1. Suppose that the condition (*) is satisfied.
We show that E\G with the quotient norm is ultraseparating on G. Let
a and b be different points of G and Ua and Uh be disjoint compact
neighborhoods of a and b respectively. Let

and

Then we see that £/£ n £/£ = 0 and α e [(JΓ=i ual b e [IJΓ=i Ub^ L e t

t be the map
t: G-+G

which satisfies

{f)(p)=f(t(p))

for every / in C(G) and for every p in G. Since t(U%) and t(U%)
are disjoint compact subsets of G, by the condition (*) and by the
definition of the quotient space we can choose f\fk>fi,k> * fm,k a n d
gι,k> Si,k>- »gm,k ^n ̂ e un^ ball of i^G for every positive integer k
satisfying

m

onί(C/*),

ont{Uh

b).

It follows that
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and
m

Σ{\(fi,n)Ψ)\-\(gi,n){b)\)<-δl2,
ι=l

where (//,„) and (gi>n) are functions in E such that {fi,n){y>k) =
fμ(y) and (gitn)(y,'k) = gi>k{y) for every (y,k) in G x N respec-
tively. Thus we see that at least one of (/ifΛ), (f2,n)>- »(/m,«) and
(<§Ί,«)> (<§2,«)> »(<?m,«) separates a and 6. We conclude that E\G is
ultraseparating.

To prove the reverse implication we suppose that E\G' is ultrasep-
arating for a compact neighborhood G of x. We consider two cases:

(1) E\G contains constant functions.
(2) E\G does not contain non-zero constant functions.

First we treat the case (1). Suppose that (*) is not satisfied with G= Gf.
Then for every positive integer n there are disjoint compact subsets
Y\tn and Y2,n ofG such that

or

i=\

n

Σ (\fi\-\gi\)<-l/n onY2>n

are not satisfied for every f\,fi,...,fn and g\,g2,...,gn in the unit
ball of E\G. Put

L Λ = 1

and

Ϋ2=
ln=l

Since Ϋ\ and 72 are disjoint compact subsets of & there are / in the
unit ball of C{&) such that

f(y) = 1 for every y in Ϋ\,

f(y) = —1 for every y in Ϋι.

By Lemma 7 there are a finite number of functions f\,f2>-->,fv
and g\,g2f-,gι/ in (2s|(7)~ with the norm less than 1/2 respectively
which satisfy
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Thus we see that

Σ(\fi\-\ii\)> 2/3 on Ϋx

and

Σ,(\fi\ - \gi\X -2/3 onf2.
i = l

By the definition of the norm of (E\G')~ there are functions f\>rι>f2,n>

. . . >fv,n and gi ) Π, gιiYii... f gv>n in the unit ball of E such that

Mn) = fitn\σ,
gi(n) = gi,n\G'

for every positive integer n and / = 1,2,..., v. It follows that

on

and

ι = l

which is a contradiction to the definition of Y\>n and Y2fΆ for large n.
Thus we have that (*) is satisfied with G= O.

Next we consider the case (2). Let Ef = E\O + C, where C is the
space of all the real valued constant functions on O. We identify a
real number c and the function on G1 with constant value c. Then B
is a real Banach space included in CR(G) with the norm defined by

where ||/||£|<? ^s the quotient norm for / in E\O and |c| is absolute
value of a real number c. By (1) we see the following:

There are a natural number m and a δ' > 0 such that if Y[ and
y^ are disjoint compact subsets of G\ then we can choose f[ + c\9

f[ + c2,.. ,fm + cm and g[ + du g'2 + d2,..., ^ + dm in the unit ball
of E1 satisfying

ϊ = l

^fϊ + ci\-\s'i + di\)<-δ' onY'2.



