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PSEUDOCONVEX CLASSES OF FUNCTIONS.
II. AFFINE PSEUDOCONVEX CLASSES ON RN

ZBIGNIEW SLODKOWSKI

A complete description of invariant pseudoconvex classes of func-
tions on RN which are closed with respect to addition of affine func-
tions is given. Each such class is shown to he equal to its own bidual,
and approximation results, including piecewise-smooth approximation
and a counterexample to smooth approximation, are obtained. The
results of the paper have applications to multivariate interpolation of
normed spaces and to approximation of analytic multifunctions, which
are given elsewhere.

Introduction. In this paper, which is a sequel to [9], we continue to
explore pseudoconvex classes of functions, a notion developed to pro-
vide conceptual framework and technical background for the study of
multivariate interpolation methods for families of normed and quasi-
normed spaces, which was undertaken in [10].

Here, we restrict our attention to those pseudoconvex classes on RN

which are preserved by addition of linear functions and by transla-
tions. They will be called, shortly, affine pseudoconvex classes; axioms
(0.1)-(0.9), listed below, comprise their precise definition.

Since the most important examples of pseudoconvex classes are,
in fact, affine, and in view of the clarify of the methods required
to analyse the Euclidean case, it seems worthwhile to obtain detailed
description of the structure of affine pseudoconvex classes on RN. This
is the purpose of this paper.

In §2 the operation of supremum-convolution from [7] is used to
approximate functions of a translation-invariant pseudoconvex class
by functions of the same class which have almost everywhere second-
order derivatives in the Peano sense.

This makes it possible to assign to every affine pseudoconvex class
a nonempty set consisting of those N x N symmetric matrices which
correspond to the Hessian forms of functions of the given class. In
§3 it is proved that the set so obtained is closed and preserved by
addition of positive-definite matrices. It is shown that such sets of
matrices are in one-to-one correspondence with affine pseudoconvex
classes of functions on RN (cf. Theorem 3.11).
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Much of the difficulty in dealing with those pseudoconvex classes
which are not closed with respect to addition stems from the fact
that approximation by smooth functions within such class is, in gen-
eral, impossible. A counterexample to smooth approximation is con-
structed in §6. However, approximation by "piecewise smooth" func-
tions can be obtained, namely by functions which are locally equal to
the maximum of several quadratic polynomials which belong to the
given class (Theorem 4.1).

Among essential tools used in §§3 and 4 are the notion of the dual
class of functions (to a given one) and the theorem that an affine
pseudoconvex class is equal to its own bidual (Theorem 3.9). The
latter fact is a consequence of the solution to the Dirichlet problem in
abstract pseudoconvex classes, which is obtained in §1 (Theorem 1.8).

In §5 the general results of this paper are illustrated by and applied
to the classical examples of ^-convex, subharmonic, and #-plurisubhar-
monic functions. Furthermore, new pseudoconvex classes, which are
invariant with respect to the group of complex linear maps, are found.

We will list now, for easy reference, axioms (0.1)-(0.9) which define
an affine pseudoconvex class P on RN.

(0.1) P = \JP(U), where U is an open subset of RN, P{U) c
usc(U) = the class of all upper semicontinuous functions on U with
values in [-oo, +oo).

(0.2) If V c U c RN and u e P(U)9 then u\V e P{V).

(0.3) If (un) c P(U), n = 1,2,...,un(x) \ u(x), x e U, then
ueP{U).

(0.4) If (ut)teτ C P(U), u(x) = sup, ut(x)9 and u is locally bounded
on U, then its use regularization u* belongs to P(U).

(0.5) If u e P{U) and C is a constant, then (w + C) e P(U).

(0.6) If U C RN is relatively compact, then P(U) contains a bounded
function.

(0.7) (Sheaf axiom) If u e usc(U) and U = \Jt Ut (Ut open), then
u e P(U), if and only if u\Ut e P(Ut)9 t e T.

( 0 . 8 ) I f u e P ( U ) a n d l ( x ) i s a n af f ine f u n c t i o n , t h e n (u + l)e P ( U ) .

(0.9) Ifue P(U)9 yeRN and uy(x) = u{x-y)9 then uy e P(U+y).
One can observe that the only difference between affine pseudocon-

vex classes and translation invariant pseudoconvex classes on RN is in
axiom (0.8). It raises a natural question whether the two notions are
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actually different, and we show in §7 that it is so (translation invariant
classes being more general). This leads to a discussion of the local-
ization and separation properties for an abstract pseudoconvex class
which are weaker versions of (0.8).

Some auxiliary material is included in the Appendices.

1. Dirichlet problem and duality. We will show in this section (cf.
Theorem 1.8 below) that a pseudoconvex class P is uniquely deter-
mined by its dual Pd, provided P satisfies some mild requirements,
which hold, in particular, for all affine classes (cf. Theorem 3.9). With
future uses in mind (namely [11]), we prove the results of this section
in the more general context of pseudoconvex classes of functions, as
defined in [9, Definition 1.4]. (A reader not interested in this general-
ity can restrict his attention to the affine case.)

We recall that a pseudoconvex class P consists, in general, of func-
tions on a locally compact space M and is defined by nine axioms,
cf. [9, (1.1)—(1.9)] of which six are identical with (0.1)-(0.7) above
(U, V being now subsets of M), while (0.8), (0.9) have the following
counterparts:

(1.1) (localization axiom) if K c M is compact, u e usc(AΓ) and e >
0, then there is x0 e K and p £ AP(nb\vdK), such that sup x G^ \ρ(x)\ <
e and (u + p)(xo) > (u + p)(x), x £ K\{x0}, where AP(V) = {v e

usc(F) :(u + υ)e P(U nV)ifue P(U)};

(1.2) (part (i) of the continuity axiom (1.9) in [9]), if x* e M,
K,L c M, φ e C(K) and ε > 0 are given, where x* £ L c ϊnt(K), and
K, L are compact, then there is a neighborhood V of x with V c K,
such that for every u £ P(nbhd^), satisfying inequality u(y) < φ(y),
y e K, and for every X G F , there is ux £ ,P(nbhdL U F), such that

(1.3) ux(y) < φ(y), y e LUV;

(1.4) ux(x) > u(x*)-ε.
Our treatment of Dirichlet problem, including the next definition,

is inspired by Walsh [13].

DEFINITION 1.1. Let P be a pseudoconvex class of functions on a
locally compact space M and let G c M be an open, relatively compact
set.

(a) Let g: G —> (-oo,+oo] be a function. Denote

E{P, g)(z) = sup{w(z): u e usc(G), u\G e P(G), u < g on G}.

The function E(P, g) will be called the lower envelope of g relative
to P.
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(b) If / : dG -> R, then E(P9f) is understood as E(P9g)9 where
g\dG = / and g\G = +00; E(P, f) is called the Perron envelope of / .

REMARK 1.2. In the situation of Definition 1.1 (a), if g: G -• R is
continuous, then u = E(P, g) is an use function, such that u\G G P(G)
and u < g on G. (Clearly, w*(z) < g(z), z e~G and u* G USC(G). By
axiom (0.4), w*|G G P(G). Thus w = w*, as required.)

LEMMA 1.3. In the situation of Definition 1.1 (a), if g: G —• i? i n
continuous function and if the function u(z) = 2s(P, g)(z) w continuous
at every point ofdG, then u is continuous on G.

Proof By Remark 1.1, it remains to show that u(z) is lsc (= lower
semicontinuous) at every point x* G G. Fix x* G G and ε > 0. Since
w is continuous at all points of dG, one can find a compact L c G and
a continuous function 9?: G -+ R, such that

(1.5) «(x) < φ(x) < u(x) + e, x e^G\L;

(1.6) u{x) < φ(x) < g(x) + ε, X G G .

(Details omitted.) Without loss of generality, x* G Int(L). Choose
further a compact K c G, such that L c Int(#). Applying axiom
(1.2) above to the data x*9 K, L, φ we obtain a neighborhood V of x*
and functions wx G P(nbhdLu F) satisfying (1.3) and (1.4).

Let now vx{y) = max(ux(y) - ε, w(j)) for y G Int(ϋΓ) and vx(y) =
u(y) for ye G\L, where^ G V. By (1.3), (1.5), (1.6), the definition is
consistent and vx G USC(G), and by axioms (0.5), (0.7), υx\G G P{G).
Furthermore, υx(y) < g(y), y e G, by (1.3), (1.5), (1.6). Thus, υx <
E(P, g) = u and, by (1.4), u(x) > vx(x) = ux(x) - ε > u(x*) - 2ε, for
x eV, which shows that u is lsc at x* eG. π

DEFINITION 1.4. Let G c M and P be a pseudoconvex class of
functions on M. We say that G is weakly P-regular if G is compact and
for an arbitrary point x G dG, neighborhood U of x, and constants
is,ε > 0, there is a function v G usc(G) Π P(G), such that w|G < 0,
υ(x) > -ε, ^|G\C7 < -E, and lim-μ-.jci;^) = υ(x).

COROLLARY 1.5. Let P be a pseudoconvex class of functions on M
and G c M be weakly P-regular. Let g G C(G) and u = E(P, g).
Then, u\ΘG = g, ue C(G) and_ u\G e P(G) {where C(G) = the space
of all continuous functions on G).

Proof. We prove first that u is continuous at each boundary point
x G dG. Fix ε > 0 and x G dG. By the P-regularity of G and
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axiom (0.5), there is υx G usc(G) n P(G), such that vx(x) > g(x) - ε,
vx(y) < g(y), for y e~G, and lim^*υx(y) = υx(x). Choose a relative
neighborhood Vx of x in G, such that t^O7) > g{y) - ε for y € F*.
Clearly, w = E(P, g) > υx on G, and so w(j;) > g{y) - δ on Γx. Thus,
\immΐy-+xu(y) > g(x) - ε, for every ε > 0. On the other hand,
limsupy_x u(y) < g(x), by Remark 1.2, and so ]imy->x u(y) = #(x),
x e dG and also w|#G = g\dG. Now, Lemma 1.3 is applicable, and
so u e C(G). (Recall u\G e P(G), by Remark 1.2.) D

THEOREM 1.6. Let P be a pseudoconvex class of functions on M and
G c M be weakly P-regular (cf Definition 1.4). Let u e usc(G)nP(G).
Then, there is a sequence of functions un e C(G) Π P(G), such that
un{x)\u{x), xeG.

Proof. Choose a sequence (gn)%Lι c C(G), such that gn(x) \ u(x),
x e G. Let un(x) = E(P,gn)(x), x e G. By Definition IΛ.jtnix) >
un+\(x) > u(x), and by Remark 1.2, un(x) < gn(x)9 x G G. Thus,
un(x) \ u(x), x G G. The remaining properties of un\ follow from
Corollary 1.5. D

PROPOSITION 1.7. Let P be a pseudoconvex class on M and G c M
be open and relatively compact Let g e C(G) and assume that the
function u = E(P, g) is continuous at every point ofdG. Denote U =
{x e G: u(x) < g(x)}. Then U is open in M and (-u)\U e Pd(U).

