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CONFORMAL CLUSTER SETS AND
BOUNDARY CLUSTER SETS COINCIDE

RAIMO NAKKI

The result stated in the title is proved. No restriction other than
the obvious requirement that the cluster sets be taken at a noniso-
lated boundary point is imposed on the domain where the mapping is
defined. The result is then generalized by allowing for certain excep-
tional sets on the boundary. More refined versions are established in
the special case where the domain is the open unit disk. These in-
clude the statement that one-sided cluster sets coincide with one-sided
radial cluster sets. Again, certain exceptional sets on the boundary
are allowed for. Consequences are presented in which the existence
of limits along sets on the boundary implies limits inside the domain.
Finally, generalizations to the class of homeomorphisms satisfying
the Caratheodory Prime End Theorem are indicated.

1. Introduction. In this paper we show that

(1) C(f,b) = CdD(f9b)

for a conformal mapping / of a domain D in the extended complex
plane C. Here C(f,b) denotes the cluster set of / at a boundary point
b of D, while CoD(f,b) denotes the boundary cluster set of / at b
(see §2 for definitions). We impose no restrictions on the domain D
other than the requirement that the boundary point b be non-isolated,
which is essential if Cβ£>(f,b) is to be nonempty. Thus D can be of
finite or infinite connectivity. In §3 relation (1) is generalized to

(2)

allowing for certain exceptional sets E on dD. For instance, a condi-
tion guaranteeing (2) will be given in terms of logarithmic measure.

The much studied case where D is the open unit disk B will be
considered next. Several extensions of the classical theorem of Iversen
and Tsuji [4, p. 91] will be presented in the conformal case. For
instance, we establish (2), with D = B, for any set E on dB satisfying
one of the following six conditions:

1°. E is of capacity zero.
2°. E is of linear measure zero.
3°. E is an OAD-set.
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4°. The logarithmic measure of dB - E is infinite at each point of
E near b.

5°. The radial density of dB - E is positive at each point of E
near b.

6°. The capacity density of dB - E is positive at each point of E
near b.

As an example we exhibit a set E on dB with full measure, in fact
with Hausdorff-dim(<92? - E) = 0, such that (2) holds for each point
b in dB and for each conformal mapping / of B.

In §5 relation (1) is further generalized by considering radial cluster
sets instead of full cluster sets. We show that conformal cluster sets
and radial boundary cluster sets coincide. More specifically,

(3) C(/,6) = C r a d ,^_£(/,6)

for any set E on dB satisfying one of the conditions l°-6° above.
One-sided versions of (3) will also be formulated. In §6 we observe,
furthermore, that the induced radial extension / of / satisfies

(4) C(f,b) = C(f\(Af-E),b).

Here Af denotes the set of boundary points of B at which / has a radial
limit, while E designates again an exceptional set on dB satisfying one
of the conditions l°-6° above.

As consequences of relations (l)-(4) we obtain several generaliza-
tions of a classical theorem of Lindelόf [12, p. 75] in which the exis-
tence of limits along sets on the boundary implies total limits. These
are presented in §8. Finally in §9 we formulate a topological ver-
sion of our main theorem. Namely, we show, in the case where D is
the unit disk, that (1) holds for any homeomorphism satisfying the
Caratheodory Prime End Theorem. The author would like to thank
the referee for suggesting this generalization.

2. Cluster sets and boundary cluster sets. Let / be a mapping de-
fined in a domain D in the extended complex plane C and let b be a
boundary point of D. The cluster set of / at b is defined as

u
where U ranges over all neighborhoods of b. The cluster set of / on
a nonempty set E c dD is defined as

)= \JC(f,b).
beE
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The boundary cluster set of / at b is defined as

u
where U again ranges over all neighborhoods of b. The boundary
cluster set off at b along a set F c ΘD is defined as

u

Obviously C(fb),Co])(fb) and Cf(fb) are closed sets,

CF(fb)cCdD(fb)cC(fb)

and C(fb) is always nonempty. The boundary cluster set
is nonempty if and only if b is a non-isolated boundary point of D.
It is evident that C(fb) may differ from CdD(fb) even in the case
where D is the unit disk B and / is analytic in B. A standard example
is given by