102 OSAMU HATORI

There is a function u in E\G such that u(x) = 1 since E\G is
ultraseparating. Put M = ||w||£|<?. Take the compact neighborhood

G={yeG: \1-u(y)\<δ'/4m}

of x. Then we see the following:
If Y\ and Yι are disjoint compact subsets of G, there are functions

{f'i + Ciύ)l{M + 1) and {g\ + diύ)/(M + 1) in the unit ball of E' and
that

m

Σ{\{fl + CiU)/2(M + 1)| - |(sί + diU)/2(M
i=\

>δ'/4{M+\)

on Y\ and
m

ΣiVM + CiU)/2(M + 1)| - U + diU)/2(M
1=1

on Yι. By the definition of the quotient norm of E\G there are func-
tions f\,f2,...,fm and g\,g2, - ,gm i n the unit ball of E which sat-
isfy

(g'i + diu)/2(M+l)

for i = 1,2,..., m. Put δ = δ'/4(M + 1). The condition (*) holds on

C? with m and δ.

COROLLARY 1. Let E be a (resp. real) Banach space included in
C0(Γ) {resp. COfR(Y)). Let K be a compact subset ofY. Then the
following are equivalent

(1) E\K is ultraseparating.
(2) {E\K)~h is ultraseparating for a discrete topological space Λ.
(3) {E\K)~A separates the points of KA for a discrete topological

space Λ whose cardinality is infinite.
(4) {{E\K)~A)~A' separates the points of{KA)~A> for discrete topo-

logical spaces Λ and A', where at least one of the cardinalities of A and
A! is infinite.

Proof. Suppose that E is a Banach space included in Q ( F ) . By
the definition of the quotient norm of RcE we see that (ReE\K)~A =
Re((E\K)~A). Thus (1), (2), (3) and (4) are equivalent to the following
respectively.

(1)' RcE\K is ultraseparating.
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(2)' (Re£ΊΛ^)~Λ is ultraseparating for a discrete topological
space Λ.

(3)' (ReE\K)~A separates the points of KA for a discrete topological
space Λ with infinite cardinality.

(4)' ((Re£|Λ:)~Λ)~Λ / separates the points of ( £ Λ ) ~ Λ ' for discrete
topological spaces Λ and Λ', where at least one of the cardinalities of
Λ and Λ' is infinite.
So without loss of generality we may consider only the case that E is a
real Banach space included in CofR(Y). By Lemma 6 (1) is equivalent
to the condition that E\K separates the points of K and E is ultrasep-
arating near x for every x in K with the relative topology induced by
Y. Thus by Proposition 1 (1) is equivalent to the condition that E\K
separates the points of K and (*) of Proposition 1 is satisfied for every
x in K. In the same way as in the proof of Proposition 1 we see that
(2), (3) and (4) are equivalent to the above condition respectively.

Now we show a local version of Bernard's lemma.

THEOREM 1. Suppose that E is a (resp. real) Banach space included
in CQ(Y) (resp. CQ>R(Y)) for a locally compact Hausdorffspace Y. Let
x be a point in Y. Suppose that Λ is a discrete topological space with
cardinality not less than that of an open base for x. Then the following
hold

(1) EA separates the different points in FA if and only if E is ultra-
separating near x.

(2) EA\FA is uniformly dense in C(FA) (resp. CR(FA)) if and only
if there is an interpolating compact neighborhood G of x for E\ i.e.,
E\G=C(G)(resp.CR(G)).

Proof. First we prove (1). Since a Banach space A included in C0(Y)
is ultraseparating near a point x in Y if and only if Re A with the
quotient norm is ultraseparating near x, so without loss of generality
we may assume that E is a real Banach space included in CQ>R(Y).

Suppose that E is ultraseparating near x. By Proposition 1 we see that
there is a compact neighborhood G of x which satisfies the condition
that there are a positive integer n and a positive real number δ such
that for every pair of disjoint compact sets G\ and Gι of G, there are
functions f\,f2>. ->fn and g\,g2> - >gn i n the unit ball of E such
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that

Σ ( l / ί | - ls«Ί) > <* o n ( ? i '
ι = l

Σ,(\fi\-\gi\X-S onG2.
ι = l

Let p and # be different points in FA. Let Up and C/̂  be disjoint
compact neighborhoods in G^ of p and # respectively. So we have
that t(Up) and t(U%) are disjoint compact sets in G for every α in Λ,
where U° = Upn(Gx {a}) and U% = UgΠ(Gx {a}) and t is the map
from [G x Λ] onto (? satisfying

