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THE MOD 2 EQUIVARIANT COHOMOLOGY ALGEBRAS
OF CONFIGURATION SPACES

NGUYEN H. V. HUNG

Dedicated to my mother

The mod 2 equivariant cohomology algebras of configuration spaces
are determined by means of the Dickson characteristic classes, which
are derived from the modular invariants of the general linear groups
GL(« , Z2) and closely related to the Stiefel-Whitney classes.

Introduction. Let us consider the configuration space F(Rq, m) =
{(x\, . . . , xm): Xi e Rq , Xi Φ Xj if / Φ j , 1 < /, j < m} as a free
6 m -space, where the action of the symmetric group &m of degree m
is given by permutations of the factors. As is well known, the limit of
the spaces of orbits

F(R°° , m)l&m = Urn F(Rq , m)/em

Q

becomes a classifying space of &m . Meanwhile the limit

, oc)/6oo Zp) = lim H*(F(Rq , m)/em Zp)
m

is equipped with the Hopf algebra structure introduced essentially by
M. Nakaoka [12; §2] for 1 < q < oc. Here Zp denotes the prime field
of p elements.

Let

Jodά(q) = {(ho, . . . ? hn.{)φ0\ o 0 , ^ € Z + , ho + - + hn-ι <q,

there exists j such that hj is odd}

for 1 < q < oo. Then, in [13], [15] for each H = (Λo, . . . , ΛΛ»0 G
^odd(°°) w e have introduced the universal Dickson characteristic class

WH e //*(6oo Z2) = Hm / / * ( β w z 2)

of degree dim(PF//) = Σ"=o h ^ n - 2 5). Here we use the name of
L. E. Dickson because these classes are related to his modular invariant
theory as seen in [15]. We have proved the following.
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THEOREM A [13; 3.4], [15; 4.10]. As algebras we have

#*(©oo Z2) - Z2[WH H e Joάά(oc)].

A direct consequence of this theorem is the determination of the al-
gebra H*(&m Z2) for every m by means of the well-known Steenrod
epimorphism i/*(6oo Z2) —• H*(&m Z 2 ) . Nakaoka [12], of course,
computed i/*(6oo ^2) a s a Hopf algebra. Our result is a new de-
scription of the generators in the framework of the invariant theory.

The spaces F(Rq , m)/&m have been studied by many authors (cf.
E. Fadell-L. Neuwirth [4], J. P. May [9], G. Segal [19], D. B. Fuks [5],
F. Cohen [2], Huynh Mύi [7]) because of their deep relations to the
symmetric groups, the iterated loop spaces and the homotopy of the
spheres. In particular, F. R. Cohen ([2], p. 226-231, 237-243) gave
a map θ: F(Rq, oc)/6oo —> Ω%Sq which induces an isomorphism in
homology as Hopf algebras. Moreover, Huynh Mύi in [7; 10.8] has
computed the modules H*(F(Rq , m)/&m Zp) by use of H. Cartan's
works on H*(K(Z9 q) Zp) and the classical Steenrod decomposition
theorem.

In the present paper, we shall determine the algebras

H*(F(R«,m)/βm;Zp)

for p = 2 by means of Theorem A. For p > 2, these algebras will be
studied in a subsequent paper by means of our result on the algebra
//*(6oo; Zp) (see [16, 16b for our result with p > 2, and 16c]). So
from now on, the coefficient ring is always assumed to be Z2.

According to Huynh Mύi [7; 10.8], the canonical inclusion i(F, q):
F{Rq , oc)/6oo -+ F(R°°, oc)/6oo induces the epimorphism

i*(F, q): JΓ(6oo) = H*(F(R°° , oc)/6oo) -> H*(F(R« ,

As we shall see later, for H e

(B) Γ(F

Let us simply denote i*(F, q)WH by WH. Now we can state the
main result of this paper as follows.

THEOREM C. AS algebras we get for 1 < q < 00

jy*(F(R*,oo)/6oo)

= Z2[WH; H e HH)
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Here

h(q, H) = min{h e N 2h(h0 + + ΛΛ_i) > q)

For # = 2, this result was obtained by D. B. Fuks [5] and indepen-
dently by G. Segal (see E. Brieskorn [1]). A result of this sort can also
quickly be derived from [21], as the referee notes at the end of this
introduction. However, it should be noted that the brief form [14]
of this paper appeared exactly at the same time as [21]. Furthermore,
our result which was derived from the invariant theory is much useful,
for instance, in computing the action of the Steenrod algebra on the
cohomology of configuration spaces, because it allows us to avoid the
Nishida relations. (It is shown in [16c] and our subsequent paper.)