which defines a bounded analytic function in the disk B with C(f 1) =
Έ and Cdβ{f, 1) = dB. It is also easy to construct a homeomorphism
/ of B in such a fashion that CdB(f, b) is a proper subset of C(f b).
For instance, if g is a conformal mapping of B onto the open triangle
G with vertices at 0,1 and /, chosen so that the induced boundary
extension keeps the point 1 fixed, and if h is the homeomorphism of
G which in vertical direction linearly stretches G onto the square H
with vertices at 0,1,1 + / and /, then / = h o g is a homeomorphism
of B onto H such that the boundary cluster set Cosif 1) consists of
two points, 1 and 1 + /, while the cluster set C(/, 1) quite clearly is
the whole closed line segment connecting 1 to 1 + /. In this example,
therefore, Q # ( / , 1) is a proper subset of C(/, 1). On the other hand,
by a result due to Collingwood [3], [4, p. 82], there can exist no more
than countably many points b on dB for which C(f b) and Q # ( / , b)
differ, even if / is an arbitrary complex-valued function defined on B.

Our main result asserts that in the event the mapping / is conformal,
the sets C(/, b) and Cβ£>(f, b) coincide for all b, not merely in the case
where D is the unit disk B [6], but for an arbitrary domain D as well—
the trivial exceptions being, of course, the isolated points b of dD:

THEOREM 1. Let b be a non-isolated boundary point of a domain D
and let f be a conformal mapping ofD. Then

) = CdD(fb).
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Proof. Suppose, contrary to the assertion, that there is a point b' in
C(/, b) - Cdr>(f b). After applying chordal isometries, we may assume
that b and b1 are finite points. Since Q ^ ( / , b) is closed,

dist[b\CdD(f,b)]>0.

Let Bf be an open disk centered at b' such that

let V be a neighborhood of Q/>(/> ̂ ) satisfying

(5) Wnv = 0,

let C/ be a neighborhood of b for which

(6) C(/,t/nd£>-{6})cF

and let φk) be a sequence of points in D converging to b such that

]imfφk) = b'.

We may assume that fφk) e B1 for each k.

Fix a point c' in B'nf(D). For each A: choose a closed line segment
olk in 5 ' with endpoints d and /(&&). Designate by βk the component
of α^ (Ί f(D) which contains / ( ^ ) and set βk = f~ι(β'k). If βk = a'k,
then βk is a closed Jordan arc in D joining bk to c = f~ι(d). If
/?£ έ̂ α^, then /% is a line segment with an endpoint on the boundary
of f(D) and, therefore, βk is a Jordan arc in D with an accumulation
point in dD. In view of (5) and (6), any such accumulation point
must either lie in dD - U or coincide with b. In each case, βk is a
Jordan arc in D containing bk. Moreover, either βk contains the point
c or βk accumulates at {b} U (dD - U).

Let / denote the set of all numbers r on (0,1) such that S(b, r), the
circle of radius r centered at b, intersects dD. We claim that

(7)

If (7) were not true, then

f dr

J(0Λ)-J r

and, consequently, the family of circles centered at b and lying in D
would have infinite modulus (that is, zero extremal length). Thus /
would have a limit at b. (See, for example, Grόtzsch [8] and Jurchescu
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[9].) But this means that C(f9b) would be degenerate and would
thereby coincide with Q £>(/,£). We conclude that (7) must hold.

Next consider the family Γ^ of open arcs joining βk to UΠdD - {b}
in D. If b is an accumulation point of β^ then the minorization
principle of the modulus in combination with (7) evidently yields
mod(Γfc) = oo. If βk contains c for arbitrarily large k, condition
(7) enables us to fix an index ko such that Γ^ has arbitrarily large
modulus, say

(8) mod(Γ^) > AT,

where M designates the modulus of the family P of arcs joining Bf

to V in C. Observe that M < oo by virtue of (5). lϊ βk has an
accumulation point in dD - £/, then again, as above, we can fix an
index ko such that (8) holds. As pointed out earlier, one of these three
possibilities must be true of β^. We conclude that (8) is satisfied for
some k0.

On the other hand, for each k the family f(Γk) is contained in P .
We infer, in particular, that

(9) mod[/(Γ^)] < M.

But since mod(Γ^) = mod[/(Γ^)] by virtue of the conformal in-
variance of the modulus, inequalities (8) and (9) yield the desired
contradiction. The proof is complete.

3. Relation C(f,b) = Q £>_£•(/,&). Theorem 1 is subject to various
generalizations. One such generalization is obtained by permitting
exceptional sets E on dD and looking for conditions under which

An examination of the proof of Theorem 1 suggests the introduction
of the following concept to describe the denseness of a set A relative
to a domain D.