(f)(a) = f(t(a))

for every / in C(G) and α in [GxΛ]. There are functions f\>a, f2>a>
fntQ and gϊ>a, g2ta> - gn.a in the unit ball of £ with

1=1

\-\gi,a\)<S On t(Uζ)

for every α in Λ. Let // and & be ^-valued functions in EA such
that fi(a) = fi>Q and £, (α) = g/,α for / = 1,2,..., n and for every a
in Λ. Since we may suppose that every E-valued function in EA is a
function in C(ΫA) by defining

for every (x, a) in F x Λ and since p is a point in [(Jα Up] and q is
a point in [|JQ Ug] we have that fj(p) Φ fj(q) or |y(/?) φ gj(q) for
some 1 < j < n.

On the other hand, suppose that EA separates the points of FA so
there is a g in E such that g(x) = 1 since £ A separates the points
in {x} x Λ. Since (g) = 1 on FA we see by Lemma 7 that the linear
combinations of absolute value of functions in EA\FA, is uniformly
dense in CR(FA). Let {Ga} be a family of compact neighborhoods of
x such that {IntGα}, the family of all the interiors of Ga, is an open
base for x with the cardinality not greater than that of Λ. Without loss
of generality we may assume that the two cardinalities coincide. We
shall show that there are a compact neighborhood G of x and a posi-
tive integer no with the following property: For every pair of disjoint
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compact subsets Y\ and Yι of G, there are functions /i,/2,.
and g\,g2>-- >gn0 i

n the unit ball of £ such that

105

• > fn0

Suppose not. For every compact neighborhood Ga in {Gα} and posi-
tive integer n, there are disjoint compact subsets Y"*n and Y^n of Gα

such that for every fx, f2,... ,fn and g\,g2>'- >gn i*1 the unit ball of
E we have

1=1

or

1=1

/α#Λ be a real valued continuous function on Y with ||/Q,w||oo < 1
and

Let Φ be a homeomorphism from a discrete space Λ onto a discrete
space AxN, where iV is the discrete space of all positive integers. Let
/ be a is-valued function in EA such that

fiy) = fφ(γ)

for every γ in Λ, so f\F£ e C(F£). Thus by Lemma 7 there are a
finite number of functions f\,fi,.**,fm a n d ^i »#2» > gm in EA with

) < 1 and #£(&) < 1 for / = 1,2,..., m such that

m

1=1

< 1/8

on jFĵ . Let U be an open neighborhood of FA such that

m
< 1/4

on U. By the definition of F£ there is a compact neighborhood Gβ in
{Gα} such that

U D [Gβ x Λ].
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Thus we see that

Σ(\fi(γ)\-\gi(v)\)-f(v)< 1/4

m

on Gβ. We have that

[{β,m))\-\gi{Φ~\β,m))\) > 3/4 on Y

{(β,m))\ - {giiΦ-'iβ.mW < -3/4 on

which is a contradiction, proving (1).
To prove (2) we need the following. One can prove it by the stan-

dard argument on Banach spaces.

LEMMA 8. Let T\ and T2 be Banach spaces with the norms iVΊ( )
and N2(') respectively. Let φ be a bounded linear transformation on T\
into T2. Suppose that there exist an ε with 0 < ε < 1 and a positive
constant MQ such that for every u in the unit ball ofT2 there is v in T\
such that N\(v) < MQ and N2(u - φ{v)) < ε. Then φ is onto.