Proof. For the definition of the dual class Pd

9 the reader is referred
to [9, Definition 1.11]. Suppose (~u)\U £ Pd(U). Then, by [9, Lemma
2.8], there exist: a point x e U, a neighborhood V of x with V C U
and u0 e P(V), such that (-u)(x) + uo(x) = 0 > (-u)(y) + uo(y), y e
V\{x}\ that is uo(x) = u(x) and uo(y) < u(y) for y G V\{x). Choose
a neighborhood B of x with B c V. Since g and u are continuous (cf.
Corollary 1.5), there is ε > 0, such that uo(y) + ε < g(y), for y € 5 ,
and uo(y) + ε < u(y) for y e dB. LcVuχ{y) = max(wo(y) + e,u(y))
for y G B, and u\{y) = w(y) for >;_G G\5. By [9, Proposition 3.3],
ux G P(G) and, clearly, W! G usc(G) and U\ < g on G. Since w =
E(P,g), we get that Wi < u on G, which contradicts the inequality
u\(x) = UQ(X) + ε> u(x). •

THEOREM 1.8. Let P be a pseudoconvex class of functions and F be
a class of use functions on M, such that Pd c Fd. Assume that M has
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a basis consisting of weakly P-regular neighborhoods. Then F c P. In
particular, Pdd = P.

Proof Let U c M and u G F(U). By the sheaf property (0.7) of P,
it suffices to show that whenever G is a (weakly) P-regular neighbor-
hood, such that G c U9 then u\G G P(G).

Fix such G and choose a sequence (grt) c C(G), such that &,(#) >
u(x), x G G, and let un = E(P,gn). By Corollary 1.5, MΛ G C(G),
un\G e P(G) and un\dG = gn. Fix « and consider Un = {x e
G: un(x) < gn(x)} Observe that Un is a relatively compact set and
un\dUn = gn (because un\dG = gn). Define the function v: Un —•
[—oo,+00) by v(x) = (-un)(x) + u(x). By Proposition 1.7, {-un)\Un G
Pd{Un) C /^(Γ/,,) (by the assumptions), and so v\Un eFd + F. Thus,
v\Un has the local maximum property on Un (cf. [9, Definition 1.11]).
Furthermore, v G usc(Un) (because -un is continuous on Un and
u is use on G)9 and so ι (x) < maxv\dUn = max(w - w«)|9C/w =
max(w - gn)\dUn < 0 for x G_G, cf. [9, Corollary 4.4]. Thus, u < un

on Un. Since wΛ = gn on G\C/«, we conclude that u < un < gn

on G. On the other hand, un(x) \ M(JC), X G ( ? (for ^«(x) \ w(x),
gπ(x) > MΛ(X) > un+ι(x), xeG) and MΠ |G ! G P(G), and so w|(? e P(G)
by axiom (0.3). This proves that F c P.

If we let F = Pdd

9 then i7^ = Pd, cf. [9, Proposition 2.4], and
so F = Pdd c P, by the argument above. The opposite inclusion is
obvious. D

The next corollary is an easy consequence of the last theorem.

COROLLARY 1.9. Let P and P\ be two pseudoconvex classes of func-
tions on M, such that Pd = Pf. Assume that M has a basis consisting
of weakly P-regular neighborhoods and a basis consisting ofP\~regular
neighborhoods. Then P = P\.

2. Regularization by supremum-convolution. In this section we adapt
the method of [7, §2] to approximate functions of a given pseudocon-
vex class by functions of the same class with lower-bounded Hessian.
In fact, the method works in the wider context of translation invari-
ant generalized pseudoconvex classes on RN (and we will use this in
§4). Recall that a generalized pseudoconvex class of functions P is
defined by axioms (0.1)-(0.5) and (1.1), cf. [9, Definition 1.2]. Func-
tion u: U —• i?, U c RN

9 is said to have lower bounded Hessian, if for
some L > 0 the function x —> u(x) + jL\x\2 is locally convex, cf. [7,
Definition 2.1]; then we write u G CX

L{U) and denote C[(RN) = C[.
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If u, g: RN —• [—oc, +00) and sup g < +00, sup u < +00, we define
supremum-convolution of u and g as

(2.1) u *a g(x) = s u p { w ( y ) + g(x -y):ye R N } .

If u: U —• [-00,+00), U c RN

9 then u *α g is understood as w *α g,
where ΰ\U = u and w|(i?iV\ί7) = 0.

This definition, which is a modification of [7, Definition 2.4] is very
close to the definition of infimum-convolution of Moreau [6].

PROPOSITION 2.1. Let u: U -> [-00, +00) andg: RN -> Rbebound-
ed from the above. Assume that g G C|, L > 0, αnrf ί/zαί w(^o) Φ -°°
for some XQ G U. Then u *a g is finite-valued everywhere on RN,
continuous, and u*a g e C | .

Proof. Clearly, (u *α gr)(x) > U(XQ) + ̂ (x - Xo) > -00 for every
x G i?^. Furthermore, (w*α^)(x) = supyf

y(x), where y G {x: ύ(x) Φ
-00} and /^(x) = u(y) + ^(JC - y). Since the family {/ ĵ c C[, by
[7, Proposition 2.3 (ii)], and is pointwise bounded from the above,
supyβ G C[, by [7, Proposition 2.3 (iv)]. D

Let now gL(x) = -^L\x\2, L>0, x eRN and denote by B+o° the
space of all functions on RN that are Borel-measurable and bounded
from the above. For u G 5 + O 0 and L > 0 define the function (RLu)(x)
= (u *a gL){x)>x ^ RN- The properties of operators RL listed in
the next proposition follow easily from the above remarks (note that
gL G Cι

L); cf. also [7, §2].

PROPOSITION 2.2. For every L>0

RL: B+o° -+ C[{RN).

Furthermore,
(a) (RLu)(x) > (RLι9ύ)(x) > u(x), ifO<L<Lι,xe RN;
(b) (RLu){x) > (RLv)(x), ifu >v on RN;
(c) limL^+oo(i?Lw)(x*) = u(x*), for every point x* G RN at which u

is use.

LEMMA 2.3. Assume that P is a class of functions on RN satisfying
conditions (0.1), (0.2), (0.4), (0.5), (0.9). Let u G P(U)nL°°(U),
where U is an open subset of RN. Let δ > 0. Then

(2.2) (RLu)\Uδ G P(Uδ), where Uδ = {x G U: dist(x,dU) > δ},

provided L> Lo = 4J~2||w||oo.
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Proof. Since (RLU)(X) = sup{u(x - w) - \L\w\2: w e RN}, and
since (RLU)(X) > u(x) and u{x) > u(x — w) — jL\w\2 for \w\ > δ and
L > LQ, therefore

(2.3) (RLU)\US = sup{r\Us: \w\ < δ},

where fw(x) = u{x -w)- \L\w\2 is defined in U. By (0.2), (0.5) and
(0.9), r\Uδ e P(Uδ), and so, by (2.3) and (0.4), RLu\Uδ e P(Uδ),
seeing that RiU is continuous by Proposition 2.1. D

NOTATION 2.4. Denote the class of all functions with lower bounded
Hessian by C ^ l o c, that is

L>0

COROLLARY 2.5. Let P be a translation invariant, generalized pseu-
doconvex class of functions on RN (i.e. conditions (0.1)-(0.6) and (0.9)
hold). Then, the class P n C ^ l o c is dense in P in the following sense:

for every u e P(U), U open in RN, and for every compact
K c U, there is a sequence of functions {un)%L{, such
that
(i) un(x) \u(x), xeK,

(ii) uneP(nbhdK)nCl{n), L(n)>0, n = 1,2,...

Proof (Sketch). If u e L°°(U), then we can simply take δ =
^dist(K,dU) and let un = Rnϋ, for n> Lo = 4J-2 | |w||oo. By Proposi-
tion 2.2 and Lemma 2.3, conditions (i) and (ii) are clearly fulfilled.

In the general case, fixK c U and assume without loss of generality
(shrinking U if necessary) that U is relatively compact and sup u\U <
+oc. By axiom (0.6), there is a bounded function g e P(U). Let
vn(x) = max(u(x),g(x) - n), x e U, and 0 otherwise. Clearly, vn e
P(U) Γ)L°°(U) and vn(x) \ W(JC), x e U. The approximations un

will be of the form un = RL{Π)VΠ, for suitably chosen constants L(n),
n = 1,2,... Clearly, un > un+\ on [/, if L(ή) < L(n + 1), n = 1,2,...
and un e C| ( w ) . One can show easily that, if L(ή) grows rapidly
enough, then un € P(nbhdA:) (use Lemma 2.3) and un(x) \ u(x),
x e K (cf. Proposition 2.2(c)). D

REMARK AND PROBLEM. It is obvious that the supremum-convolu-
tion is associative. One can also compute easily that g^ *a 8R = gs>
where S = ^LR(L+R)~ι. Thus, if we reparametrize the regularization
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operators RL as follows

(Ttu)(x) = (Rι/tu)(x) = sup{u(x -y) - \rι\y\2: y e RN},

then {Tt}t>0 form a semigroup, TtTv = Γί+ί/. Furthermore,

, ( ) ( ) ,

if u is use at x. While it does not seem to have any direct relevance
for the problems of this paper, it would be certainly interesting to
determine the infinitesimal generator of this semigroup.

3. Description of affine pseudoconvex classes of functions on RN in
terms of second-order derivatives. As shown in the last section, any
translation-invariant generalized pseudoconvex class of functions on
RN contains plenty of functions with lower-bounded Hessian (denoted
C'-ooioc)' cf. Corollary 2.5. Due to a result of Alexandrav [1], cf. also
Buseman [3], such a function must have almost everywhere second-
order derivatives in the pointwise (Peano) sense; see [7, p. 311, p. 317]
for more comments on this.

DEFINITION 3.1. Let F be a translation invariant class of functions
on RN satisfying conditions (0.5), (0.8), such that FnC^loc is dense
in F in the sense of Corollary 2.5. Let Y' be the set of all n x n
symmetric matrices A, such that there is x € RN

9 a neighborhood U
of x and a function u e F(U)Γ) C ^ l o c, such that u has the second-
order (Peano) differential at x whose homogeneous quadratic part is
equal to x —• \{Ax,x). Denote by Y the closure of Y1 (in the space of
N x N matrices). We will call Y the class of matrices associated to F,
or—in the situations in which the next proposition is applicable—the
order cone of symmetric matrices representing F.

REMARK. The definition applies in particular to affine pseudoconvex
classes.

PROPOSITION 3.2. Let F be a translation invariant generalized pseu-
doconvex class of functions on RN satisfying axiom (0.8). Let Y denote
the class of symmetric matrices associated to F. Then

(3.1) whenever A e Y and B is a positive semidefinite symmetric
N x N matrix, then (A + B) e Y;

(3.2) whenever A e Y' and B is a positive semidefinite symmetric
matrix, then {A + B)e Y',

where Y1 is as in the Definition 3.1.
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REMARK 3.3. Conditions (3.1) and (3.2) mean that the sets Yf and
Y are order-cones with respect to the partial order on the vector space
of symmetric N x N matrices determined by the open convex cone
of positive definite matrices; see Appendix A, Definition A. 2 (i). It
turns out that properties of order cones become more transparent, if
they are treated in the abstract context of vector spaces, rather than
matrices, and for that reason they are separated in the Appendix A.

The purpose of this section is to show that affine pseudoconvex
classes of functions on RN are in one-to-one correspondence with
closed order cones of symmetric N x N matrices, cf. Theorem 3.11.

Proof of Proposition 3.2. (Sketch). Axiom (0.8) means that the class
AF, which was defined in condition (1.1), cf. also [9, Definition 1.3],
contains all affine functions. Since the class AF must satisfy condition
(0.4) if F does, we conclude that every convex function (being the
supremum of a family of linear ones) belongs to AF.