Let A be a nonempty set on the boundary of a domain D and let
z € 3D, z Φ oo. We will write

mod/) (A, z) = oo

if, for each r > 0,

(10) liminf mod[Δμ,F: D)] = oo,

where Δ(A9 F: D) designates the family of all open arcs in D having
one endpoint in A and the other in F and where the infimum is ex-
tended over all continua F in D meeting the circles S(z9 r) and S(z91).
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If z = oo, the above concept is defined via an inversion. Condition
(10) is equivalent to the requirement that, for each r > 0,

(11) liminfmod[Δ(,4n£(z,r),jF :D)] = oo.

Here B(z,r) denotes the open disk of radius r centered at z and F is
as before.

In the special case where A is compact and D is the whole space,
condition (10) was first used by Martio [10] to describe the thickness
of a set A at a point z.

THEOREM 2. Let b be a non-isolated boundary point of a domain D
and let E be a set on dD such that modr>(dD - E, z) = oo for each
point z in Eu {b} near b. Next let f be a conformal mapping ofD.
Then

Proof. The proof of Theorem 1 requires only cosmetic changes. Let
C/o be a neighborhood of b such that modr>(dD - E, z) = oo for each
z in Uo n (E U {b}). Replace dD by dD - E in the proof of Theorem
1, choose the neighborhood U in (6) to be a subset of UQ and let
otherwise bf, bk, c, c;, o!k, β'k and βk be as in the proof of Theorem 1. In
the present situation β^ is a Jordan arc in D containing b^, and, either
βk contains c or βk accumulates at {b}U(UnE)U(dD- U). We let I \
denote the family of open arcs joining βktoUΠ (dD - E) - {b} in D
and use the mod/)-hypothesis, in conjunction with (11), to conclude
that the modulus estimate (8) holds. Since (9) remains valid, the
assertion follows.

A more concrete condition guaranteeing the conclusion of Theorem
2 will be provided by our next result:

THEOREM 3. Let f be a conformal mapping of a domain D and let
b Φ oo be a non-isolated boundary point ofD. Next let E be a set on
dD such that, for each z in Eu {b} near b, the set Jz of all numbers
r on (0,1) for which S(z, r) meets dD and omits E is measurable and
satisfies

(12)

Then
= C9D-E(f,b).
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Proof. Fix z in E u {b} satisfying (12). We show that

modr>(dD - Eyz) = oo.

Fix r in (0,1) and M > 0. By virtue of (12), we may choose t on (0, r)
so that

(13) / —>2πM.
Jj2n(t,r) u

Let F be a continuum in D which meets both S(z, r) and S(z, ί), let Γ
be the family of open arcs in D that join dD - E to F, and let p be an
admissible density for Γ. For u in Jz, the circle Su = *S(z, u) contains
an arc γu which belongs to Γ. Thus, by Schwarz's inequality,

1 < ( / P\dz\\ < 2πu I p2 \dz\,
\Jγu / Jsu

and hence

This inequality is true for all u in Jz n (ί, r). Integrating over / z n (ί, r)
yields, in light of (13),

(14) ί p2dxdy> ί (f p2\dz\) du>M.
Jc Jjzn(t,r) \J )

Since p was an arbitrary density for Γ, (14) gives mod(Γ) > M. We
conclude that modj)(dD - E,z) = oo.

Since modϋ(dD — E,z) = oo for each point z in EU {&} near b, the
assertion follows from Theorem 2.

4. One-sided cluster sets in the case D = B. In this section we
present a refinement of Theorem 1 in the special case where D is the
open unit disk B.

Let / be a mapping defined in B and let b be a point in 9 5 . The
left-hand cluster set of / at 6 is defined as

: /(ft*) —• 6' for some sequence

in B with 6^ —> ό,arg6^ > argδ}.

The right-hand cluster set Cjι(f9b) of / at b is defined analogously.
The left-hand boundary cluster set of / at b is defined as

u
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where U ranges over all neighborhoods of b and where U- = {z e
U: argz > arg&}. The right-hand boundary cluster set CRidB(fb) is
defined analogously. The left-hand boundary cluster set off at b along
a set F c dB is defined as

CLj(f,b) = f)C(fU-ΠF-{b}).
u

The corresponding right-hand boundary cluster set CR^{f, b) along F
is defined in a similar fashion.

Obviously,

(15) CLj?(f,b) c CLMf>*>) c CL(f,b).