Proof of (2) in Theorem 1. Clearly existence of an interpolating
compact neighborhood of x implies EA\FA = C{F£) (resp. CR(F£))9

so we need only prove the reverse implication. Assume EA\F£ is uni-
formly dense in C(FA) (resp. CR(FA)). Without loss of generality we
may suppose that Y is compact. EA separates the points of FA since
EA\FA is uniformly dense in C(FA), so E is ultraseparating near x by
(1). Thus without loss of generality we may suppose that E separates
the points of Y. Let {Ga} be a family of compact neighborhoods of x
such that {Int Ga} is an open base for x. Without loss of generality we
may assume that the cardinalities of {Ga} and Λ coincide. First we
show that there are a compact neighborhood Gβ in {Ga} and a natural
number nx such that for every / in the unit ball of C(Y) (resp. CR(Y))
there is an h in E with Nβ(h) <n\ and

Suppose that it is not true. Then for every compact neighborhood Ga

in {Ga} and natural number n, there is an fa>n in the unit ball of C(Y)
which satisfies the condition that \\fa,n\Ga - λ|(jα||oo < l/2forheE
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implies Λ^(Λ) > n. Let Φ b e a homeomorphism from Λ onto Ax N.
Let / be a C(7)-valued function in C(ΫA) = (C(7))~ Λ such that

f(V) = fφ(γ)

for every γ in Λ. Since EA\FA is uniformly dense in C(FA), we see
that

for some g in EA. Thus we see that

U = {xeΫA:\f(x)-g(x)\<l/3}

is an open neighborhood of FA. So there is a Gβ in {Ga} such that
(7 D [Gβ x Λ]. Thus we have

so NE(g{Φ~ι(β, n))) > n, which is a contradiction since £ Ξ EA. Let
Γ be the linear transformation of E\Gβ into C(Gβ) (resp. Cn(Gβ))
defined by

Tf = f
for / in J ? ! ^ . Then Γ is bounded since the inequality

holds for every / in E\Gβ. By the above argument the hypotheses of
Lemma 8 hold with ε = 1/2 and Λf0 = n\. Thus we see that

E\Gβ = C(Gβ) (resp. Q ^ ) ) .

PROPOSITION 2. Let E be a (resp. real) Banach space included in
Co(Y) (resp. CQ>R(Y)) for a locally compact Hausdorff space Y and
x be a point in Y. Let A be a discrete space. Suppose that E is
ultraseparating near x. Then we have that

[{x} x Λ] = QA(EX).

Proof. Since E is ultraseparating near x, EA separates the points of
{x} x Λ, so there is a g in E such that g(x) = 1. Suppose that / is a
i>valued function in EA. We see that

is in EA, where ((f(a))(x)g) is an ̂ -valued function such that
{(f(a))(x)g)(γ) = (f(y))(x)g for every γ in Λ. That does not prove
Proposition 2 but the rest of the proof is the same as the proof of
Lemma 4 in [7].

3. Results of range transformations. In this section we prove the
main results.
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THEOREM 2. Let A be a uniformly closed subalgebra of CQ(Y) for
a locally compact Hausdorff space Y and I be an ideal of A. Let D
be a plane domain containing the origin. Suppose that Oρ(/o, Re A)
contains a function which is not harmonic on any neighborhood of the
origin. Then I\K is uniformly closed and self adjoint for every compact
subset KofY- Ker/ and cl/ is self adjoint

Proof. Let h be a function in Op(//), Re A) which is not harmonic on
any neighborhood of the origin. If Y is not compact, then Y denotes
the one point compactification of Y and oo denotes the point in Ύ- Y.
If Y is compact, then we add oo as an isolated point and Ύ denotes
YU {oo}. We may suppose that A is a closed subalgebra of C(Y) such
that /(oo) = 0 for every / in A. Let Y\ be the quotient space obtained
by identifying the points in Ύ which cannot be separated by A. Let YQ
be the quotient space obtained by identifying the points in Y which
cannot be separated by /. Let p be the point in ΎQ which corresponds
to the equivalence class in Y containing oo. We may suppose that
Yo is the quotient space obtained by identifying points in Y\ which
cannot be separated by / and that p corresponds to Ker/. We may
also suppose that each point in YQ - {p} corresponds to a point in
Ύ\ - Ker/, that is, we may suppose that T o - {p} = Y\- Ker/. Let
/' = cl / + C be the sum of the uniform closure of / and the space of
constant functions C. Then /' is a function algebra on Yo. Let Ch(/;)
be the Choquet boundary for /'. We consider two cases: (1) There is
no accumulation point of Ch(/') or p is the only accumulation point
of Ch(/') in YQ. (2) There is an accumulation point of Ch(/') which
is not p.