Again, by the Steenrod decomposition theorem we have the
epimorphism H*(F(R<*, oo)/6oo) -> H*(F(R^, m)/βm) (see
Huynh Mύi [7; 3.2 and 10.8]). From this we determine the algebras
H*(F(Rq, m)/&m) as an application of Theorem C.

We shall define the wreath product M(q, ή) of projective spaces
and imbed it in the space F(Rg , 2n)/&2

n. As a consequence M(oo, ή)
— lim M(q, ή) is a classifying space of the Sylow 2-subgroup 62^2

of the group 6 2 " Naturally we have the commutative diagram of
restriction homomorphisms

H*{M(q,n)).

By means of Dickson's and Huynh Mύi's invariant theories we shall
prove

THEOREM D. The restriction H*(F(R<*, 2n)/er) -> H*{M{q, n))
is a monomorphism.

This is the main step in proving assertion (B) and implying Theorem
C from Theorem A.

The paper is divided into four sections. In § 1 we define the manifold
M(q, n) and the embedding i(q 9 n): M(q9 n) -* F(E? 9 2n)/β2».
Section 2 deals with the cohomology of M(q, ή) following Steenrod's
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theory on cohomology of wreath products of finite groups. Particu-
larly, we get a geometrical significance of Huynh Mύi's invariants by
certain submanifolds of M(g, n). We prove Theorem D in §3 and
Theorem C in §4.

The main results of this paper were announced in [14].
It is a pleasure for me to acknowledge here my deep gratitude to

Professor Huynh Mϋi, from whom I have received an inspiring guid-
ance and a generous help in the proof as well as in the description of
the results.

A comment on Theorem C.
R. Wellington [21] computes PH*(Ωg

0S«). Let χt = β/[l]*[-2],
/ > 0, and define Newton polynomials fa by /i = x\, and for
k > 1, fa = kxk + Σti χifk-i •

Let / = (i\, . . . , /fc) be admissible, that is, 1 < i\ < iι < <
ik < q. / i s said to be odd if some ij is odd. Let fi = Qj(fa), with
/ = (/ ? ik)m Wellington shows that {fr: I is admissible and odd}
forms a basis for PH+(ΩlS«).

Let {/*} be the dual basis of QH*(Ωg

0Sη .

THEOREM. One can lift the elements ff to /f*(Ω$S^), in such a
way that

where Θ(I) is the smallest integer 2m such that i^2m > q - 1.

Proof. Let ξ: H*(Qq

0S*) -+ i7*(Ω<^) be the Verschiebung or
squareroot map, as in [21, p. 26]. Then [21], Lemma 3.5 gives

ξ(Xu) = Xi, ζ(Xi) = 0
If / is odd; and ξ(ab) = ξ(a)ξ{b). Given fi, let y be the sum

of monomials in the Xi gotten by multiplying all the subscripts by

2m-i τ h u s ξm-\y _ fJm j n his Lemma 3.5, Wellington shows that
there is no z with ξm(z) = fι, and the result follows.

1. The wreath products of projective spaces and the configuration
spaces. Let Sq, 0 < q < oo, denote the unit sphere in the Euclid
space Rq+ι with the base point

• = ( 1 , 0 , . . . , 0 ) .

We have the canonical base point preserving embeddings
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Set

(5° ° ,*)=

Let the cyclic group E of order 2 act on Sq by the antipodal map.
We define the projective space Fq, 0 < q < oc, by putting

Ϋp = Sq/E for 0 < q < oo, P°° = lim P*.
Q

The image of the base point * of Sq under the canonical projection
Sq -+ Ψq is taken to be that of Fq .

Motivated by the Steenrod theory on cohomology of wreath prod-
ucts of finite groups (see Steenrod [20; VIII.3]), we have

1.1. DEFINITION, (i) Let K be a topological space with the base
point * . Let the group E did on K x K by permutations of the fac-
tors. Then the quotient space K2 x Sq , where E operates diagonally
on K2 x Sq, is called the wreath product of K by P^ and denoted
by K fψq . The point [ (* ,* ,*)] is considered as the base point of
KfFq.

Obviously, the canonical projection K j Ϋq —> Ψq is a splitting (i.e.
having a cross section) fibre bundle with fibre K x K.

(ii) Let q be a natural number or oc. We define the n-iterated
wreath product M(q, ή) of projective spaces by induction as follows.

M(q, 0) = {*} , the space consisting of exactly one point,

M(q, n) = M{q, n- 1) ί Ψq~ι =Ϋq~ι f... ί Ψq~ι (n times).