REMARK 1. In the theory of prime ends a different terminology
is frequently used when referring to some of the cluster sets defined
above. (For pertinent notions of the prime end theory, consult [2], [4,
Chapter 9] and [13].) To wit, let / be a conformal mapping of B, let
b be a point of dB and let & be the prime end of f(B) corresponding
to b under / in the sense of the Caratheodory Prime End Theorem.
Denote by l(βP) the impression of &. Then

The left-hand cluster set Cχ(/,fc) is sometimes called the left wing of
J (^) , while CR(f,b) is the right wing of J ( ^ ) . Next let π(&>) denote
the set of principal points of / ( ^ ) , that is, π{&) is the set of limit
points of convergent chains in ^ . Then π{&) is the intersection of
the left and right wings of

One may also express π(^) as

(16) π(^)

where Cmά(fb) designates the cluster set of / at b taken along the
radius of B terminating at b. The points in I(&>) - π ( ^ ) , if they exist,
are called subsidiary points of / ( ^ ) .

Collingwood has shown, for an arbitrary complex-valued function
/ defined on B, that

(17) CL(f,b) = CLίβB(f,b),

except perhaps for a countable set of points b on dB. Even more
surprisingly,

(18) CL(f,b) = CR(f,b)
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for such an /, except perhaps for a countable set of points b on dB,
[3], [4, p. 82]. The exceptional points b in the statement (18) cannot,
in general, be eliminated, even if the condition of regularity or con-
formality on / were to be imposed. Examples manifesting this are
not difficult to construct. (For instance, map B conformally onto a
suitable comb-domain having a countable number of prime ends of
the second kind. More elaborate examples may be found in [5].) The
relation (17), on the other hand, although sharp even for bounded an-
alytic functions [6], renders itself to considerable improvement in the
conformal case: no exceptional points b can exist. We prove, in fact,
the following extension of the Iversen-Tsuji Theorem [4, p. 91]:

THEOREM 4. Let b be a boundary point of the unit disk B and let E
be a set on ΘB such that modβ(dB - E, z) = oo for each point z in E
near b. Next let f be a conformal mapping ofB. Then

Proof. We show that CL(f,b) = CLβB-E{f,b). By virtue of (15),
it is sufficient to verify the inclusion Q,(/, &) c CLβB-E{f>b). Sup-
pose, contrary to the assertion, that there is a point b' in Q,(/,&) -
CL,dB-ε(f,b). We may assume that b = i and b1 Φ oo. Since
CL,dB-E(f,b) is closed,

digt{V,CLfdB-E(f,b))>0

Let B' be an open disk centered at b1 such that

let V be a neighborhood of CL,dB-ε(f>b) satisfying

(19) BfΠV = 0,

and let U be a neighborhood of b for which

(20) C(f,U.n(dB-E)-{b})cK

where U- — {z e U: argz > argδ}. Next let {b^) be a sequence of
points in 2?_ = {z e B: Re z < 0} converging to b so that

where bf

k = /(&&). We may assume that b'k e B' for each k. Finally,
let & be the prime end of D = f(B) corresponding to b under / in the
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sense of the Caratheodory Prime End Theorem. We divide the proof
into two parts according to whether or not b1 is a principal point of
the impression Iψ6).

Assume first that bf is a principal point of / ( ^ ) . Thus b' is the limit
of a chain of cross-cuts qk of D belonging to & with

(21) dia(ft)->0.

It is a classical result, perhaps due to Tsuji, that each qk in (21) can
be chosen to be an image under / of a circular arc BnS(b, rk), where
rk —• 0. For each k, let

Dk=f[BnB(b,rk)]y

D-=f[B-ΠB(b,rk)].

Passing to subsequences and relabeling, we may assume that qk lies
in B' and that b'k lies in D^ for each k. Join b'k to qk by an arc ak

which, except for the terminal point, lies in D^. We can extend ak

into an end-cut Ak of D by adding to ak a portion of qk which lies on
the arc f[B- n S(b,rk)]. The pre-image f~ι(Ak) is an end-cut of B
from bk and lies, except for the terminal point, ak, in B- nB(b,rk).
Clearly ak —> b and akφb for each k. Since, by Lindelόf s theorem,
an endpoint of qk is the radial limit of / at ak and since qk lies in 2?',
it follows from (19) that ak must lie in E for each k.