Case (1). Let S denote the closure of Ch(/') in Yo, that is, S denotes
the Shilov boundary for /'. By the condition every point in S - {p}
is isolated. Thus Γ\S = C(S), so we have /' = C(Ϋ0) since S is the
Shilov boundary for /'. It follows that cl/ is self-adjoint. Since A is
uniformly closed and / is an ideal of A we have

/ C(Ύ0) c /.

Thus we conclude that I\K is uniformly closed and self-adjoint for
every compact subset K of Y - Ker/.

Case (2). First we show that h is continuous near the origin. Sup-
pose that h is not continuous on any neighborhood of the origin. There
exists a positive number δ such that {z: \z\ < δ} c D. Take q to be
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an accumulation point of Ch(/') other than p. There is a function k
in / such that

for a positive number d since p φ q. There is a point of discontinuity
ZQ of h with |ZQ| < <5/2 such that there is a function g in / such that

*(«) = *o. llέlloo < δ/2

since p ^ ? and we suppose that h is not continuous near the origin.
Since q is an accumulation point of Ch(/') we can choose a sequence
{yn} of Ch(/;) which satisfies the condition that p is not contained in
the closure of {yn} and

\g(yn)-g(q)\<l/n

and
\k(yn)-k(q)\<l/n

for every positive integer n and the yn have disjoint neighborhoods
Vn for every positive integer n. Let q$ be an accumulation point of
{yn}' So we have q§ £ {yn} since Vn Π F^ = 0 if n Φ k. Then we have
g(Q) = £(tfo) and k{q) = k{q0) so

\g(yn) - <?(̂ o)l < 1/Λ, \k(yn) - *(ίo)l < 1/Λ

for every positive integer n. Now we need Lemma 9.

LEMMA 9. ΓAere are a positive number M and a subsequence {ym(n)}
of{yn} such that for every convergent sequence {an} of complex num-
bers with limit 0 there is a function f in cl/ such that

f(ym(n)) = <*n, \\f\\oc < M SUp \θtn\.
nn

Proof. Since {yn} is a sequence in Ch(/') there is a function fn in
/ for every positive integer n with the property

since each yw is a point in the Choquet boundary, where V% is the
complement of Vn in Yo. Let {gπ} be the countable set of all polyno-
mials of {/„} with rational coefficients and vanishing constant term.
For integers m and j put

Kmj = {xeY0: \gj(q0) -gj(x)\ < l/m},
m

Km = ( j Km,j-
7=1
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Choose a subsequence {ym(n)} of {yn} such that

for every positive integer k. Let q'o be an accumulation point of
{ym{n)} Let Iχ be the uniform closure of {gn}. Then Iχ is a closed
subalgebra of cl / and

for every $inl\. Let / be a bounded linear transformation of I\ into
Co, where CQ denotes the Banach space of all convergent sequences of
complex numbers with limit 0, such that

We show that / is onto. Let {an} e CQ with supn \an\ < 1. Then

n=\

is in Iχ and \\f\\oo < 4 and

< 1/2.

Thus we see that J is onto by Lemma 8. It follows by the open
mapping theorem that Lemma 9 holds.

Sequel of proof of Theorem 2. Since z 0 is a point of discontinuity
for h, there is an εo > 0 and a sequence {zn} in {z: \z\ < δ} such that
zn -• z 0 and

for every positive integer n. Without loss of generality we may assume

suplz^-zol <dδ/(l8M).
n

{q
n
} be a subsequence of {y

m
(
n
)} such that

«} = {yW(«)} n {x G 7 0 : |̂ (JC) - *ol < dδ/iλZM),

\k{x)-d\<dβ}.