Evidently, M(q 9 n) admits a natural structure of real analytic man-
ifold. It is compact if q is finite. When q < q', we have the nat-
ural embedding M(q, n) c M(q', ή) constructed via the inclusion
Sq c Sq .

We are going to describe M(q, n) by the other way, which seems
to be more useful later. Set

M(q , 0) - {*} , M(q , n) = M(q, n - I ) 2 x S*'1.

The action of 62« 2

 = E f -- - f E (n times), the ^-iterated wreath

product of E, on M(q, n) will be defined by induction. Let the

group 62o 2 = 1 act trivially on M(q , 0). Suppose that we are given

the action of &2«~ι 2 o n ^ ( # > n ~ -0 > a n ( ^ ^ e n ^ a ^ °^ ®2",2 —

62«-i 2 f E o n ^ ( ^ 5 w) is defined as follows. Let x, y e M(q, n-l),



256 NGUYEN H. V. HUNG

zeS«~l

9 t h e n (g,h)(x,y, z) = (gx, hy, z) for (g, h) e &\n^^ c

Θ2n-ι 2 f E = &2n 2 , t(x, y, z) = (y, x , -z) for ί is the generator

of £ c 62«-i 2 / £ . Notice that this is a free action. Further, we have

To compute the fundamental group of M(q, n), we need

1.2. DEFINITION. Let G be a group. By the mod 2 wreath product
G J2 Z of G by Z we mean the semi-direct product (GxG)xZ, where
the generator of Z acts on G x G by permutation of the factors.

1.3. PROPOSITION. We have isomorphisms

( E f •- f E (n times), q > 2,

Z/ 2 / 2 Z ( n ί/mes), 0 = 2,
1 0 = 1 .

Proof. Let 0 > 1 and # be an arcwise connected space with base
point. Let us consider the homotopy exact sequence of the fibre bundle

> π2(P2) -+ πx{KxK) -> π,(KfFq) -> π,(¥«)-+ πo(K x K)

\\ι \U \U \\ι \\ι
> 1 — πι(K)xπι{K) -> TΓI {K fΈ*) -> E -> 1.

Since the fibre bundle i ί / P^ —• P^ is splitting, then so is the above
exact sequence. Further, via the split, the group π\(Fq) — E operates
on the fibre π\(E) x π\(E) by permutations of the factors. Hence, we
obtain

πx(κ JF^=πx{K)jE.

The first part of the proposition follows by induction on n. The
remaining parts are proved by similar argument using the fact that

πiίP1) = Z, πi(P°) = 1.

The proof is completed.

1.4. PROPOSITION. M{oo9ή) and M(2, n) are respectively classi-
fying spaces of the groups &2

n 2 and Zf2--f2Z (n times).

Proof. Note that KxKxSq is a covering space over K J Fq . Hence
by use of the homotopy exact sequence for the covering we have

[ =πi{KxKxSq)
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for i > 1. From this, we obtain by induction on n

πi(M(q, ή)) = πi(Sq~x) x •• x ^ " 1 ) (2n - 1 times), for / > 1.

In particular, we have π/(M(oc, n)) = π/(Λf(2, n)) = 0 for z > 1.
From 1.3 and these isomorphisms the proposition follows.

Now is the time to construct the continuous embedding

i(q9n):M(q,n)->F(R*92
n)/β2*.

To do this, we first define the embedding

ϊ(q9n):M(q9n)^F(R«92
n)

by induction on n as follows. Remember that Sq~x is always con-
sidered as the unit sphere in R̂  . We fix a positive constant ε < 1/3.
The map ϊ(q, 0): M(q, 0) = {*} -+ F(R*, 2°) = R* is given by
/(<?, 0)(*) = 0. Suppose that the embedding

ΐ{q,n-\) ^

= (ϊ(q, n-\)u.../i{q,n- 1)2.-,): M(q, n - 1) - F(ββ, 2Π"1)

has been defined, where z(^, n - 1)7 denotes the j t h factor of
ί ( ? , n - l ) . Then we define

i{q, n) = {ί{q, n ) x , ... , i{q, n)r):

by the formula

- z, j < 2""
(1.5) i(q, n)j(x,y, z) =

i „,,„ n _ jj r-ι(y) - z, j>

for (x,y, z)e M{q, n - 1) x Λ/(tf, n - 1) x S*'1 = M(q, ή). Since
ε < 1/3, it is easy to show that

ϊ(q, n)j(υ) Φ ι(q, n)k(v) for j φ k, v e M(q, ή).

Hence, the map ϊ(q, n) is well defined. We have clearly

1.6. LEMMA. ί{q, n) is a continuous injection.

Proof. The continuity of i(q, n) is implied easily from (1.5) by
induction on n.