Now consider the family Γk of open arcs in B with endpoints in
f~ι(Ak) and U- Π (dB - E) - {b}. Since ak, the terminal point of
f~ι(Ak), lies in £ and since ak Φ b, our hypotheses imply that

(22) mod(Γfc) = oo

for each k. On the other hand, the arcs in the image family Γ'̂  join
Ak to C(/, U- n {dB -E)- {b}) in D. The arc Ak lies in D~ U qk, but
not necessarily in B*. Nevertheless, since qk lies in B' it follows from
(19) and (20) that no arc in Γ^ can avoid qk. We combine (21) with
the minorization principle for the extremal length and infer that

(23) mod(Γ'fc) -> 0

as k —> oo. But conditions (22) and (23) contradict the conformal
invariance of the extremal length.

It remains to derive a contradiction also in the case where b' is
a subsidiary point of / ( ^ ) . Choose again a decreasing sequence of
positive numbers rk —• 0 such that the circular arcs B n S(b,rk) are
mapped by / onto disjoint cross-cuts ck of Z) with the property that

(24) diafak) - 0.
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Obviously the cross-cuts ck form a chain in 3°. However, they do
not converge to b\ because b1 was a subsidiary point of / ( ^ ) . Let
Dk,Dk and B- be as earlier in the proof. Again we may assume that
b'k lies in Dk for each k. Join b'k to b1 by a line segment and denote
by bk the first point at which the segment, starting from bf

k, meets
dDk. Obviously bk -> 6'. The point bk cannot lie in ck for large k,
because otherwise, in view of (24), b1 would be a principal point of
1\3ΰ). Neither can bk, for large k, lie on the image under / of the
radius of B terminating at b, because otherwise, in view of (16), bf

would again be a principal point of I{3d). Thus bk must lie on 3D for
all sufficiently large k. We may assume this to be the case for all k.
It is clear, furthermore, that bk Φ bf for each k, because otherwise b1

would be accessible relative to the prime end & and again b1 would be
a principal point of I{&). Denote by Lk the open line segment with
endpoints b'k and bk.

By a classical theorem of Koebe, f~ι has a limit ak at bk along
the line segment Lk. Since f~ι(Dk) -> b, it follows that ak -> b. By
Lindelόf s theorem, bk is the radial limit of / at ak. Since bk —• b' and
since the set π{&) = C r a d(/,6) of principal points of I(&) is closed
and lies, therefore, at a positive distance from b', it follows that ak Φ b
for all k sufficiently large. We may assume that akφb for all k. Since
b%, the radial limit of / at ak9 lies in B', it follows from (19) and (20)
that ak must be located in E.

Now consider the family Δ^ of open arcs in B with endpoints in
f~ι(Lk) and t/_ n {dB - E) - {b}. Since ak, the terminal point of
f~ι(Lk), lies in E and since α^ ^ b, our hypotheses imply that

(25) mod(Δ^) = oc

for each k. Since Lk is situated in B' and since dia(L^) -» 0, it follows
from (19), (20) and the minorization principle for the extremal length
that

(26) mod(Δ^) -> 0

as k ~> oc, where Δ^ = f(Ak). Again, (25) and (26) contradict the
conformal invariance of the extremal length. The proof is complete.

5 Radial cluster sets and radial boundary cluster sets. We next fur-
ther generalize Theorem 1 in the case D = B by restricting the ap-
proach of / to the boundary.

Let / be a mapping of B, let b e dB and let

0<t< 1}
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be the radius in B terminating at b. The radial cluster set offatb is
defined as

Cnά(f,b) = C(f\pb9b).

The radial cluster set of / on a nonempty set E c dB is defined as

,E) = U crad(/,z>).
beE

The radial boundary cluster set offatb is defined as

CκάMfb) = f)cΐ?ιd(fundB-{b}),
u

where U ranges over all neighborhoods of b. The left-hand radial
boundary cluster set of / at b is defined as

u
where U is as above and where again U- = {z e U: argz > arg£}.
The right-hand radial boundary cluster set CR9Ϊa^dB{f,b) is defined
analogously. The left-hand radial boundary cluster set offatb along
a set F c dB is defined as

U

The corresponding right-hand radial boundary cluster setCRyX2L^F{f, b)
along F is defined in a similar fashion.

Obviously

C^vBάjriAb) C CL9nάtβB(f9b) C CLβB{f>b) C CL(/,ft).