Let ^Q be an accumulation point of {qn} Then we have ^
ό) = S{Qo) Let αΛ = (zB - g(qn))/k(qn). Then |α Λ | < S/(6M) and

0 as n —• oo. So by Lemma 9 there is an / in cl / with

f(Qn) = otn, ll/lloo < Mδ/(6M) = δ/6.
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We have fk + g e / since cl/ c A and / is an ideal of A. We also
have

qn) = zn, {fk + g){q%) = z 0

since qβ is an accumulation point of {qn} While

since range of fk + g is contained in Z>, we also have

which is a contradiction since

for every positive integer n, while qβ is an accumulation point of {qn}
Thus we conclude that h is continuous near the origin.

Now we need Lemma 10.

LEMMA 10. Let B be a uniformly closed subalgebra ofCo(Y) for a
locally compact Hausdorff space Y which separates the points ofY. Let
D be a plane domain containing the origin. Suppose that x is a point in
Y such that Bx Φ B. Suppose also that there is a function f in CQ(Y)
with f{x) Φ 0 which satisfies that

f BcB,

where f-B = {fg: ge B}. If there is a function h in Op{{f B)D, RcB)
which is continuous near the origin but is not harmonic on any neigh-
borhood of the origin, then there is a compact neighborhood G of x
with

B\G=C(G).

Before we prove Lemma 10 we show the rest of the proof of The-
orem 2 by using Lemma 10. By the definition of Y\ we may suppose
that A is a uniformly closed subalgebra of C(Y\) which separates the
points of Y\. Let x be a point in Y\ - Ker/. Then we have that
A Φ Ax and that there is a function / in / such that f(x) Φ 0. Since
/ is an ideal of A, f A is contained in /, so we have

Op(/z), ReΛ) c Op((/ A)Di Re A).

Thus h is a function in Op((/ A)D, Re A) which is continuous near
the origin but is not harmonic on any neighborhood of the origin. It
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follows by Lemma 10 that there is a compact neighborhood G in Y\
of x such that

A\G=C(G).

Without loss of generality we may suppose that GcY\- Ker/, so we
have

I\G=C(G)

since / is an ideal of A. The same conclusion holds for every point in
Ύ\ - Ker/. Since we may suppose that Y\ - Ker/ = Yo - {p} we see
that

/' = C(7 0 )

by Corollary 2.13 in [3]. We conclude that cl/ is selfadjoint. Since A
is uniformly closed and / is an ideal of A. We see that / C(YQ) C /.
Thus we conclude that I\K = C(K) for every compact subset K of
Yo " {P}> i n short, I\K is uniformly closed and self-adjoint for every
compact subset K of Y - Ker/.

Proof of Lemma 10. Without loss of generality we may assume that
h is continuous on {z: \z\ < 1} since / B is closed under constant
multiplication. We may also suppose that ||/||oo = 1. We denote
/ . βx = {fg: g e Bx} by 05. We see that 55 is a Banach space with
respect to the norm defined by

IN| ! B = inf{ | | ί | | co:^6Λ x , u = fg}

for u in 55. It is trivial that ||u||oo ^ 1Mb for every u in 05. Now we
need Lemma 11, which can be proven in the same way as the proof
of Lemma 1.2 in [7].

LEMMA 11. Let 951 = {u e 95: \\u\\% < 1/2}. Then there are a
positive integer «0 and a real number ε with 0 < ε < 1/2 and a function
ψ in 951 such that

and there is a dense subset U in {g e 95: \\g - ψ\\tβ < ε} with ψ in U
which satisfies the following:

For every g in U we have

hogeRcB and \\hog\\ReB < n0.

Sequel of the proof of Lemma 10. First we show that B is ultrasepa-
rating near x. Let ση(-) be a smoothing operator of class C°° supported
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in {z: \z\ < η} for a small η > 0. Put

hη(zuz2) = // h{zx - z2w)ση(w)dxdy (w = x + iy)

and

where Δi is the Laplacian with respect to X\ = Re zi and yi = Im z^
By Lemma 5 in [7] we see that

for every g\, g2 and g^ in B with ||g/||oo < 1/2 for / = 2 and 3 and a
small /̂ > 0. Thus we see that

C0)R(Y)^(hη(fg2Jg3)\fg3\
4) eclRel?

by the Stone-Weierstrass theorem. Since h is not harmonic near the
origin we see that