To show that i(q, ή) is an injection, we note the following simple
property, which can also be proved by induction

(1.7) Y^i(q,n)j(v) = 0 for veM(q,n).

7=1
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Obviously, ι(q, 0) is injective. Suppose that so is ϊ(q, n - 1). Let

(χk ? yk 9 zk) £ M{q, ή) for A: = 1, 2 such that

z(ί, n)(x i ,y i , zi) = ϊ(q, n)(x2,y2, z2).

From this and (1.7) we have

i{Q,n)j{xuyu zx)
7=1

i

This implies, by (1.5), that

ϊ(q, n- l)(xi) = ϊ(q, n- l)(x2), /(ί, w - l)(j>i) = ϊ(q, n - ί)(y2).

Using the inductive hypothesis we obtain

The lemma follows.
Let q < oo. z(#, n) is a continuous injection from the compact

space M(q, n) into the Hausdorff space F(Rg , 2") then it is a home-
omorphism between its domain and its image. Passing to the direct
limit when q —• oo, we observe that so is /(oo, ή).

z(^, n)M(q9 n) is not 62«-invariant subspace of F(Rg, 2n), but
so is the following

The map _ _
M{q,n)l&Y2 -> βM(q,n)/θr,

[V] f-+ [/(«,«)«]
is clearly a homeomorphism. It induces the embedding

(1.8) i(q,n): M(q, n) - F(R« , 2Λ)/β 2-.

When 9 = 2, the subspace /(2, n)M(2, n) of FQR2, 2Λ)/β2« has
been used in Fuks [5] in another formulation.

We have the commutative diagram

M(q',n) - ί ^ F(R«',2n)/βr

(1.9) I I

M(q, n) v
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for q < q', where the vertical arrows are the natural embeddings.
Remember that, for q > 2, π\(M(q, n)) = &2

n

 2 (Proposition
1.3),

π{(F{Rq , 2n)/er) = e r (see [4]).
Via these isomorphisms, we are going to describe the homomorphism

k(g9 n): πλ{M{q, n)) - πλ{F{& , 2Λ)/6 2-), for q > 2.

Let us consider 62« as the symmetric group on (the point set of) the
vector space ΊJ\ of dimension n over Z2 . Let Et•, 1 <i <n, denote
the cyclic group of order 2 generated by the translation defined by the
/ th unit vector β/ of ΊJ^ . The map i#(q, 0) is clearly the identity on
the group 1. Suppose that /#(#, n - 1) has been known. Then, by
(1.5), the homomorphism

/#(#, n): ©2-> 2

 = 6 2 r t -',

is described as follows.

i#(q, n)\E:E

So we obtain

, n): &2\2^Eι E2" En

Via this injection, &2\2 becomes a Sylow 2-subgroup of 6 2"
ther, we have the identification

(1.10) II m II
r ( Q°^ }) i/*(M(oc,

As is well known, the restriction Res(62« 2 , 62«) is a monomorphism.
In §3 we shall prove that so is i*(q, /?) for q finite.

2. Cohomology of wreath products of projective spaces. Suppose that
the sphere Sg is endowed with the following CW-complex structure

S«=\J(ekutek)9

where

tek = {x e Sq tx e ek},
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t is the generator of E. Further, let K be a CW-complex. Then the
product CW-structure on K2 x Sq is stable under the diagonal action
of the group E. This induces a CW-structure on K f P* = K2 xE Sq.
Denote by C*(K) the chain complex of K with integer coefficients.
We have evidently

α (K [FA = a(κ2 x sη ®Ez = c*{κ

In particular, M(q9 ή) is equipped with the natural CW-complex
structure. Further we obtain

C*(M(q, n)) = a(M(q, n - I))2 ®E C*(Sq).

Note that, for q\9 q29 ... 9 qn <q 9 the complex

ί ί
Q^-tQn J J

is a subcomplex of M(q 9ή).
Now we recall the fundamental result

2.1. THEOREM {Steenrod [20; VIΠ.3.4], May [8]). Let K be a com-
plex, and H*(K) the vector space over Z2 with the basis {XJ / e /},
where I is a set ordered linearly. Set H*(Ψq~ι) = 0f~o Z 2 ^ . Then
H*(K fFq~ι) is the vector space over Z2 with the basis consisting of
all elements either of the forms (i), (ii) if q = oo, or of the forms (i),
(ii), (iii) if q < oo as follows.

(i) xf ®E βj, / € / , 0<j<q,

( i i i ) ΛΓ| ® Λ : , ® E ( ^ - I + ί ^ - i ) , ί'i < i2, t\9 /2 G / .