THEOREM 5. Lei δ ^ β boundary point of the unit disk B and let E
be a set on dB such that modβ(dB - E, z) = oo for each point z in E
near b. Next let f be a conformal mapping ofB. Then

Cκ(f,b) =

and consequently,

Proof We show that CL(f,b) = CLMB_E{f,b). Replace
CL,dB-E(f,b) and C(f U- Π (dB - E) - {/>}), respectively, by

) and Crad(/, U- Π (dB - E) - {b}) in the proof of
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Theorem 4. Then proceed word by word and obtain the modulus es-
timate (22). Consider an arc γ in Γ^. Either f(γ) is non-rectifiable
or / has a limit along γ at the terminal point of γ. In the latter case,
by virtue of Lindelδf s theorem, this limit is also the radial limit of
/ and belongs, therefore, to C r a d(/, £/_ Π (dB - E) - {b}). Since the
non-rectifiable paths do not effect the modulus, we conclude, as in the
proof of Theorem 4, that (23) holds. This establishes the theorem in
the case where b' is a principal point of / ( ^ ) .

In the remaining case b' is a subsidiary point of I(&). The proof of
Theorem 4 applies verbatim up to the modulus condition (25), while,
in order to deduce the contradicting inequality (26), the observation
must again be made that the arcs in Ar

k which do not have endpoints
in Cra(i(/, U- Π (dB -E)- {b}) are non-rectifiable and, consequently,
they do not influence the modulus of Δ^.

6. Radial extension and cluster sets. Let / be a conformal mapping
of B and let Af be the set of points ondB where / has a radial limit,
that is, where Cm(^(f b) degenerates to a single point. We let / denote
the radial extension of / to B u Af. Thus

/ W ifxeB,

,_>i/(ίjc) if xeAf.

By a classical theorem of Beurling, dB - Af is of capacity zero.

Given a point b on dB, the left-hand cluster set Cj\f\Af9 b) of the

boundary mapping f\Af at b and the corresponding right-hand cluster

set CR(f\Af,b) are defined in an obvious manner, as are the cluster

sets CL(f\F, b) and CR(f\F, b) taken along a subset F of Af.

THEOREM 6. Let b be a boundary point of the unit disk B and let E
be a set on dB such that modβ(dB - E,z) = oo for each point z in E
near b. Next let f be a conformal mapping ofB and let f be the radial
extension off to Bu Af. Then

v J \

) = CL(f\(Af-E),b),

) = CR(f\(Af-E),b),

and consequently,

,b) = C(f\(Af-E)9b).

Proof. Every arc in B with an endpoint in d B - Af is mapped by
/ onto a non-rectifiable arc. The modulus of the family of all such
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arcs is, therefore, equal to zero. It follows that modB(Af - E, z) — oc
for each z in E near b, because by hypothesis, modβidB - E, z) = oo
for each such z. If we now replace CLiY2iάidB_E(fb) and
Qad(/> tf- n (95 - £) - {b}) respectively by c(f\(Af - E)9b) and
C(/, £/_ Π (Af - E) - {b}) in the proof of Theorem 5, the proof ap-
plies verbatim.

7. Special cases. In Theorems 4-6, the exceptional set E was as-
sumed to satisfy mod#(#l? - E, z) = oc for all z in E near 6. What
kind of sets E satisfy this condition? Several answers will be given in
this section. We recall a number of pertinent notions.

Given a set A and a point z in C, let Jz denote the set of all numbers
r on (0,1) for which the circle S(z, r) intersects A. Assume that Jz is
measurable. If

drf
LL

we write
log -meas(yl, z) = oc.

The upper radial density of A at z is defined as

rad dens(y4, z) = lim sup

where / stands for linear measure. The upper capacity density of A at
z is defined as

(27) cap dens(^4, z) = lim sup mod(Γr),

where Tr = A(A n 5(z, r), 5(z, 2r): C).
We also recall a concept due to Ahlfors and Beurling [1]. A set A

in C is said to be an OA£>-set (or an NED-set) if

(28) mod[Δ(Fi,F2: C)] = mod[A(FuF2',C - A)]

for each pair of continua F\ and F2 in the complement of A. For a
compact A, this is precisely the condition required to guarantee that
every conformal mapping of C — A admits an extension to a conformal
mapping of C, [1].

THEOREM 7. Let b be a boundary point of the unit disk B and let E
be a set on dB satisfying one of the following six conditions:

1°. E is of capacity zero.
2°. E is of linear measure zero.
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3°. E is an OAD-set.
4°. log - meas(<9i? - E, z) = oc for each z in E near b.
5°. raddens(<9i? - E,z)> 0 for each z in E near b.
6°. capdens(<91? — E,z)> Ofor each z in E near b.