Thus, the function u(x) + j(Bx,x) is of class F Π C l ^ l o c , if u is
and if B is positive semidefinite, which trivially implies (3.1), (3.2).α

To describe the dual pseudoconvex classes we need the notion of a
dual order cone.

DEFINITION 3.4. Let Y be an order cone of symmetric N x N ma-
trices. The dual order cone to Y, denoted by YD

9 is the set of all sym-
metric iVxJV matrices B, such that the set Y + B = {A + B: A e Y}
does not contain a negative definite matrix.

Once again, the notion of the dual order cone is best studied in the
abstract setting of ordered vector spaces, see Definition A.2 (iii) and
the following propositions.

REMARK 3.5. The definition of YD makes sense for an arbitrary
set of symmetric matrices, not necessarily an order cone. Still, it is
easy to see that YD is an order cone, provided it is nonempty. This
observation allows us to formulate the following lemma.

LEMMA 3.6. Let F be a class of use functions on RN satisfying as-
sumptions of Definition 3.1 and let Y denote the class of matrices as-
sociated to F. Assume that YD is nonempty. Then the dual class of
functions P = Fd, in the sense of [9, Definition 1.11], is affine pseu-
doconvex (i.e. axioms (0.1)-(0.9) hold) and its associated class of ma-
trices is YD. Furthermore, ίfu is a function with lower bounded Hes-
sian, i.e. u e Cl^^U), U c RN, then u e P(U), if and only if
(Hess u)(x) e YD for a.a. xeH.
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REMARK 3.7. If Y is a nonempty set of symmetric matrices, denote
by Fγ the set of functions of the form x —• l{x) + j(Ax9x)9 where
A G Y. It is obvious that Fy satisfies the assumptions of the last
lemma and that the class of matrices associated to FY is Y. Thus,
if F is a class of functions satisfying conditions of Lemma 3.6, with
associated class of matrices equal to Y9 then the dual classes to F and
FY are equal.

REMARK 3.8. Combining Lemma 3.6 with Proposition 2.2 and
Lemma 2.3, we obtain that a bounded use function u: U —> R belongs
to P(U), if and only if for every compact K c U, there is LQ(K) > 0
such that Hcss(RLu)(x) e YD for a.a. x e K and all L > L0(K). It is
obvious how to modify this criterion if u is unbounded (using axiom
(0.6)).

Proof of Lemma 3.6.

Assertion l.Ifge Cι_'^loc(U) and (Hessg)(x) e YD for a.a. xeU,

then geFd(U).
By [9, Definition 1.11], we have to show that if / e F(V) and K is

a nonempty compact subset of U Π V, then

(3.3) max(/+ * ) | # < max(/+ g)\dK.

By the assumptions of Lemma 3.6, there exist a sequence

such that fn{x) \ /(x), JC G K. Then Hess(/Λ + g)(jc) eY+YD,
for a.a. x in a neighborhood of K. Thus, Hess(/W + g)(x) has at
least one non-negative eigenvalue for a.a. x near K (cf. Definition
3.4) and since (fn + g) e Q ^ l o c , we conclude by Theorem B.I (in
Appendix B) that max(/« + g)\K < max(/« + g)\dK, for all n. Since
(Λ + ί ) (^) \ (/ + g)(x), xtK, Eq. (3.3) follows.

Assertion 2. Let ue P(U) and x* e C/. Assume that u has a second-
order (Peano) differential at x*. Then (Hessw)(x*) G Γ^.

Denote A = (Hess w)(x*); if A <£ YD, then there is B' e Y such that
A+B1 is negative definite (Definition 3.4) and, by Definition 3.1, there
is a function / G P(nbhdy*)Γ\C]_^o l o c, which has a second-order Peano
differential at y* and such that A + 5 is a negative definite matrix,
where 5 = (Hess/)(y*). We can assume without loss of generality
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that x* = 0 = y* (note, F is translation invariant). Let l(x) = u(0) +
/(0) + (gradw(0),x) + (grad/(0),x), and fx{x) = /(*) - /(*). By
the construction and Peano differentiability of u + /i, we obtain that
(II + /0(x) = J((^4 + B)x,x) + r(x), where l i m ^ o Φ O M " 2 = 0.
Hence, the function u + J\ has a strict local maximum at x = 0 which
contradicts the assumptions that u e Fd and f\ € F (because f — f\
is a linear function; cf. axiom (0.8)).

If we apply both assertions to the function

(3.4) gA{x) = \{Ax,x\

the following observation becomes obvious.

Assertion 3. If A is a symmetric matrix, then gA e Fd, if and only
if A e YD. Furthermore, YD is the class of matrices associated to
P = Fd.

We will check now that P = Fd is an affine pseudoconvex class. It
is clear that P satisfies axioms (0.9) and (0.8), cf. [9, Remark 2.7]. By
the last assertion, if YD is nonempty, with A e YD, then P contains
gA which is a locally bounded function, and so P satisfies axiom (0.6).
The remaining axioms follow now by [9, Lemmas 2.9 and 2.10]. D

THEOREM 3.9. Every affine pseudoconvex class P is equal to its own
bidual Pdd.

Proof. By Theorem 1.8, it suffices to show that RN has a basis
consisting of P-regular neighborhoods. By Corollary 2.5, there is a
function u0 G (P Π C[)(U), where U c RN, L > 0. We can assume
without loss of generality that UQ has a second-order Peano differential
at x = 0. By the definition of the C | class, the function uo(x) + jL\x\2

is convex. Then the function

v(x) = uo(x) - «o(O) - (gradwo(O),x) + (±L + l)|x|2,

is strictly convex and

^ ( 0 ) = 0 < ^ ( J C ) , JC^O.

Denote Ve = {x: v(x) < 0}. Clearly, for 0 < ε < βo, with ε0 small
enough, Vε are convex and form a basis of neighborhoods of 0. It
suffices to show that Vε are P-regular (cf. Definition 1.4).

Consider a point x edVε. Since v is a strictly convex function, Ve

is a strictly convex set, and so there is an affine function l(y)9 such
that

(3.5) /(x) = 0, / 0 0 < 0 foryeVε.
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Let now vn(y) = (v(y) - e) + nl(y). Clearly, vn e P(nbhd Vε), for
n > 0, because v eP (recall that (\L+ l)pc|2, being a convex function,
belongs Jo AP, cf. (1.1)). By (3.5), vn(x) = 0 and \imnυn(y) = -oo
for y G Kε\{x}. Thus, Fε is P-regular. D

COROLLARY 3.10. Let P be an affine pseudoconvex class on RN and
let Y be the class of symmetric matrices associated to P. Then, AeY,
if and only if gA e P(RN), where gA(x) = \{Ax9x).

Proof. By Remark 3.3, Y is a closed order cone.
Case 1. YD is nonempty. Let F = Pd. By Lemma 3.6, F is an affine

pseudoconvex class with the associated class of matrices YF = YD. By
Theorem 3.9, P = FD. The conclusion follows now from Assertion 3
in the proof of Lemma 3.6 applied to F. Namely, gA G P = Fd, if
and only if A e (YF)

D = (YD)D = Y (by Corollary A.8 (ϋi)).

Case 2. YD is empty. The statement follows from the next assertion.

Assertion. YD is empty, if and only if P = use. The sufficiency
is obvious. As for necessity, if YD = 0, then, by Corollary A.8, the
set Y' of Definition 3.1 is dense in the set of all symmetric matrices.
Thus, for every point x e RN and every C > 0 there is a function
gXyC € P ΓΊ C i ^ l o c(nbhdx), with a second-order Peano differential at
x, such that HessgXiC(x) < -CI. Let u e C^2\U); we will show that
ueP(U). IfxGC//define

ux,c(y) = u{χ) + gx,c(y) ~ g(χ) + (grad u(x) - g&dgXfC(χ),y - x),

for y near x. By (0.5), (0.8), uXyC € P(nbhdx).
It is clear that for each x e ί7 we can choose C = C(x) and a neigh-

borhood Ux of x, such that uXiC(x) = w(̂ c) > Wjc.cî ij ϊ ^ Ĉ c\{ ̂ }
By [9, Theorem 3.5], this implies that u e C&(U). By axiom (0.3),
this implies that P(U) = usc(t/) •

THEOREM 3.11. Proper (i.e. different from the class of all use func-
tions) affine pseudoconvex classes of functions on RN are in one-to-one
correspondence with proper, closed order cones of real symmetric NxN
matrices, given by the map P —> Y, where Y is the class of matrices
associated by Y.

Furthermore, u&P(U), if and only if for every open relatively com-
pact subset H c U there is a sequence (un) c C[^loc(H), such that
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un(x) \ u(x), x G H, and Hess un{x) e Y for a.a. x e H. The dual
class of matrices YD corresponds to the dual pseudoconvex class Pd.

Proof (Sketch). Let Y be a closed proper order cone of matrices. Let
γ{ = γD and let Fγ be the set of functions defined in Remark 3.7.
By this remark and Lemma 3.6, the dual class P = (Fγ{)

d is an affine
pseudoconvex class on RN with associated class of matrices equal to
γf> = γDD = γ ( c f Lemma A.8). Thus, the map

(3.6) P-+Y

is onto.
If P is any affine pseudoconvex class with an associated class of ma-

trices equal to Y, then, by Remark 3.7, Pd = (Fγ)d, and by Theorem
3.9, P = Pdd = (Fγ)

dd. Thus P is uniquely determined by Γ, and the
map (3.6) is one-to-one.

The remaining statements follow by applying Lemma 3.6 to the
representation P = Fd, where F = (Fγ)d. (Note, that the order cone
associated to F is YD, by Remark 3.7.) D

4, Approximation by piecewise functions in pseudoconvex classes. It
is a natural question whether the regularization procedure, described
in §2, can be improved so that the approximations un in Corollary
2.5 become C°°-smooth. The answer is negative in general: in §6 we
give an example of an affine pseudoconvex class P on RN, such that
C°° Π P is not dense in P in the sense of Corollary 2.5. The next
theorem shows that piecewise smooth approximation is possible (and
describes also more precisely how an affine pseudoconvex class P is
determined by its associated class of matrices Y).

THEOREM 4.1. Let P be an affine pseudoconvex class of functions
on RN (i.e. axioms (0.1) through (0.9) hold). Let u e P(U), where
U c RN is open. Then, for every compact setKc U there is a sequence
(un)n=\> such that

(i) un G C(Un) Π P(Un), where Un is a neighborhood ofK\
(ii) un(x)\ u(x), xeK\

(iii) for every x0 £ Un there are functions

such that un = max(/i, . . . ,/«) near xO

Moreover, functions fj can be chosen in the form l(x) + j(Ax,x),
where l(x) is an affine function and AeY (= the order cone of matrices
associated to P).
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The theorem is a direct consequence of the technical Lemma 4.3
(another application of this lemma will be given in [12]).

NOTATION 4.2. If F is a class of continuous functions on (open
subsets of) RN, denote T = \J7(U), where T(U) = the closure of
F(U) in C(U) with respect to the uniform convergence on compact
subsets of U.

LEMMA 4.3. Let P be an affine pseudoconvex class of functions on
RN and F be a class of continuous functions contained in P. Assume
that F is invariant with respect to translations and

(4.1) Fd = Pd;
(4.2) ifU is relatively compact, then F(U) contains a bounded func-

tion;
(4.3) g + F(U) c F(U), provided U is open and g(x) is an affine

function on RN.

Then for every ue P(U) and a compact set K c U there exist approx-
imations uΆi n = 1,2,..., satisfying conditions analogous to (i)-(iii)
in Theorem 4.1, with f\9...9fn G i^nbhdxo). Moreover, functions un

can be chosen from the class F\, which is defined next.