Using this theorem with M(#, « - 1) instead of # we may define

2.2. DEFINITION. The Steenrod basis St(#,w) of the Z2-module
H*(M(q, n)) is defined by induction on n as follows. Denote by
St(ήf, 0) the basis of H*(M(q9 0)) = #*({*}) = Z2 1 consisting
of exactly one vector 1. Suppose that we have had St(#, n - 1) =
{x\, X2, ...} . Then the basis St(#, n) consists of all vectors either
of the forms (i), (ii) if q = oo, or of the forms (i), (ii), (iii) if q < oo
as follows.

(i) x}®Eej, / = 1 , 2 , . . . , 0<j<q,
(ii) xZi ® Xi2 ®E e0, /i < /2,

(iii) Xi ® χ; Θ£ (^_! + ί^_i), ίi < i2 .
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Since the homotopy commutativity of the "multiplication"

(2.3) φn_x: M{q , n - 1) x M(q , Λ - 1) -+ M(# , n ) ,

( x , y ) - + [ ( x , y , *)]

it implies that St(g, ή) does not depend on the order given in

H*(M(q, «)) contains the "stable" subspace S(q, n) and the "un-
stable" one U(q, n) with respect to increasing dimension q. They
are defined by induction as follows.

Set S_{q, 0) = St(q, 0) = {1} . Suppose we are given S_(q, n - 1) =
ίVi > ^2 5 . . . } . Then S_{q, w) is the subset of St(#, n) consisting of
all elements of the forms (i), (ii) given in Definition 2.2, in which
we put yι, yι , yι G S[q, n — \) instead of Xi, X[ , X/ respectively.
Set £(£, Λ) = St2(^9 n)\S(q, ή). Denote by ^((Ϊ 1 , ή)] U(q, n) the
vector subspaces of H*(M(q, n)) spanned by S[q, n) and U_(q, ή)
respectively. We have

H*{M{q,n))=S{q9n)®U{q,ή).

Let i*(M, q)\ H*(M(q, ή)) -> H*(M(oo9 n)) be the homomor-
phism induced by the canonical embedding i(M, q)\ M(q, w) —>
Af(oc, «). From 2.1 we observe that i*(M, q)U(q, n) = 0 and
/*(?, w ) ! ^ ^ ) is injective. Further, we have

(2.4) U(M, q)S(q, n) = Span{x e St(oc, π): h(x) < q}.

Here the height function h: St(oo, w) —• Z is defined by induction on
n by the formulae

h{xf <8>E ej) =

A ( ^ ® Xi2 ®E ^o) = i 2

for JC/ , xi , X/ G St(oc, n — 1).
From now on, for each cell complex K we denote its chain complex

C*(K) also by K.
According to Steenrod [20; V.5.1] we have the is-equivariant chain

map ^ ^
dqχ.M(q,l)->M{q, l)®M{q, 1),

k

dg,ι(ek) = ^ ( - l ) ^ - ^ , ® ύe^ for /c < q.
/=o

(Recall that 1
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We obtain the following well-known result (see Nakaoka [12; 3.3]
in the case of q = oc).

2.5. PROPOSITION. The diagonal approximation Aq^n: M(q9 n) —•
M(q, Λ) ® Af (#, ή) is computed by induction as follows.

k

A*Men) = Y,{^)i{k-i)ei®ek_i for k < q.

2
Aq,n = τ(Δ2

9n-\®Edq,ι) a s s e e n i n the diagram

M(q, n) = M(q, n - I) 2 ®E M(q, 1) -^A Af(ήr, n ) 2

; n- l)4®EχEM(q, I ) 2 Λ (Λ/(βf, /i - I) 2 ®£ M ( ί , I)) 2,

τ is the chain map twisting two sets of '3 factors.

Proof. According to Nakaoka [12; 3.3] the map doo,«: M(oo, n) —•

M(oo5 «) 2 defined by the inductive formula doo,n = τ(d^ Λ

is an ©2" 2" e Q u i v a r i a n t chain map. Hence

, n)->M(q, n)2

is also an ©2" 2~ e Q u i v a r i a n t chain map satisfying the formula

(2.6) dq9n = τ(d*9n_1®dg9ι).

It is easy to verify that M(q 9 n) is a regular 62

Λ

52"free complex
and dq9n is carried by the &2

n 2~ e Q u i v a r i a n t acyclic diagonal car-
rier C(σ) = σ x σ, where σ denotes a cell of Af (#, n) and σ is the
closure of σ. Thus dq f n induces the diagonal approximation Ag ? n

of M(q, n) (see e.g. Steenrod [20; V.4.1]). From (2.6) and the defi-
nition of dqfχ we get the formulas for computing Aq t n given in the
proposition. The proof is completed.