Next let f bea conformal mapping ofB and let f be the radial extension
offtoBuAf. Then

Cdfb) = CLβB.E{fb) = CLMB_E{fb) = CL(f\(Af-E)9b),

CR(f b) = CRβB.E{f b) = CRMB_E{f b) = CR(f\(Af - E), ft),

and consequently,

C(f, b) = CdB-E(f, b) = C r a d ,^_ £ (/ ? b) = /

Proof. In view of Theorems 4-6, it is sufficient to verify that each
of the conditions l°-6° implies moάB(dB - E, z) = oc for every z in
E near ft.

It is classical that 1° implies 2°, whereas it is obvious that 2° implies
4°. We next show that 5° implies 4°. For this, let raddens(<9#-£, z) =
δ > 0 and let Jz denote the set of all r on (0,1) for which S(z,r)
intersects dB-E. Choose 1 > r{ > r2 > so that η —> 0 and so that

for all j . Then

for all j \ which implies

IT f. 1 1 CΛl r r i

and 4° follows.
To complete the proof of Theorem 7, we verify that each of the

conditions 3°, 4° and 6° implies moάB(dB — E,z) for every z in E
near ft.

Assume first 3°. Under this assumption, in fact, modB(dB-E, z) =
oo for each z on dB. Indeed, if F is a continuum in B and if i7*
denotes its image under reflection in dB, then the OΛD-condition (28)
in conjunction with the minorization principle for the extremal length
implies _ _

mod[Δ(F, F*: C)] - mod[Δ(i% F*: C - E)]

<mod[A(F,ΘB-E: B)].
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From this we infer that, given z e dB and r G (0,1),

lim inf mod[Δ(F, dB - E: B)] = oo,

where the infimum is taken over all continua F in B meeting S(z,r)
and S(z, t). Thus modB(dB - F, z) = oo for each z in dB.

Next, assume 4°. Standard properties of the extremal length yield

mod[Δ(d B -E,F:B)]>- [ —
πJJ2Π(t,r) U

for each continuum F in B meeting S(z, r) and S(z, t), 0 < / < r < 1,
where Jz is as earlier in the proof. Thus modβ(dB - F, z) = oo.

Finally, assume 6°. A technical modification in the reasoning in
[11, p. 771] shows that mod^(dB - E,z) = oo. If F is a continuum
in B, then an argument of Gehring in [7] gives

mod[Δ(d£ - E, F: B)] = mod[Δ(#5 - £, F : B)]

while a standard symmetry principle for the modulus yields

mod[Δ(d£ -E,F: C)] < 2 mod[Δ(<95 - J?, F

Since mod^(55 - E9z) = oo, we infer that mod^(55 — F, z) = oo.
We next present an example which shows that the exceptional set

E in Theorem 7 can be measure-theoretically large:

THEOREM 8. There exists a Gδ-set E on dB with

Hausdorff-dim{dB - E) = 0

such that

CL(f, b) = CLJdB-E{f, b) = C w ^ ( / , b) = CL(f\(Af - E\ b),

CR(f, b) = CRj>B-E(f, b) = CRMB-E(f, b) = CR(f\(Af - E), b),

and hence such that

C(f b) = CdB-E{f, b) = C r a d,^_^(/, b) = C(f\(Af - E), b)

for each point b on dB and for each conformal mapping f ofB.

Proof. Let Ao be a compact Cantor-type set on dB Π {z: Im z < 0}
of zero Hausdorff dimension and of positive capacity. (For a con-
struction of such a set, see e.g. Wallin [14].) Next let
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where hk(eιΘ) = eι2~kθ. Then JF0 is a compact set on dB of zero
HausdorfF dimension. Moreover, the lower capacity density of Fo at
1, cap dens(Fo, 1), which is defined by replacing limsup by liminf in
(27), is positive. Next let F designate the union of the images of Fo

under all rational rotations of dB. Then F is an iv se t on dB of zero
Hausdorff dimension. It is not difficult to show that cap dens(i% z) > 0
for each z = eiθ (not only for rational θ). The set E — dB - F is a
G^-set with Hausdorff-dim(<9£ -E) = 0 and capdens(<9£ -E,z)>0
for each z in dB. Thus the assertions follow from Theorem 7.

8. Limits and boundary limits. A classical theorem of Lindelof as-
serts that if a bounded analytic function of the unit disk B is continu-
ous up to the boundary except for one point b and if the function has
a limit at b along the boundary, then it has the same limit at b through
B [12, p. 75]. We next record several extensions of this result in the
conformal case. The first two concern an arbitrary domain Z), while
the others deal with the unit disk B. The results are consequences of
Theorems 1, 2, 4, 6, 7 and 8.