NOTATION 4.4. We define three classes F\, F2, ^3, constructed
from F.

Let U c RN be open. Then we say that u e F\(U)9 if there exist a
locally finite covering {Vn}™=ι of U and functions υn G C(Vn), such
that {Vn}n is a locally finite family of compact subsets of U and

(4.4) vn\dVn < u\dVn, vn<uon Vn,

(4.5) U IntK = u) = U,

and for every n there are functions / ) , . . . ,/m(«) G ,F(nbhd Vn)9 such

that υn(x) = max(/i(x),.. .9fm(n){x))> * € Vn.
Fι will denote the class of functions that are locally equal to the

maximum of several functions of class F.
Fi(U), U c RN

9 consists of use functions u: U —• [-oo,+oc), such
that for every compact subset K c U9 there exist functions un G
Fx(n\ήiάK), n= 1,2,..., such that un{x) \u(x)9 xeK.

Outline of Proof of Lemma 4.3. The following inclusions, with ex-
ception for 1*2 C F3, are obvious.

(4.6) F c F2 C F3 c P9 F{c F2.
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Since Fd = Pd by the assumptions, we conclude that

(4.7) Fξ = Pd.

Our main task will be to prove that F^ is an affine pseudoconvex class
(i.e. axioms (0.1) through (0.9) hold). An affine pseudoconvex class
being equal to its own bidual (cf. Theorem 3.9), Eq. (4.7) implies then
that FT, = P, which is precisely what is required in Lemma 4.3.

To ease the handling of functions of the class F\, we introduce the
following terminology.

Terminology 4.5. Let U c RN be open and {vn}™={ be a sequence of
continuous functions υn: Xn —• R. We say that {υnj is a good family
of functions relative to U, if {Xn}%L\ form a locally finite family of
compact subsets of U, the sets Int(Xw), n = 1,2,..., form a covering
of £/, and for every n and every x e dXn, there exists an index m,
such that x e Int(A^m) and vm(x) > vn{x).

The following observations are obvious.

REMARKS 4.6. (a) If vn is a good family of functions relative to U,
where υn: Xn —• I?, then the function

(4.8) u(x) := sup{^(x): x e Xn}

is continuous on C/.
(b) u G F\(U), if and only if there exist a good family of func-

tions {vn: Xn —> Λ } ^ ! relative to U, such that (4.8) holds and for
every n there are functions f\9...,fm(n) € ^(nbhdXw), such that
VΛ = max(/i,..., fm[n))\Xn

(c) If {vn: Xn —• i ? } ^ ! is a good family of functions relative to U,
then there is a sequence {εwl^ij of positive real numbers, such that
whenever {un: Xn —• i?} is a sequence of continuous functions with
the property max^ \un - vn\ < en, n = 1,2,..., then {un}™=ι is also
a good family of functions relative to U. (Here the local finiteness of
the covering {Xn}^Lχ is crucial.)

LEMMA 4.7. Let u: U —> R be a continuous function (U c RN is
open). Let {vx: Vx -> R}xeu be a family of continuous functions,
such that Vx is an open neighborhood ofx,Vxc U, vx(x) = u(x)
and vx < u\Vx. Then for every δ,ε > 0 there exist sequences of
points {x(n)}™={, of relatively compact open neighborhoods {Vn}^
and of affine functions {ln}n=i> such thatΎn c Vx^ and the functions
{vn + ln\Vn}%Lv where vn := vn{x)\Vn, form a good family of functions
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relative to U. Furthermore, if we let

v(x) = s\xp{(υn + ln){x): x e Vn},

then
u(x) + e\x\2 < v(x) < u(x) + e|jc|2 + δ, x eU.

Proof. Fix ε > 0, δ > 0. For every x e U consider the function
ux: Vx —• i?, defined by

(4.9) ux(y) = vx(y) + ε\y\2 - ε\y - x\\ y e Vx.

Then, ux(x) = u(x) + ε\x\2 and ux(y) < u(y) + ε\y\2 - ε\y - x\2, for
y eVx. Choose r(x) so that

(4.10) 0 < r(x) < min(dist(x,dG),<J/ε),

and choose δ(x) e (0,εr(x)2), x G U. Then, the sets

Hx = {ye Vx: ux(y) + δ(x) > u(y) + φ | 2 } , xeU,

form an open covering of U.
It is possible to choose a sequence of points x(n) 6ί/,/i = l ,2, . . . ,

so that sets {//*(«) }£Li form an open covering of U, while the closed
balls {B(x(n), r(x(n)))}™=ι form a locally finite covering of U (and,
clearly, HX(n) C B(x(n),r(x(n))). To see this, represent U = (J*li ^ >
where

Zk = {xeU: 2~k < dist(x,dU) < 2~k+\\x\ < k}.

Sets Zk being compact, we can choose, for each k, a finite number of
points *„*,...,xΛfc+1-i € Zk9 so that the sets {Hx{n)}9 nk < n < nk+Ϊ9

form a covering of Zk. Then, the sets {^(^(«),^(^:(w)))}^=1 form a
locally finite covering of U. Indeed, let x$ e Zk. If the open ball
B(xo,2-k-2) intersects Έ{y9r(y))9 then dist(yydU) > l^'2^because
dist(x0? dU)> 2~k and r{y) < dist(>;, aU). Thus, every ball 5(x, r(x))
intersecting B(XQ, 2~k~2) intersects Z\ U U Z ^ 2 , and so the covering
{B{x{n),r{x{n)))}™={ is locally finite.

Let now Vn = B(x(n),r(x(n)))9 n = 1,2,...; it follows that the
functions (uX(n)+δ(x(n)))\Vn form a good family of functions relative
to U (seeing that \Jn Hx{n) = £/ and ux{n)(y) + δ{x{ή)) > u(y) + ε\y\2

for yedVn, by (4.9) and (4.10)). Define affine functions

Iniy) = δ{x{n)) + ε\x(n)\2 + 2ε(x(n)9y)9 y e RN.

Then^by (4.9), ux{n)(y) + δ(x(n)) = vx{n)(y) + ln(y). With vn =
vX(n)\Vn, all the required properties are now obvious. D
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Proof of Lemma 4.3. We prove four assertions first (cf. Notation
4.4).

Assertion 1. If u G F\(U) and l(x) is an affine function, then
u + l\UeF3(U). _ _

Let u(x) = sup{un(x): x G Vn}, where {un: Vn -» R}^LX is a good
family of functions relative to U and un = max(/i,.. .,fm(n))> where
yj G F(nbhdF«). By property (4.3) of the class F9 for any positive δn

(to be specified later) there exist gi G i^nbhdF^), such that

(4.11) fi + l<gi<(fi + I) + δn, onVn, for / = l , . . . , m ( / i ) .

Let vn = max(^i, . . . ,g w ( Λ ) ) |F r t . With δn small enough, vπ: Vn -+
R, n = 1,2,..., form a good family of functions relative to U (cf.
Remark 4.6 (c)). Let v(x) = suρ{vn(x): x e F Λ } . By Remark 4.6 (a),
υeFι(U)9andby(4Λl)9

u{x) + l{x) < v(x) < u(x) + l(x) + δ9 xeU,

where δ = maxδn (assuming, without loss of generality, that δn \ 0).
It is clear now that there is a sequence of functions vk e F\{U)9 such
that υk(x) \ u(x) + l(x), x € U, and so u + l\U e F3(U), as required.

Assertion 1 implies directly that

(4.12) F3(U) + / G F3(U), for any affine function.

Assertion 2. F2 c F3. Precisely, given w G F2(U), U c i?^, ε > 0,
(5 > 0, there is a function p G Fχ(U), such that

(4.13) β|jc|2 + W(JC) < p(x) < u(x) + δ + ε\x\2, xeU.

By the definition of F2(U) (cf. Notation 4.4), for every x e X there
is a neighborhood Vx, such that u\Vx — max(/1 ?.. .9fn(X)), fj G F(VX).
We apply Lemma 4.7 to the family of functions vx = u\Vx. Then,
there are a covering \J^=X Vn = U and affine functions /„, such that
{Vn} is locally finite in U9 Vn is a compact subset of some Vx^ and,
if vn := ^( n ) |K Λ , then {υn + ln\Vn}™=\ is a good family of functions
relative to U and

(4.14) ε\x\2 + u(x) < υ(x) < u(x) + \δ + ε|x|2,

where ι (x) = max{^(x) + ln{x): x G F w } . Since (υn + ln)(x) =
max(/i + / Λ , . . . , fm(n)+ln)(x)9

 w ^ can choose Jw G (0, ̂ J) and functions
g\9...9gme F(Vn), such that

(4.15) vn + ln <mn(gι9...9gm{n)) <δn + vn + ln, onVn.
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If δn \ 0 quickly enough, then the functions {max(<gri,. ..,gm(n)):

Vn —> R} form a good family of functions relative to U (by Remark
4.6 (c)). Let now

p(x) = max{pn(x): x eVn},

where pn = max{gι,...,gm{n))\Vn. Then p e Fγ(U)9 by Remark 4.6
(b), and (4.13) holds by (4.14) and (4.15).

Assertion 3. F\ C F2.
This follows directly from the definition of F\ (the local finiteness

of the covering Vn in the definition of a good family of functions is
crucial here).

Assertion 4. Let u G C(U) and ux G C(VX) Π F3(VX), for x G (7,
where x G ̂  c C/, with Vx open. Assume that Wχ(x) = u(x) and
WJC < w|ί^, x G C/. Then u G F^U). More precisely, for every J,ε > 0
there is g G F\(U)9 such that

(4.16) ε|x|2 + w(x) <£(*) < u(x) + δ + ε\x\2, x e U.

The setup is as in Lemma 4.7 and applying the latter we obtain a
covering {Vn}™={ and functions υn: Vn -* i?, /rt, Λ = 1,2,..., with
required properties, so that {vn + ln\ Vn} is a good family of functions
and

(4.17) x

Ίε\x\2 + W(JC) < I;(Λ:) < u{x) + (ί/3) + \ε\x\2, x e U,

where υ(x) = sup{vn(x) + ln(x): x G F^}, and vΛ G ^ ( n b h d F ^ ) .
By (4.12), vΛ + ln\VΛ G F 3 (nbhdF Λ ) and, by the definition of F 3,

there is /?rt G ̂ (nbhd Vn)9 such that

(4.18) (vΛ + ln)(x) < pn{x) <δn + {vn + ln)(x), x G Vn,

where δn > 0 is a prescribed constant. If Jπ \ 0 quickly enough and
<SΛ < (5/3), /i = 1,2,..., then (by Remark 4.6 (c)), {pn\Vn}^x is a
good family of functions relative to U and, by (4.17) and (4.18), the
function p{x) = max{/?^(x): x G F^}, satisfies the inequality

(4.19) x

Ίε\x\2 + u(x) < p{x) < u{x) + (2/3)5 + ̂ |x | 2 , xeU.

By Assertion 3, pn G /^(nbhd F Λ ). This and the fact that

{ / > Λ : F Λ - + * } " ,

is a good family of functions relative to U9 implies easily that p G
F2(U). (Use the local finiteness of the covering {Vn}™=v) Applying
Assertion 2 to /?, we find g G F\{U)9 such that

iε|x|2 + p(x) < g(x) < p(x) + (δ/3) + iε|x|2, xeU.
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This and (4.19) yields (4.16), which completes the proof of Asser-
tion 4.