We denote by J?(q9n)9 ^r±(q,n) the Z2-submodules of
H*(M(q9 n)) generated respectively by J[_(q, ή) and Jt^iq % ή)n

which are defined by induction as follows.

£{q, n) = {x2 ®E ej xe ^_(q, n - 1), 0 < j < q} c St(q, Λ) ,

^ - L ( ^ ? π ) = St(^?n)\^(9?A2).

So we get
H*(M(q9 n))=Jt(q9 n)®J?L{q, n).
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Define by induction for q\, . . . , qn < q

It is easily seen that m^,... t Qn is the unique cell of highest dimension in
the subcomplex MQχ,..., Qn = P^ / / P*« of M(q, ή). Thus mQi,..., Qn

is the fundamental class of the submanifold MQχ,..., Qn in the manifold
M(q, ή). Obviously we have

. # ( # , n) = { m q x i W 9 q n \ 0 < q { , ... , q n < q } .

By a simple computation based on Proposition 2.5 we obtain easily

2.7. LEMMA. The comultiplication Δ of the coalgebra H*(M(q9 ή))
satisfies the formulas

(i) ΔK,.. ,^)= Σ
i

<qi, ri9

(ii) Δ^±(q, n) c

+ Jt±(q,n)®H*(M(q,n)).

As a consequence, we have the following proposition essentially due
to Steenrod [20], Nakaoka [12].

2.8. PROPOSITION (cf [6], [12]).

H*{M(q, n))=J?L{q, ή)*®Jt{q9 n)\

where JtL{q, n)* is an ideal and Jί{q9 n)* is a subalgebra. Here *
denotes the dual defined by the Steenrod basis.

Now we study the structure of the algebra Jί(q, n)*. Set

F n ) J = 4 . . . ) 0 , i,o,...,o eH*(M(q, n)), for 1 <s<n, q>\.

n-s s

According to Lemma 2.7 we have in H*(M(q, n))

( 2 9 ) K.~.*.=y9ήχ~7ϊ.n,
for q{, . . . , qn < q. Clearly, the algebra .#(00, n)* has the following
simple structure

O O , / l ) * = Z 2 [ F Λ > i , . . . 9Vn,n].
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(Compare with Nakaoka [12; 4.2].) The natural embedding M(q, ή) c
Λf (oo, ή) induces the surjection of algebras Jΐ{ρo, n)* —> Λf (#, n)*,
whose kernel is

Span{m*5 ^ : h{mq^,_q)

This coincides with the ideal

(Vlu- -,Vgn,n) Of

By the above discussion, we get

2.10. THEOREM. Γ/zere is an isomorphism of algebras

For latter use, we recall Huynh Mϋi's result on the homomorphism

H*(M(oo, ή)) -> H*{Έf x x P£°).

Let P^°, for k = 1, . . . ,«, be the real projective space of infinite
dimension. It is easily seen that

pf x ••• χp£° = 5 ^ .

P^ has been equipped with the CW-complex structure as noted at
the beginning of §2. It has exactly one cell e\ in each dimension /,
for 0 < / < oo. Further, we have

i=0

Let yk € H*(Ψf) be the dual element of e\ e H*(Έf) via the basis

{ef 0 < / < oo}. As it is well known, we get

H*(E») = H*(Pf x x P£°) = Z2[yi, . . . , yn].

We define the injection /„: E" —> 62» ;2 by induction as follows.

ii=idEr.El ^β2,2 = Eι,

in: E" =E"~ι xE -+&2

n,2 = ©2-' 2 [E>

(a,b)y-> {in-\a, in-\a; b),

for aeEn~ι, b&E.
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The homomorphism /„ induces the homotopy class of the map of
classifying spaces dn: Pf3 x x P£° -*• M(oo, n) which is constructed
also by induction.

dλ = i d : P f ->Λ/(oo, 1) = Pf,

dn:Ψf x -xΫf -+M{oo,n) = M{oo,n-\) f v%>,

for a € Pf x x P^_j, b e P^°. So we obtain the identification

H*(Gr 2) — : ϊ-£> H*{En)

H*(M(oo,n)) - ^ fΓ*(Pf x x P * ) .

Under this, we set

r»,j = ̂ « , 5 = Res(£", βz-^)^,,^, 1 < 5 < n.

The following allows us to compute Vn>s by induction.