COROLLARY 1. Let b be a non-isolated boundary point of a domain
D and let f be a conformal mapping ofD admitting an extension to a
continuous mapping f ofD - {b}. Then f has a limit at b if and only
if the boundary mapping f\{dD - {b}) has a limit at b.

COROLLARY 2. Let b be a non-isolated boundary point of a domain
D and let E be a set on dD such that modo(dD - E, z) = oo for each z
in E u {b} near b. Next let f be a conformal mapping ofD admitting
an extension to a continuous mapping f ofD - E. Then f has a limit
at b if and only if the boundary mapping f\(dD - E) has a limit at b.

COROLLARY 3. Let b be a boundary point of the unit disk B, let
E be a set on dB and let f be a conformal mapping of B admit-
ting an extension to a continuous mapping f of~B - E. Suppose that
mod#(<92? - E, z) = oo for each z in E near b, or that E satisfies one
of the conditions l°-6° in Theorem 6. Then f has a left-hand (right-
hand) limit at b if and only if the boundary mapping f\(dB - E) has
a left-hand (right-hand) limit at b. Consequently, f has a limit at b if
and only if f\(dB - E) has a limit at b.

COROLLARY 4. Let b be a boundary point of the unit disk B, let E
be a set on dB, let f be a conformal mapping of B and let f be the
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radial extension off to BΌ Af. Suppose that modB(dB - E, z) = oo
for each z in E near b, or that E satisfies one of the conditions l°-6° in
Theorem 6. Then f has a left-hand (right-hand) limit at b if and only
if f\(Af - E) has a left-hand (right-hand) limit at b. Consequently, f
has a limit at b if and only if f\(Af - E) has a limit at b.

COROLLARY 5. There exists a G^-set E on dB with

Hausdorff-dim(dB -E) = 0

and with the following property: Given any point b on dB and any
conformal mapping f of Bf f has a left-hand (right-hand) limit at
b if and only if f\(Af - E) has a left-hand (right-hand) limit at b.
Consequently, f has a limit at b if and only if f\(Af - E) has a limit
at b.

9. Cluster sets and Caratheodory homeomorphisms. An arbitrary
homeomorphism does not satisfy any of the theorems in the present
paper. In this final section, however, we exhibit a class of homeomor-
phisms of the unit disk B for which the main theorem of this paper
still holds.

It is evident that CdB(h, b) = C(h, b) for each b in dB if h is a home-
omorphism mapping B onto a domain whose boundary degenerates
to a single point. Next let %* denote the class of homeomorphisms
which map B onto domains with non-degenerate boundaries. Instead
of the ordinary boundary of such an image domain Z>, consider the
prime end boundary d*D of D obtained by adding to D the prime
ends of D [2], [3], [13]. We say that a homeomorphism h in & is
a Caratheodory homeomorphism if it fulfills the Caratheodory Prime
End Theorem; that is, h can be extended to a homeomorphism be-
tween B and the prime end compactification Dud*D of D = h(B).
(Such homeomorphisms h were investigated by Zoric in [15].)

THEOREM 9. Let b be a boundary point of the unit disk B and let h
be a Caratheodory homeomorphism ofB. Then

CL(K b) = CUdB(K b\ CR(K b) = CRfdB(h9 b),

and consequently,

Proof We show that CL(h, b) = CL$B(h, b). It suffices to verify the
inclusion CL(h, b) c CLidB(h, b). Let ̂  be the prime end of D = h(B)
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corresponding to b under h. Choose an arc γ in 2?, with an endpoint
at b, lying to the left of the radius from Z>, such that

(29) Cγ(h,b) = CL(h,b).

Here Cγ(h9b) designates the cluster set of h at b taken along γ. The
existence of such an arc y, if not well known, can be proved as in [4,
Theorem 4.6] with only trifling changes of detail, for any function h
(whether it is continuous or not). In the terminology of Ursell and
Young [13], the path h(γ) approaches the left wing of the impression
of &. Since h satisfies the Caratheodory Prime End Theorem, (29)
is valid, with γ replaced by /?, for any arc β in B which terminates
at b and lies between γ and dB (to the left of the corresponding ra-
dius). It follows, for any neighborhood U of b, that the cluster set
Cι(h,b) is contained in the closure of C(h9 U- D dB - {&}), where
U- = {z G U: argz > arg&}. This means that C^(h,b) is contained
in CLββ{h,b), as asserted.
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