We can conclude now the proof of the lemma. With Assertions 2
and 3 the following inclusions are obvious:

(4.20) FcF2cF3c P; Fι c F2 C F3.

We will check now that the class F3 satisfies axioms (0.1) through
(0.9). Axioms (0.1), (0.3), (0.6) and (0.9) follow directly from prop-
erties of F, and axioms (0.5) and (0.8) are implied by Assertion 1. As
for (0.2), if U D V and u G Fχ(U)9 then u e F2(U)9 by Assertion 3.
Clearly, u\V e F2(V), and so u\V e F3(V)9 by Assertion 2. Hence,
F3(U)\V c Fs(V).

Concerning axiom (0.4), observe first that, if U\9...9um G F\(U)9

then max(wi,..., um) G F\(U). Now, in the situation of axiom (0.4),
if K c U is any compact subset of U and φ: K —> R is an arbitrary
continuous function, such that u*\K < φ, then for every x G X there
is υx G F\(nbhdK), such that vx\K < φ and vx(y) > u*(y) near x.
(To construct vX9 note that by the definition of w*, there exist: ε > 0,
h G RN and an index t{x), such that K+h c U, ut(X)(x+h) > u*(x)—ε
and ut(X){y + h) < φ(y) - ε. Since the function y —• ut(X)(y + h) + ε
is of class F3 near K, and is majorized by φ, there is a function υx G
Fi(nbhdK), such that utM(y + h) + ε < vx(y) < φ(y)9 y e K. In
particular, vx(x) > u*(x), and so vx(y) > u*{y) (near x.)

Covering K by a finite family of open sets {vx > w*}, where x G S
(a finite set), we obtain that u*(y) < υ(y) < φ(y)9 y G K, where
v(y) = maxx65^jc(y), y G AT, and υ e Fι(nbhdK). This implies that
ueF3(U).

It remains to check that F3 satisfies the sheaf axiom (0.7). If the
function u (as in (0.7)) is continuous, then u G F$(U)9 by Assertion 4.
If u G usc(I7) and is locally bounded, consider an arbitrary compact
K c U and choose a finite covering {U\9...9Un} of K, such that
w|Uj G F3(Uj), j = 1,...,«, and F 7 are compact subsets of [/. Choose
ε > 0, so that the sets

Vj = {x e Uji dist(x,dUj) > ε}, 7 = 1,2,...,«,

form a covering of # . Note, that u is bounded on V\ U U Un-
Consider now regularizations R^u, L > 0, as in Lemma 2.3, where
u = u on U\ U ••• U Un9 and w = 0 otherwise. Since we already
know that (0.1)-(0.6) and (0.9) hold for F 3 , and since u\Uj e F3(Uj)9

j = !, . . . ,«, Lemma 2.3 implies that there is LQ, such that for L > LQ,
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(RLύ)\Vj G FsiVj), j = l , . . . ,n . Since RLU is a continuous func-
tion, we conclude (by the preceding comments or Assertion 4) that
RLu\{V\ U ••• U Vn) e F3. By Proposition 2.2 (c), RLu(x) \ u(x),
x e V\ U U Vn, we get u e F3(nbhdK), K c U. Finally, if u e
usc(£7) with u\Uj e F$(Uj), consider K c U9 K compact and choose a
bounded function g e F(nbhdK). Then, the functions max(w, g - n),
n — 1,2,..., are locally in F 3 and are locally bounded, and so, by the
above argument, max(w, g - n) e JF3. Since max(w, ^ - n)(x) \ u(x),
x e K, we get w E F^IntK). Since ϋΓ is an arbitrary compact set,
u G F$(U), as required.

Since i ^ = P^, cf. (4.7), and F3 is an affine pseudoconvex class,
F3 = P (cf. Theorem 3.9). D

For future reference, we can reformulate now Assertion 4 as follows.

COROLLARY 4.8. Let F\ P satisfy assumptions of Lemma 4.3 and
u: U —• R, U c RN

9 be a continuous function of class P. Then, for
every ε,δ > 0, there is a function v e F\(U), such that

ε\x\2 + u(x) < v(x) < u{x) + δ + ε\x\2, x e U.

5. Examples of affine pseudoconvex classes. In this section we return
to classes of subharmonic, ^-convex and #-plurisubharmonic func-
tions, which were briefly discussed in [7, Examples 2.1-2.3], and ap-
ply the results of §§3 and 4 to obtain piecewise-smooth approximation
theorems for these classes and to characterize them by their invariance
properties. We also construct new examples of GL(C") invariant affine
pseudoconvex classes on Cn.

EXAMPLE 5.1. P = subh is the class of all use subharmonic functions
defined on open subsets of RN. It is clear, e.g. by Corollary 3.10, that
its associated order cone is Y = {A: Aτ = A,tτA > 0}. Then by
Lemma A.6, YD = 7, and so by Theorem 3.11, Pd = P.

REMARK 5.2. An affine pseudoconvex class P is closed with respect
to addition (P + P c P)9 if and only if so is its associated order cone
Y of symmetric matrices (i.e. Y + Y c Y). (Obvious, by Definition
3.1 and Theorem 3.11.)

PROPOSITION 5.3. Let P be an affine proper pseudoconvex class of
functions on RN and Y be its associated class of matrices. Then, the
following conditions are equivalent:

(i) P + P C P, Pd = P\
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(ii)P + PcPfP
d + Pd cPd;

(in) there is a positive definite symmetric matrix (δjj), such that

(iv) P consists of all functions subharmonic with respect to the
Laplace operator Σijδijd2f/dXidXj (corresponding to some inner-
product metric on RN).

Proof (Sketch). Implications (iϋ)=*(i) and (i)=^(ii) are obvious (cf.
Lemma A.6, Remark 5.2).

(ii)=Kiii). By Remark 5.2, Y + Y c Y and YD + YD c YD. The
latter implies, by Lemma A.6, that [-Int(Γ)]c, and so [Int(7)]c as well,
are semigroups. Then, the boundary dY = Y Π [Int(y)]c is a closed
nowhere dense semigroup in S = S(RNxN) = the space of symmetric
N x N matrices. We will show that (-A) e dY whenever A e dY,
which will imply that dY is a subgroup of S. (Indeed, if A e dY
and {-A) $ dY, then either -A G Int(Γ) or -A e Yc. In the first
case, consider An e Int(Γ), such that An -» A. For some n, both
An e lnt(Y) and (~An) e Int(7), and since Int(7) + lnt(Y) c Int(Γ),
0 G Int(Γ), which implies that for some ε > 0, -el e lnt(Y). The
latter being a semigroup, -nεl G Int(F) for n > 0, and since Y is
an order cone, Y = S, contrary to the properness. In the second
case, consider An G YC, such that An —• A. Then, by Lemma A.6,
-An G I n t ί F ^ ) . Since -A eYc,Ae lnt(YD) and An e lnt(YD) for

large n, and so O = (~An) + An G lrΛ(YD), which, similarly as above,
contradicts the properness of YD.)

Since dY is a closed subgroup of S, it is isomorphic with Rk x
Zι. Since S\dY = Int(Y) U [-lnt(YD)], it is a union of two disjoint
connected open sets (an order cone is clearly connected), and so dY =
Rk and is a hyperplane in S. Consequently, Y = {(fly): Σ ^0 α ύ ^ 0},
for some symmetric matrix (<5/7). Furthermore, 0 G 7, and so Y
contains the cone of positive-definite matrices, which forces (δtj) to
be positive definite.

It is obvious that (iii) and (iv) are equivalent. D

EXAMPLE 5.4. Denote by conv^ the class of all ^-convex functions
on RN, cf. e.g. [9, Example 2.3] for the definition. Then, (by Corollary
3.10), its associated class of matrices is

γq = {A G S(RNxN): A has at most q negative eigenvalues}.

REMARK 5.5. ^-convex functions can be approximated by piecewise
linear q-convex functions in the following sense. If u G conv^nbhd K),
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where K is a compact set, then there exists a sequence {un)n=\ of func-
tions continuous near K, such that un{x) \ u(x), x € K, and un, n =
1,2,..., is locally representable (near x e K) by max(/ i , . . . , fm(X))9

with /} = min(/0 ,/i,.. . ,/^), where lk are affine functions on RN.
This observation is a corollary of Lemma 4.3. For the proof, let
F — {min(/0,/i,...,/tf): lk affine}, then conditions (4.2) and (4.3) of
Lemma 4.3 are obvious, and condition (4.1), that Fd = ( conv^ ,
follows easily from [9], Definition 1.11 and Example 2.3.

PROPOSITION 5.6. Every affine pseudoconvex class of functions on
RN, which is preserved by composition with nonsingular linear trans-
formations, is identical with conv^, for some 0 <q < N - 1.

Proof, Let P be a pseudoconvex class in question and Y its asso-
ciated order cone of matrices. Applying Corollary 3.10 and Theorem
3.11, one obtains that P is preserved by composition with the lin-
ear map x -> Wx\ RN -> RN, if and only if {WTAW: AeY} cY.
Choose AQ G Y to be the matrix with largest number of negative eigen-
values and denote this number by q. Then every (symmetric) matrix
with exactly q negative eigenvalues is of the form WTAOW for some
W nonsingular and belongs to Y. If a symmetric matrix B has less
than q negative eigenvalues it can be represented (e.g. using the diag-
onal form) as A\ + Aι, where A\ has q negative eigenvalues and Aι
is positive semidefinite. Then A\ eY and B = A\+ A2eY, because
Y is an order cone. Thus, Y = Yq, which concludes the proof (by
Theorem 3.11 and Example 5.4). α

In the remainder of this section we will study examples of affine
pseudoconvex classes on C" = R2n. In this setting, it is more conve-
nient to identify the order cone Y associated to P (as in Definition
3.1) with a class of real-homogeneous quadratic forms on Cn, rather
than with the class of 2n x In real symmetric matrices. Every such
form can be uniquely represented as

(5.1) z -> 2(zτHz + RezτAz),

where H* = H and Aτ = A are respectively Hermitian and symmetric
complex n x n matrices. Thus, Y can be also identified with a set of
such pairs (H,A).

EXAMPLE 5.7. Denote by Pq the class of all use g-plurisubharmonic
functions on (open subsets of) Cn (originally studied by Hunt and
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Murray [4]; cf. also [5, §1] for the definition). Denote by Ϋq its asso-
ciated class of quadratic forms. By [7, Theorem 4.1],

(5.2) (//, A) e Ϋq, if and only if H has at most

q negative eigenvalues,

where H,A are as in (5.1).
We will apply now Lemma 4.3 to get a partial generalization, to

classes Pq, of the approximation result for the plurisubharmonic func-
tion due to Bremermann [2]; cf. also Gamelin and Sibony [5].

THEOREM 5.8. Let u be a q-plurisubharmonic function in a neigh-
borhood of a compact set K. Then, there is a sequence of continuous
functions un e C(Vn), Vn D K, with Vn open, such that un(z) \ u(z),
z G K, and every z 0 G Vn has a neighborhood Vo, such that u\v0 is
equal to the maximum of several functions of the form

(5.3) z -

where f (z) are nonvanishing analytic functions in Vo. If in addition, u
is continuous and q-plurisubharmonic in a domain U, un can be chosen
as continuous functions in Vn = U, so that un(z) \ u(z), z eU.