\Lη(z,w, 1)| >

on {(z,tϋ) G C 2 : |z| < εf, \w - z2\ < εf} for a small η > 0 and a
smoothing operator σv and an εf > 0 and a z2 with sufficiently small
non-zero absolute value. Choose g2 and g$ in B with ||g/||oo < 1/2 for
i = 2 and 3 such that

Let

So O is a compact neighborhood of x with

for every y'mG*. We show that B\G' is ultraseparating. Let 1^ and F 2

be compact subsets of G. By the definition of G there is a function
M in cl Re B such that

Nloo < 2,

since Co,R(YyLη(fg2,fgi, l)cc\ReB and since Lη(fg2{y),fg3(y), 1)
^ 0 for Vy eG. We see that there are functions u' and t> in Re B with

IIM'IIOO < 3,
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u'{y) > 1/2 forVy e Yϊf

u'{y) < -1/2 forVy G Γ 2 >

and u! + iυ £ B. Then we have exp(V + iv) G B since Z? is uniformly
closed and we have

||exp(ι/' + /v)||oo < exρ3,

|exp(w' + iv)(y)\ > exp(l/2) for Vy e 7i,

|exp(i/ + zι;)(y)| < exp(-l/2) for My e Y2.

Let a and 6 be different points in G and Ua and £/# be disjoint compact
neighborhoods of a and b respectively. Put £/£ = ί7α Π (G; x {k}) and
(7^ = Ub n (Gf x {/c}) for every positive integer k. Then we see that
U%nU% = 0 for every A: and a e U^li ^ ί ? * Ξ USli ^ Let t be the
map

which satisfies (g)(p) = g(t(p)) for every / in C{O) and for every
p in &, since ί(C/^) and ί(C/^) are disjoint compact subsets of Y for
every k. For every positive integer k choose a function fa in 5 such
that

HΛHoo <exp3,

|A(y) |>exp(l/2) for Vy £

It follows that / separates a and b, where / is a function in (B\G')~
such that / ( Λ ) = fn\O for every w. Thus we conclude that B\G' is
ultraseparating on (7. Let / B\G = {fg\O\ g e B}. Then / B\G is
a Banach space included in C{O) with the norm defined by

\\u\\mG, = infdl^loo: geB, fg\G' = u}

for u e f B\O. Since / never equals zero on G, (/ B\G)~\Fy =
{B\G)~\Fy for every y in G by Lemma 4, so f B\G is ultraseparating
by (3) of Lemma 6.

Let Λ be a discrete space whose cardinality coincides with that of
an open base for x. We will show that

Let QF£ be the quotient space of F^ by B£, that is, the space defined
by identifying the points of F£ which cannot be separated by ίί£.
Since B is ultraseparating near x we see that QA(BX) = [{x} x Λ] by
Proposition 2 and QA(BX) is the only subset of FA with more than
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one point which corresponds to a point in o ^ Let q be the point
in oFχ which corresponds to QA(BX). Let Bf be the function algebra
on QFA generated by BA\QFA and the constant functions. Let x be a
point in $FA — {q}. There is an / in BA with

(f)f(x) =s^0,

where s is a complex number with small absolute value. Without loss
of generality we may suppose that

where η is a small positive number such that η < ε/(2\\f\\oo) (ε is the
constant in Lemma 11) and

hη(zι,z2) = // h{zx - z2w)ση(w)dxdy (w = x + iy)

for some smoothing operator ση( ) of class C°° supported in {z: \z\ <
η}. We can choose an ε' > 0 such that

\Ax(hη{z,w))\> (1/2)^(^(0,5)) !

on

{(z,w) E C 2 : \z\ <ε', | ^ - ^ | < ε ; } .

Put

Yf = {ye OF£: \(f)f(y) - (f)f(x)\ < min{β72f \s\/2}}.

Then Y' is a compact neighborhood of x in 0F
A with q φ Yf, so we

may suppose that Y' is a compact subset of FA. Let g be a function
in (BA)~. For a complex number β with sufficiently small absolute
value and a complex number w with |w| < η we have that

(Hn))(a)(ff(a))2β-ff(a)w

is in 55 for every positive integer n and every a in Λ and

\\Cg(n))(a)(ff(a))2β - ff(a)w\\9 < ε.