2.11. PROPOSITION. Lei d* = Res(En, E"'1 f E), and let
P:H*{En~l) -+ H*{En~λ f E) be the Steenrod map {see [20; VII.2]).
Then we have

Particularly, we get Vn,s = d*PVn-\^s-\ for 1 < s < n. Meanwhile

vn,\ =yn

Proof. We recall that

™ίI,...,ί,_1,o = < , . . . , g . _ 1 ® * ' o .

Passing it to the dual, from the definition of the map P, we obtain

(2 1 2) <,...,,„_„() = ̂ X,..,«n_,
On the other hand, we have the commutative diagram

H*(En~ι)

So we get
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Apply this formula with

to,..., q n - ι , o ) = ( o , . . . , o , i , o , . . . , o )
n—s s

to obtain
VnfS = d*PVn-l9S-l for I < s < n .

At last, we note that

^o, . . . ,o, i = mo,...,o ®^i = 1

Λ Λ2— 1

Hence, we have

Since a?* is a homomorphism of Jff*(£')-modules, we obtain

This completes the proof.

In principle, Proposition 2.11 allows us to determine completely
Vn9S as a polynomial of y\, . . . , yn . But, it is rather difficult to real-
ize the direct computation. To overcome this difficulty, we need the
following well-known fact. Let G be a finite group and S a subgroup
of G. The Weyl group WG{S) = NG(S)/CG(S) of S in G operates
on H*{S) by the adjoint isomorphisms. We have (see e.g. Steenrod
[20; V.7])

Im[Res(S, G): H*(G) -> H*(S)] C H

In [6; II.5] Huynh Mύi showed that

Here GLΛ>2 denotes the subgroup of GL(n; Z2) consisting of all
lower triangular matrices with 1 in the diagonal entries, and the group
GL(n, Z2) acts canonically on Z2O1, . . . , yn].

Note that Vn^s is an invariant under the action of G L w 2 (since
Vn9S G ImRes(£'w , &2\i)) a n ^ contains yn-s+\ as a factor (according
to 2.11). So we obtain (see Huynh Mϋi [6; II.5.4])

(2.14) Vn,s=
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This implies directly that Vn^\, . . . , VHiS are algebraically indepen-
dent (see also [6; 1.3.4]).

2.15. DEFINITION. The injection of modules a:

—> H*{&2\i) is defined by

From (2.9), a is a homomorphism of graded algebras.

2.16. PROPOSITION (Huynh Mui [6; II.5.2]). We have the exact se-
quence of algebras which is splitting via the homomorphism a

0 ^ ^ ^ ( c x ) , π)* Λ /

where j denotes the natural embedding.

3. The monomorphisms i*(q, ή). The purpose of this section is to
prove

3.1. T H E O R E M . i*(q,n): H*(F(R<i ,2n)/6r) -+ H*(M(qy n)) is a

monomorphism for q > I, n>0.

At first, we recall some things about the (Hopf) algebra

For a

(3.2)

where

x —

finite

1 m

positive integer #,

+ 1,0, . . .

we

,0

define

),

the embeddings

1

m

m

Here and in what follows, || || denotes the Euclid metric in Rq.
(Compare with Fuks [5], when q = 2.) Via these embeddings, we set

, oo)/6oo = Urn F(R^ , m)/Θ m .

m

Let us consider in this space a product induced by the maps

(3.3) μm>n: F(R«, m)/&m x F(R*, «)/©„ -• F(R«, m + n)/&m+n ,

[{xx,... ,xm)]x[(yι,... ,
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where
m

*'=1

R\ = max κ m

7=1

Xi i?2 = max
A: 7=1

(Compare to Fuks [5] when q = 2.)
F(R^, oo)/6oo equipped with this product is not an 77-space. How-

ever, H*(F(Rq, oo)/6oo) is a Hopf algebra (see [10, §5]). The direct
limits when q —• oo of the systems of map (3.2), (3.3) belong to the
homotopy classes of maps on classifying spaces induced respectively
by the canonical injections

Hence, H*(F(Rq , oo)/6oo) is a Hopf subalgebra of the Hopf algebra
H*(F(R°°, oo)/βoo) = ^*(©oo) introduced by Nakaoka in [12, §2].
The structure of this Hopf algebra will be studied in §4.

Besides this, the algebra H*(F(Rq, oo)/6oo) is equipped with the
multiplicity such that

mH*(F(R<!, oc)/6oo) = H*(F(R* , m)/em, ^(R^ , w - l)/©m-i)

(see e.g. Nguyen H. V. Hung [15, §2]). The reader who is not fa-
miliar with the notion of "algebra with multiplicity" can refer to
T. Nakamura [11]. For such an algebra A = φn>0 nA, we set

A(m) = 0 nA.
n<m

Particularly, we have

, oo)/βoo)(/n) = m)/βm).