Proof. Denote by F(V0) the set of functions of the form (5.3) and
let F = \JF(VQ), with Fo open. In view of Lemma 4.3 it suffices to
show that F satisfies conditions (4.1)—(4.3), of which (4.2) is obvious
(let fo = f{ = •- = fq = I) and (4.3) can be seen by replacing in (5.3)
fj by ehfj9 where h(z) is an analytic function with Re A = g.

It remains to check that F and Pq have the same dual class, Fd = P$.
Since F c Pq, by [7, Lemma 6.2] and P<j = Pn-q-u by [9, Definition
1.11] and [7, Proposition 1.1 (i) and Theorem 5.1], we have to show
that

FdcPn-g-X.

Let u e Fd(U). By [8, Definition 1.1 and Lemma 4.4], u is (n-q-l)-
plurisubharmonic, if for every polynomial p(z), for every (n - q)-
dimensional complex plane L and for every ball B with ϊ? c U it
holds

(5.4) max(w + Rep)\B ΠL< max(w + Rep)\(dB) ΠL.

Choose complex affine functions l\,...9lg9 such that L = {z: /7(z) =
1? j — I9...9q}9 and consider functions

vn = min( log |^ | , n log|/i \,...,n log\lq\).
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Clearly, vn G ̂ (nbhdl?) (provided lj are so chosen that //(z) Φ 0 for
z G B), and so max(w + vn)\B < max(ι; + vn)\dB9 for n = 1,2,... As
« —> -foe, this inequality yields (5.4). D

PROPOSITION 5.9. Every proper pseudoconvex class on Cn which is
preserved by composition with biholomorphic mappings and satisfies ax-
iom (0.8) is identical with the class of all q-plurisubharmonic functions
for some q, 0 <q < n - 1.

COROLLARY 5.10. In particular, the class of all plurisubharmonic
functions on Cn is the unique proper pseudoconvex class on Cn which is
closed with respect to addition, biholomorphically invariant and satisfies
axiom (0.8).

We conjecture that Proposition 5.9 remains true, if the axiom (0.8)
is replaced by the weaker localization axiom (1.8) of [9].

Proof of Proposition 5.9.

Assertion 1. If an affine pseudoconvex class P on Cn is preserved
by composition with biholomorphic maps, then it is complex in the
following sense

(5.5) whenever u G P(U) and v is pluriharmonic on V,

then u + v eP(Un V).

In other words, we have to show that the class AP (as defined above
in Condition (1.1)) contains all pluriharmonic functions. Clearly, AP
is an affine pseudoconvex class itself and is preserved by composi-
tion with biholomorphic mappings. Let v: V -> R be pluriharmonic
and ZQ G V. Since AP satisfies axiom (0.7), it suffices to show that
u G P(nbhdzo), ZQ G V. If gradw(zo) φ 0, there exists an analytic
function f0 near z0, such that Re^o = u near z 0 and analytic functions
f\,...9fn, such that Φ(z) = (fo(z)9...9fn-ι(z)) is a biholomorphic
map on a neighborhood of z0. Since (0.8) holds, the function /(z) G
Rez t is of class AP, and so u = hΦeAP(nbhdzo). If gradw(z0) = 0,
consider any nonconstant affine function /(z), then grad(w + /) ψ 0 for
z near z0, and so, by the above argument, (u+l) G ̂ 4P(nbhd z 0). Since
AP satisfies axiom (0.8) as well, u = (u + /) + (-/) G ̂ jP(nbhdz0).
The assertion is established.

If AQ is a complex symmetric matrix, then υ(z) = RezΓ^4oz is a

pluriharmonic function; by adding it to the form (5.1) we can modify
its antihermitian part at will, which gives the next assertion.
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Assertion 2. If P is a translation invariant pseudoconvex class which
is complex in the sense of Assertion 1, and Y is its associated order
cone, then

(5.6) (//, A) G Y, if and only if (//, 0) G Y.

Denote by Z the set of complex Hermitian 77, such that (77, 0) G Γ
and by Z^ the set of Hermitian matrices with no more than q nega-
tive eigenvalues. If W is a nonsingular matrix and H is the complex
Hessian of u at some point, then W*HW is the complex Hessian of
z —• u{Hz) (at some point), and so

(5.7) H e Z, if and only if W*HW e Z, for W nonsingular.

In the same way as in the proof of Proposition 5.6, one shows that
an order cone Z (relative to the cone of positive definite Hermitian
matrices), which satisfies (5.7), must be equal to Zg, for some 0 < q <
n - 1, and s o 7 = Ϋg, cf. (5.2), which concludes the proof. D

We will consider now Gl(Cw)-invariant affine pseudoconvex classes
on Cn. Except for trivial cases, they will not be biholomorphically
invariant (and so will not be "complex" in the sense of conditions
(5.5)). To avoid excessive complications of linear-algebraic nature,
we discuss below classes P, which consist of plurisubharmonic func-
tions. This amounts to the following assumption on the order cone Y
associated to P:

(5.8) if (H9A) G Y9 then H is positive semi-definite.

REMARK 5.11. An affine pseudoconvex class is G1(CW) invariant, if
and only if

(5.9) (W*HW, WTAW) G Y, whenever (H,A) € Y and W G G1(CΛ).

This is obvious by Corollary 3.10 and Theorem 3.11.
We have to review now basic facts on the structure of the forms

(5.1) with positive definite H. (Their proofs can be easily produced
by the reader, but we do not know the references.)

If H, A are complex n x n matrices and H is Hermitian positive
definite and A is symmetric, then there exist non-zero vectors cij, and
non-negative numbers kj, j = 0,1,2,..., n - 1, such that

(5.10) A a j = kjΉaj, j = 0 , 1 , . . . , n - 1,

(5.11) ajHaj>0, j = 0, l,...,/i - 1,

(5.12) aJAas = aJHas = 0, jφ s,
(5.13)
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Thus, the forms ΎτHz and zτAz are simultaneously diagonalized by

the basis (α/)./

NOTATION 5.12. We can reorder the basis so that ko > k\ > >
kn-\. Then the sequence (/co,&i,...,fc«-i) is uniquely determined
(which follows from the next proposition). We will call kj the yth
critical value of the pair (H,A) and denote kj = Cj(H,A).

PROPOSITION 5.13. For j = 0, l , . . . ,n - 1,

Cj(H,A) = min max (RezτAz/ΎτHz),
J x zex\{0}

where X varies through complex subspaces ofCn of codimension j .

REMARK 5.14. By the last proposition, the form z —• ~zτHz +
RezτAz, with H positive-definite, is positive semi-definite, if and
only if co(H,A)< 1.

REMARK 5.15. If the form z -»~zΊHQZ + Re zτAz is positive semi-
definite and H is Hermitian positive definite, then CJ(H+HQ, A+AQ) <

Indeed, if j G {0,1, . . . , # — 1} and /c; = max(c7(//, ^4), 1), there is a
subspace X7 c C 2 of complex codimension j , such that

(5.14) RezΓ^z < kμτHz, z e Xj.

Since z —• ΊZTHQZ + RezΓ^4o z is positive semi-definite, RQZTAQZ <
YτHoz, and so R e z Γ ^ 0 ^ < kjzτH§z, z e Cn. By this and (5.14),
RezΓ(Λ + A0)z < kμτ(H + HQ)z9 z e XJ9 and so cj(H9A) < kj, by
Proposition 5.13.

We can describe now the next example which provides building
blocks for the construction of classes Y satisfying (5.8) and (5.9).

EXAMPLE 5.16. For every sequence of real numbers α = (αo, OL\ , . . . ,
απ_i), such that α 0 > c*i > ••• > απ_i > 1, define Yα = Yαo,αι,...,αΛ-ι

as the closure of the set of all pairs (H,A) (with H* = H, H > 0,
Aτ = A), such that Cj(H9A) < αJ9 j = 0,1,...,/? - 1. By Remark
5.15, Yα is stable with respect to the addition of positive semi-definite
forms, and so is an order cone. It is also clear, e.g. by Proposition
5.13, that for every W e G1(CΛ)

(5.15) Cj{W*HW9 WTAW) = Cj{H, A), j = 0 ,1, . . . , n - 1,

and so Yα satisfies (5.9).
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PROPOSITION 5.17. If a closed G1(CΛ) invariant order cone Y con-
tains a pair (H9 A) with H positive-definite, then Y D Ya, where a =
(αo,αi,. . . ,α Λ _i) and aj = max(l9Cj(H9A)).

Proof. Using relations (5.10)—(5.13), one can observe that every
two pairs (H,A) and (H\9A\)9 with the same critical numbers £/(-,),
are equivalent, namely {HUAX) = (W*HW, WTAW), where W is the
nonsingular transformation mapping diagonalizing vectors of one pair
onto those of the other. Thus, the form

(5.16) z^Σ\zj\2 + ΣkjRez]
7=0 7=0

belongs to Y, where kj = Cj(H,A), j = 0 , 1 , . . . , n - 1. Let 0 < βj<
max(/cy, 1), 7 = 0, l , . . . , π — 1. It remains to show that a form with
critical numbers equal to βo,..., βn-\ belongs to Y.

Note, first, that for every j there are hj > 0 and Sj € [0,1], such
that

(5.17) (kj + hjSj)/(l+hj) = βj, 7 = 0 , l , . . . , / i » l .

Then, the form

(5.18) z^
7=0 7=0

is positive semidefinite. Y being an order cone, it contains the sum
of the forms (5.16) and (5.18). By (5.17), the critical numbers of this
sum are equal to βo, β\,..., βn- \. α

REMARK 5.18. Every closed order cone, satisfying conditions (5.8)
and (5.9), is of the following form: there is a set So c R+9 such that
(H9A) e Y9 if and only if H* = H, H > 0 and {Cj{H9A)Y\zl e So.
Set So has properties (5.19) and (5.20), given next, and every subset
5b c ^ + with these properties corresponds to some G1(CW) invariant
order cone.

(5.19) I fα = (α o,Qi,...,αΛ-i)GSo» then

Q!θ > OL\ > > αΛ_i > 0 and (max(αy , l ) ) ^ 1 G ^o

(5.20) I fα = (α7 ) ^ o

1 e 5 o , β = {βj)njZl where

βo>β\>">βn-\ and β<α, then β e So.
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EXAMPLE 5.19. In the special case, when a = (K,K,.. .,K), +00 >
K>l,{H,A)e Ya, if and only if

(5.21) RtzτAz < KΊτHz, z e Cn.

Denote this order cone Ya by Yκ. Condition (5.21) makes it clear
that Yκ is closed with respect to addition, Yκ + YK cYκ, and so is
a convex cone.

THEOREM 5.20. Affine pseudoconvex classes on Cn which are closed
with respect to addition and are G1(CΛ) invariant form a monotone one
parameter family, parametrized by K e [l,+oo]. Namely, for every
K e [l,+oo), there is exactly one such class which contains function
z —• |z | 2 + KRzzτz, but does not contain any function z -» |z | 2 +
(K + ε)Rczτz. The case K = +00 corresponds to the class of all q-
plurisubharmonic functions.

Proof. By Theorem 3.11, it suffices to show that every closed cone
Y satisfying (5.8), (5.9) and Y + Y = Y is equal to Yκ for some
K e [l,+oo]. Let

(5.22) K = sup{co(//, A): (H, A) e Y}.