So for every small positive e", positive integer n and a in Λ there is a
function gε">α,w in C/ which satisfies the condition that

\\ψ + Cg{n)){a){ff{a))2β - ff(a)w - ge»,a.n\\x < «"'•

where ψ is the function in Lemma 11. We see that
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and

\\hog£ff>a>n\\ReB <n0.

Thus we see that
hoge,, G R e ( 5 A r ,

where ge,t is a function in (BA)~ such that (gε»(n))(a) — gε",a,n for
every n and α. Since the inequality ||w||oo < IMU holds for every u in
2? and since h is continuous we see that

is in cl(Re(2?Λ)~), where (ψ) (resp. (/)) is the constant function in BA

with constant value ψ (resp. / ) and ((ψ)) (resp. ((/)/)) is the constant
function in (BA)~ with constant value {ψ) (resp. (/)/). Thus we have
that

is in cl(Re(i?Λ)~) for a complex number β with sufficiently small ab-
solute value. It follows by Lemma 5 in [7] that

LMΨ))> <(/>/>-1) = l!l%(«v». «/>/>, i)

is in cl(Re(5Λ)~). Since (ψ) = 0 and {/) = f(x) on F£ we see that

is in cl(Re(Z?Λ)~)|r'. Since / is in B£ we see that

Lη(0,f(x)(f),\) = 0

on {x} x Λ x N by Lemma 5 in [7]. Thus we conclude that

is in cl(Re(BA)~)\Ϋ'. Since B is ultraseparating near x, (BA)~ sepa-
rates the points in [FA x N], in particular, in y ; by Corollary 1. By
the definition of Yf we see that Lη(0, f(x)(f), 1) never equals zero on
Ϋ7. It follows by the Stone-Weierstrass theorem that

since ( c l ( R e ( ^ ) ^ ) ) | r c cl(Re(2ϊ£|r)~), so by Bernard's lemma we
have

so
BA\YfC(Y') = BA\Yf
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by a theorem of Hoffman-Wermer-Bernard [2, 8]. We conclude that

by Corollary 2.13 in [3]. It follows that

We conclude by (2) of Theorem 1 that there is a compact neighbor-
hood G of x such that G D G and

B\G=C(G).

REMARK 1. Let A be a function algebra on a compact Hausdorff
space X which contains an infinite number of points and B be a Ba-
nach function algebra on X. Then every function in Op(AD, ReB)
for a plane domain D is continuous on D (cf. Remark 2 in [7]). This
is not the case for a point separating closed subalgebra of C(X) which
does not contain the constant functions. Let X = {0,1,1/2,1/3,...}.
Let A = {/ G C(X): /(0) = 0} and Z) = {z: |z| < 1}. Take any
sequence {λn} in D with λnφQ but Aw -* 0 and let

\ 0 if z£{λ π } .

Then we see that discontinuous function h is in Op(AD, Re ̂ 4). (This
example was corrected by the referee.)

REMARK 2. The condition that / is an ideal is necessary in Theorem
2, that is, if I is merely a subalgebra of A or even if / is a closed
subalgebra of A, there may be a continuous function h in Op(//), Re A)
which is not harmonic near the origin (cf. Remark 1 in [7]).

COROLLARY 2. Let A be a function algebra on a compact Hausdorff
space X and I be an ideal of A. Let D be a plane domain. Suppose
that cl/ is not self adjoint. Then every function in Oρ((/ + C)D, RQA)
is harmonic on D.

COROLLARY 3 {cf [13]). Let A be a uniformly closed subalgebra of
CQ(Y). Suppose that I is an ideal of A or the sum of an ideal of A and
the space of the constant functions. If

Re/ Re/cReΛ,

then cl / is self adjoint.
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Proof. If R e / R e / c Re A, then we see that

z »-> (Re z)2

is in Op(/c, Re A), but is not harmonic.
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