Clearly, Y c Yκ. In view of the previous arguments, in order to show
that Yκ c Y it is enough to check that for every Ko e (0, K) the form

[j.zό) z -^ \z\ + ΛQ Kez z

belongs to Y. By Proposition 5.17 and Eq. (5.22), if 0 < ε < min^o, 1),

72
then for each j = 0 ,1 , . . . , «- 1 the form z -> |z 7 | 2 + εΣift \zi\2 +

KQ Re zj belongs to Y, and so Y contains their sum, which is equal to
z —• (1 + εn)\z\2 + KQ Re zτz. Letting ε —• 0, we obtain that the form
(5.23) belongs to Y. π

6. A counterexample to smooth approximation in an affine pseudo-
convex class. The next example and the following proposition show
that Theorem 4.1 cannot be, in general, improved to yield smooth
approximation. It is presently unknown which pseudoconvex classes
(aside for those closed with respect to addition) allow for smooth ap-
proximation.

EXAMPLE 6.1. For an open set U cC5 define P(U) as the set of all
2-plurisubharmonic functions w(z, w) on U, where z = (zuz2, z3, z4),
w G C, such that for every z e C4, the function w -> u(z,w) is
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locally convex. Let P = \JP(U), U c C5. Since the class of 2-
plurisubharmonic functions is affine pseudoconvex (axioms (0.1)—(0.9)
hold by [4], cf. also [8, §1]), it is obvious that class P satisfies axioms
(0.1)-(0.9)aswell.

PROPOSITION 6.2. For (z, w) = (zuz2, z3, z4, w) e C5, let

u(z,w) = ( I m ^ ) 2 + m a x ( - | z 1 | 2 - | z 2 | 2 - R e ^ ? - | z 3 | 2 - | z 4 | 2 + R e ^ ) .

Then u belongs to the class P defined in Example 6.1. Moreover, it
is not possible to find a neighborhood VofO in C5 and a sequence of
functions (un)%Lx CP(V)Π C°°(V), such that

un(z9w) \ u(z9w)9 (z9w) € V.

Proof, Let uι(z9w) = - | z i | 2 - | z 2 | 2 - R e u > + (Imi(;)2 and u2(z,w) =
- | z 3 | 2 - | z 4 | 2 + Re w + (Imw)2. Observe that each of these two func-
tions is 2-plurisubharmonic (on C5) as a sum of a 2-plurisubharmonic
function (z9w) —• - | z i l 2 - | z 2 | 2 or (z9w) —• - | z 3 | 2 - | z 4 | 2 and of a
convex function (z9w) —• ±Rew + (Imw)2. Since both uι and u2 are
convex in direction w, ux, u2 are of class P. Since u = max(uι,u2),
u G P by axiom (0.7). Let now v(z) = inf^ u(z,w). By direct com-
putation

(6.1) v(z) = infu(z,w) = 4 | z | 2 = - i d z ^ 2 + | z 2 | 2 + | z 3 | 2 + | z 4 | 2 ) .

Assertion. Let B\ c Cn and 5 3 c 2?2 c Cq be open balls cen-
tered at 0, such that i?3 c 2?2. Assume that u(z9 w)9 z = ( z 1 ? . . . , zn)9

w = (w\9...9wq) is a. smooth r-plurisubharmonic function on a neigh-
borhood of B\ xB2. Assume further that for every z e Bu the function
w —• u(z9 w) is strongly convex (i.e. has positive-definite real Hessian)
on a neighborhood of 2?2 and

(6.2) max{w(z,w):we 2?3} < min{w(z, ζ): ζe dB2}.

Then, the function v(z) = min{u(z,w): w E Έ2) is (q + ^-plurisub-
harmonic on B\.

This fact was obtained as a part of the proof of Theorem 5.1 in
[10], although, for r > 1, it was not formulated as a separate result.
While the results in [10, §5] were formulated for the case when slice
functions w —• u(zyw) are strongly convex on Cq

9 the proof given
there remains valid under assumptions of the assertion.

Fix now 0 < δ < 1 and let Bx = {z e C 4 : \z\ < δ}, B2 = {w e C:
\w\ <δ} and 1?3 = \B2. Suppose now that there is a sequence (un)^=ι
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of smooth functions of class P defined on a neighborhood of B\ xB2,
in C5, such that un(z9w) \ u(z9w)9 (z9w) G Bx x 2?2 Without
loss of generality, we can assume that functions un are strictly 2-
plurisubharmonic and strongly convex in w on B\ x B2 It is easy
to see that for n large enough (m > ΠQ)9 functions un must sat-
isfy condition 6.2. Hence, the assertion applies and we obtain the
functions vn(z) = min{un(z,w): w e B2} are 3-plurisubharmonic
on Bγ. Clearly, vn(z) \ v(z), z E Ϊ i , and so υ(z) must be 3-
plurisubharmonic in Bγ c C4, which contradicts (6.1). D

7. The localization axiom and separation properties. It is a natural
question, whether affine pseudoconvex classes on RN (as defined by ax-
ioms (0.1)-(0.9) above) are identical with those pseudoconvex classes
on RN (see [9, Definition 1.4] or §1 above) which are translation in-
variant in the sense of (0.9). The only axioms which are different for
these two notions are axiom (0.8) and its abstract counterpart, the lo-
calization axiom (1.1). Thus, the problem is reduced to the question,
whether, in the presence of axioms (0.1)-(0.7) and (0.9), the localiza-
tion axiom (1.1) implies (0.8). The answer is negative, as the next
example shows.

EXAMPLE 7.1. Writex <y forx,y eRN

9ifXj <yj,j = 1,2,...,N.
We will say that / : U —> R9 U c RN

9 is order preserving, if f(x) <
f(y) whenever x < y, χ9y e U. Define a class of functions P on RN

as P — U P(U)9 where an use function / belongs to P(U)9 if and only
if it is order preserving on each parallelepiped with sides parallel to
the coordinate axis. It is clear that axioms (0.1)-(0.7) and (0.9) hold,
while (0.8) fails. In contrast, the localization axiom (1.1) holds. To
check the latter, it is convenient to look at it from a more general point
of view. First, P + P c P9 and so P = AP, cf. (1.1), therefore P has
clearly the separation property (7.1), defined next. Then, the property
(1.1) follows immediately from Proposition 7.2.

(7.1) (Weak separation property) For every compact set K c M and
for every x,y e K with x Φ y9 there is a function υ G AP(nbhdK),
such that v(x) Φ v (y). (One of these values can be — oo.)

PROPOSITION 7.2. (a) If a class P of use functions satisfies (1.1), then
it has property (7.1).

(b) Let P be a translation invariant pseudoconvex class of functions
on RN satisfying conditions (0.1)-(0.7). Assume that

(7.2) for every r > 0 and v e AP{U), rv e AP(U).
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Then, the weak separation property (7.1) implies the localization axiom
(1.1).

Proof, (a) Consider x,y e K, x Φ y, and suppose that v(x) =
v(y) for every υ G AP(nbhdK). Let u(z) — 0, for z = x,y, and
u(z) = -oo, for z G K\{x,y}. Then, for every v G AP(nbhdK),
(u + v)(x) = (u + v)(y), while (u + v){z) = -oo for z = x,y, which
contradicts (1.1).

(b) It is clear that the class P\ = AP satisfies axioms (0.1) through
(0.5), and (0.9); since AP contains constant functions, P\ satisfies
axiom (0.6) as well. Hence, Corollary 2.5 applies to P\, and so the
subclass C(K)Γ)AP(nbhdK) is dense in AP, in the sense of Corollary
2.5. Consequently, functions of the class C(K)πAP(nbhdK) separate
points of K.

The remainder of the proof is the modification of the argument
used in the proof of [9, Lemma A.I], and so we use the notation and
the results of this proof, adding only necessary changes.

Let g G usc(K), and 0 < ε < 1. To prove (1.1), we will construct a
function v G AP(nbhdK) and a point XQ, such that ||v||oo < ε ^ n d

(7.3) (u + v)(x0) >(u + v)(x), x G K\{x0}.

Let X be a compact subset ofRN, such that K c Int(ΛΓ), and let A =
the uniform closure in C(X) of the linear span of C(X)Γ\AP(nbhdX).
As noted above, functions from C(X) n^/^nbhdX) separate points
of X, and so we can choose a sequence (fn) c AP(nbhdX) n C(X)9

such that Cl(sρan{^}) = A. By (7.2), we can assume without loss of
generality that | |/Λ | | < e2~n~\ n = 1,2,..., so that

(7.4)
n=\

Let now u(x) = g(x) + X^̂ Lj fn(x), for x £ K, and u(x) = -oo, for
x G X\K. It is clear that X, A, u and the sequence (fn)^L\ satisfy
all the assumptions of [9, Lemma A.I] and of the arguments used in
its proof. By the construction, employed in this proof, one can find
xo e X and (yn) e /2, such that

(7.5)

(7.6) U(XQ) + ρ(xo) > u(x) + ρ{x), x e X\{x0},

where p(x) = Σ™=ϊ ynfn{x) Necessarily, xoeK (u = -oo off K).
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Let now

V(X) = Σfn{x) + P(x) = D 1 + Vn)fn{x\ * € JT.
Λ = l Λ = l

Clearly, v G 4̂. Furthermore, |yπ | < ε/2 < 1, and so (1 + yn)fn £
^P(nbhd AT), by (7.2), and since the series Y^L{{l+yn)fn is uniformly
convergent on X, v G ̂ ^(IntX), cf. [9, Proposition 3.2], and so v G
AP(nbhdK). On the other hand, u + p = g + v9 and so (7.6) implies
(7.3). D

REMARK 7.3. In the above proof the translation invariance property
(0.9) of P is used only to show that functions in C{K) Π ̂ P(nbhdK)
separate points of K. Once this is known, the rest of the argument
is valid for classes P of use functions on a locally compact space M
satisfying conditions (1.1)—(1.6) of [9].

Example 7.1 is somewhat pathological from our point of view, be-
cause it does not admit a topology basis consisting of P-regular neigh-
borhoods (cf. Definition 1.4). To exclude situations like in Example
7.1, we consider the following form of separation property, which is,
clearly, not shared by Example 7.1, and is stronger than the weak
separation property (7.1).

(7.7) (Separation property). For every compact K c M and X J G
K, with x Φ y, there is v G AP(nbhdK), such that υ(x) > v(y).

One might now update the initial question and ask whether, in the
presence of axioms (0.1)-(0.7) and (0.9), the separation property (7.7)
implies axiom (0.8). The next example shows that this attempt fails
as well.

EXAMPLE 7.4. We define a class P of functions on RN by first
defining that a C(2)-smooth function f:U—*R belongs to P(U), if
|grad/(x)| < trHess/(jc). Next, a use function u: U —> [-oo,+oo)
belongs to P9 if for every compact set K c U, there is a sequence
(un) G CWp(nbhdK), such that un{x) \ u{x)9 xeK.

One can see easily that P is a convex cone, and so AP = P. Axiom
(0.8) fails, while the separation property (7.7) holds. To see the latter,
let fa(x) — cosh(a,x), for a,x G RN. It is clear that functions fa,
\a\ > 1, and their translates (note, that P is translation invariant) form
a set rich enough from which separating function v in the property
(7.7) can be always chosen. It remains to show that class P satisfies
conditions (0.1)-(0.7), and so is a translation-invariant pseudoconvex
class. We omit further details.
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Problem 7.5. If P is a pseudoconvex class of functions on M, does
the separation condition (7.7) imply the existence of a basis consisting
of P-regular neighborhoods?

Comments. Example 7.4 indicates that there are natural instances
of translation invariant pseudoconvex classes on RN with separation
property (7.7) and without property (0.8). A natural question is wheth-
er Theorem 3.11 can be generalized to this setting. It turns out that
this can be done. We outline here some of the necessary modifications,
omitting the details.

The associated class of matrices Y (cf. Definition 3.1) has to be
replaced by the set of pairs (a, A), where a is a vector (corresponding
to the gradient) and A is a matrix (corresponding to the Hessian at
the same point). Class Y has the following properties:

(7.8) for every a e RN, there is A e RNxN, such that {a, A} e Y\

(7.9) if (a, A) e Y and B is a positive-definite matrix, then
(a,A + B)eY.

With this understanding of Y and a natural definition of YD (as the
set of (a,B)9 such that for every (—a, A) e Y, A + B is not negative
definite), an obvious analog of Theorem 3.11 holds, with the following
restriction. Namely, it is not known whether every closed set Y with
properties (7.8) and (7.9) corresponds to some translation invariant
pseudoconvex class with the separation property (7.7), and if not, what
characterizes such sets Y. We omit further details.

Appendix A. Order cones and dual order cones infinite dimensional
spaces. In [11] we have to consider modifications of Definition 3.1
above with different type of order cones consisting of quadratic forms.
For this reason we study order cones in the abstract setting. Inciden-
tally, the proofs become completely elementary. (Some of the results
will be needed only in [11].)

DEFINITION A.I. An ordered finite dimensional vector space is a
pair (X,X+), where X is a real vector space (of finite dimension) and
X+ is an open subset of X, such that

(A.I) X+nX- = 0, where X- = -X+ = {-x: x e X+};

(A.2) if xι, x2 e X+, then (xx + x2) e X+;

(A.3) iΐxeX+ and r > 0, thenrxeX+.

Throughout the Appendix A, (X,X+) will denote a finite dimen-
sional ordered vector-space.
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DEFINITION A.2. (i) A non-empty subset Y c X, where (X,X+) is
an ordered vector space, is called an order cone, if whenever y e Y
and x e X+, then (u + x) e Y.

(ii) An order cone Y is called proper, if Y Φ X.
(iii) If Y is a subset of X (order cone or not), denote

{xeX:(x + Y)nX- = 0}.

We will call YD the dual order cone {to Y).
This terminology is justified by the next proposition.
We note that, in general, an order cone does not have to be a cone

in the sense of linear structure, i.e. condition (A.3) may fail (although
it still holds in the natural examples, cf. §4 above), and typically, it is
not a convex set (cf. the same §4).

PROPOSITION A. 3. IfYD is nonempty, where Y c X, then it is a
proper, closed order cone.

Proof. Since YD is the intersection of the family of closed sets
{x e X: (x + y) e X\X-}, where y e 7, it is closed.

If x e YD and X\ = x + JC+, where x+ e X+, then x\ + Y = x+
(x+ + Y) c x + Y, by Definition A.2 (i), and so (xx + Y) Π X- = 0,
because (x + Y) Π X- = 0 . Thus, JCI G YD, and so YD is an order
cone.

To see that YD is proper, choose y0 e Y and x+ e X+. Let x =
-y0 - x+. Then (x + Y) Π X- is nonempty (contains -Jto)> a n d so
x e YD. D

The next observation follows directly from Definition A. 2.

PROPOSITION A.4. The union of a family of order cones is an order
cone. The intersection of a family of order cones is an order cone,
provided it is nonempty.

PROPOSITION A.5. Let Y be an order cone in (X,X+). Then
(i) the topological closure YofY is equal to

(A.4) {xeX: (JC + I + ) C 7 } 5

(which might be called the order closure ofY);
(ii) the (topological) interior ofYf lnt(Y) is equal to

(A.5) Y + X+
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(iii) both Y and Int(Γ) are order cones;
(iv)Y = Cl(Int(7));

Proof, (i) Let Yx = {x e X: {x + X+) c Y}. Choose x0 G X+. Ίf
x G Y\, then (x + n~ιx0) G Y for n > 0, and so x e Y. Thus Yx c Y.
Conversely, if y G Y, then there is a sequence (j^) c Y, such that
lim^y^ = y and ^ + I + c Γ for every n. Fix an arbitrary x0 e X+.
Then (xo+y-yrt) —• ^o ^ ^+ ?

 a n d since X+ is open, (xo+y—yn) ^ ^+
for some n. Then, y + x0 = yn + (x0 + y - j Λ ) e yn + ^+ c Y, for
every x0 ^ X+- We have actually proved

(A.6) ifyeΫ, then y + X+ c Int(r).

Thus, Y c 7i, so 7 = Yλ.
(ii) Denote r 2 = \Jyer(y + X +) B>" D e f i n i t ion A.2, Γ2 C Γ, and

since Yι is open, Y2 c Int(7). Conversely, let y G Int(7) and Xo Ξ ^+
There is ε > 0, such that (y-ε to) ^ Int(Γ). Then, y = (y-exo)+εxo G
Int(r) + εx0 C r2. Thus, Int(7) c Y2, and so Y2 = Int(Γ).

(iii) The set (A.5) is an order cone by Proposition A.4, and the set
(A.4) is an order cone by Definition A.2.

(iv) By relation (A.6), Y is contained in the order closure of Int(Γ),
and so in Cl(Int(Γ)), by (i). The opposite inclusion is trivial.

(v) Inclusion Int(Γ) c Int(Y) is trivial; as for the opposite inclu-
sion, Int(Y) = Y + X+ c Int(y), by (ii) and (A.6) respectively. Thus,
Int(r) = Int(Y). D

LEMMA A.6. Let Y be an order cone in (X9X+). Then

YD = Cl[(-Y)c] = [-lnt(Y)]c

(where "c" denotes the complement of a set in X).

Proof. Let

Y{=X\(-Y), Y2 = X\[-lnt(Y)l

where -Y = {-y: y G Y}. Clearly,

(A.7) Ϋ{ C Y2.

Suppose, that Y2 + Y intersects X_, i.e. there are x G Y2, y G Y,
and x+ G X+9 such that x + y = -x+. Then, x = -(y + JC+). Since
(y + x+) G y + X+ C Int(Γ), by Proposition A.2 (ii), we get
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x e [-Ιnt(Y)], contrary to the assumption x eY2. Hence, (Y2 + Y) Π
X_ = 0, i.e.

(A.8) Y2 c YD.

To show that YD cΎ\, it suffices to check, by Proposition A.5 (i)
that if x e YD, then x + X+ c Y{ = (-Y)c, i.e. (x + X+) n (-7) = 0.
Suppose, the latter relation fails. Then, there is x+ e X+ and J / G Γ ,
such that x + x+ = —y, i.e. Λ: + y = — x+. This is impossible, because
x e YD and j ; e Y. Thus, 7 ΰ c 7i , which, together with inclusions
(A.7), (A.8) proves the lemma. D

REMARK A. 7. The lemma is surprising in that the formula YD =
Cl[(—y)c] does not depend on the order structure at all, although both
definitions of an order cone and of its dual depend on the order struc-
ture. Thus, if Y is an order cone relative to (X9 X+), and Xo is another
open convex linear cone, such that XQ C X+9 then the dual order cones
to Y relative to the order structures (X9X+) and (X,XQ) are the same.

LEMMA A. 8. Let Y be an order cone. Then
(i) Y is proper, if and only ifYD is nonempty;

(ii) (Ϋ)D = Y^
(iii) (YD)D = Y; in particular, ifY is closed, then YDD = Y.

Proof, (i) Since (by Lemma A.6)

(A.9) YD = [-Int(7)r,

the dual cone YD is empty, if and only if Int(F) = X, i.e. Y is im-
proper.

(ii) By (A.9), (Ϋ)D = [-Int(Y|]c; since Int(7) - Int(Y) (by Propo-
sition A.5 (v)), therefore YD = {Y)D.

(iii) By (A.9), (YD)C = -Int(F), and so

(A. 10) [-(YD)]C = lnt(Y).

Then, by Lemma A.6, (YD)D = Cl[-(YD)]C = Cl[Int(r)] = Y, by
(A. 10) and Proposition A. 5 (v). D

The next proposition is obvious (use Definition A.2 and Lemma
A.6).

PROPOSITION A.9. If(Xι

9 X+) and (X2, X\) are ordered vector spaces,
t: X1 -* X2 is an order isomorphism (i.e. t(X\) = Xl) and Y is an or-
der cone in X1, then t(Y) is an order cone in X2, and [t(Y)]D = t(YD).
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LEMMA A. 10. If Y\ and Y2 are order cones in (X,X+), then
C\(YX n Y2) = Ύx n Ύ2. In particular, α[Int(7i) Π Int(y2)] = Ϋ\Π 7 2 .

Proof. The inclusion Y{ n Y2 c 7i Π Γ 2 . Conversely, if y G 7i Π Γ 2 ?

then j;+X+ c yj, y+X+ C y2, by Proposition A.5 (i), and so y+X+ c
7i Π y2, which implies y G Cl(yΊ Π Γ2) (by the same Proposition A. 5

(i)). τhus?ci(r1nr2) = yiπy 2 .
Applying this identity to order cones Int(Y/), j = 1,2, we get

Cl[Int(7i) Π Int(72)] = Cl[Int(yi)] Π α[Int(r 2 )] = 7χ Π Ϋ2 (by Propo-
sition A. 5 (v)). D

COROLLARY A.I 1. IfY\, Y2 are order cones in (X,X+), then
(i)(γιnY2)

D = Yι

DuY2

D,
(ii) (Yι\jY2)

D = Y{)nY?.

Proof (i) Let Y=Yxn Y2 Then

YD = Cl[(-Y)c] (by Lemma A.6)

= ci[-(Y{ n Y2)γ = ci[(-ro n (-r2)f = a[(-Yύc u (-Y2)
c]

= ci[(-roc] u ci[(- γ2γ] = r^ u Y2

D.

(ii) Since 7^, y ^ are order cones (by Proposition A.3), we can
substitute them in (i) for Yx, y2 respectively. Then

(Y{

D Π Yξ)Ώ = (Y{

D)D U (Y?)D = y ! U Y2 (by Lemma A.8 (iii))

= ΫΓϋΫϊ = ((Y\ U y 2)Z ))D (by Lemma A.8 (iii))

and so Yf nYf = (Y\U Y2)
D, since both sets are closed order cones

with equal dual cones. D

Appendix B. A criterion for the local maximum property.

THEOREM B. 1. Let K c RN be a compact set and u be a function with
a locally bounded real Hessian on \rύ(K) and use on K. Assume that
Hess u(x) has at least one nonnegative eigenvalue for a.a. x e Int(K).
Then maxxGΛ: u <

Proof (Sketch). The result is practically contained in [7, Proof of
Theorem 4.1], but is not formulated there. Suppose, maxu\K >
maxu\dK. By [8, Lemma 4.5], there are: an affine function / on
RN

9 xo G Int(iO and ε > 0, such that (u + l)(x0) = 0, (u + /)(*) <
—ε\x - Xo\2, x G K. Letting u\(z) = (u + 1)(XQ + z), we obtain
Mi(O) = 0, U\(z) < -ε | z | 2 , for \z\ < r (where r < dist(xo>d^O)> and
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U\ e C[(B(0,r)), for some L > 0. It was shown in [7, p. 319, lines
11-24] that function U\ with these properties does not exist. (The
argument in [7] was spelled out for Cn, but the complex structure was
irrelevant there.) D

Note. The author has learned recently that L. Bungart has obtained
piecewise smooth approximations for the class of tf-plurisubharmonic
functions. See L. Bungart: Piecewise smooth approximations to q-
plurisubharmonic functions, (preprint).
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