Let

be the Nakamura elements [15; §2]. These are of multiplicity 2n.
Then we have (see [15; 2.15]).

3.4. THEOREM {Nakamura [11], May [10], Huynh Mύi [7]).
(i) Let q > 0 and
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Then H*{F(W , oo)/6oo) = Z2[NK K e J+(q)] as algebras with mul-
tiplicity. So we have H*(F(R« 9 m)/&m) = Z2[NK;K e J+(q)]{m),
for 0 < m < oc. In other words, H*{F(Rq, m)/&m) has the Z2-basis
consisting of all monomials in Z2[NK; K e J+{q)] of multiplicities
< m. This is called the Nakamura basis.

(ii) The homomorphism

U{F9 q): H*(F(R«, oo)/6oo) -> H*(F(R°°, oo)/6oo)

induced by the canonical embeddίngs F(Rq, m) c F(R°°, m), 0 <
m < oc, is an injection. It sends NK to the element denoted by the
same notation Nκ for K e J+{q).

On the other hand, let p2

n: &2

n -> 0(2Π) denote the natural repre-
sentation of the symmetric group &2n in the orthogonal group (9(2").
As is well known:

where Wt denotes the / th universal Stiefel-Whitney class (of dimen-
sion /). We define the (2n - 25)th Stiefel-Whitney class of pr by
putting

Wnts = Pr(W2n_r) e H*(&r), 0 < s < n.

Further, we set

Qns = Res(©2-> 2, &r)Wn,s e / Γ ( 6 2 - > 2 ) , 0<s<n.

3.5. PROPOSITION. Let

i(M, q): M(q9 n) -> M{po9 ri)9

/(oc, ή): M(oc, /i) -> F(R°° , 2Λ)/62«

well-known embeddings. Then we have

i*(M9 q)i*(oo9 Λ)KerRes(©^!, 62«)

Here I(Q, q) denotes the ideal of Qn^Z2[Qn>0, ...,Qn9n-X] gener-
ated by monomials of degree q.

The proof of this proposition will be given in the end of the section.
Now using this result we prove the main theorem of this section.

Proof of Theorem 3.1. The proof proceeds by induction on n . Ob-
viously, i*(q, 0): H*(Rq) —• //*({*}) is a monomorphism. Suppose
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that so is /*(<?, n - 1). By means of (2.3), (3.3) and the definition of
i(q, n) we have the homotopy commutative diagram

μ=μ2n-\ 2n-\

F(ββ , 2n)I&2« < : (F(R<], 2n'ι)/er-ή2

I I
M(q,n) ^ ^ - M(q,n-l)2.

So we get the commutative diagram in which each row is exact (ac-
cording to 2.1 and 3.4)

0-> Kerμ* -> H*(F(W , 2n)/β2n) £ H*{F(R« , 2n-

(3.6) li*(Q,n) lι*(q,n) [ι*{q,n-\)2

-> H*(M{q,n)) £ H*(M(q, n - I )) 2 -> 0.

By the inductive hypothesis,

is an injection. According to the 5-lemma, to prove Theorem 3.1, we
need only to show that i*(q, ή)\ KQTμ*: Kerμ* —• Ker φ* is a monomor-
phism.

Let us consider the commutative diagram

J/*(F(R°°,2n)/62») ^ ^ H*(F(R°°,2n-ι)/βr-

H (F(R«,2n)/β2") - ^

where the vertical arrows are induced from the canonical embeddings
F(Rq , m) -> F(R°°, m) for m = 2n~x, 2n . By means of Theorem
3.4 and the definition of the algebra structure on H*(F(Bβ , oo)/6oo)
we have

KerRes(βL-., &r) = Span{Λ£ k k0 > 0},
•̂  0 ' *** ' w — 1

Kerμ* = S p a n { ^ fc (fc0, , fcΛ_,) € / +

0 ' ' 10 ' ' «— 1

= r(F,ί)Span{JV^ ... k /c0 > 0}
0 ' * ' n — 1

= i*(F,q)KerRes(62

r-,, 62»).
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From Proposition 3.5 and the commutative diagram

H*(F(R°°92
n)/β2n) r{oo'n\ H*(M(oc, n))

H*(F(R«,2n)/&2*) ι{q'n\ H*{M{q,n))

it implies that the following is an epimorphism

«,0? ••• , Qn,n-lVΠQ>

Note that the domain and the image of this epimorphism are isomor-
phic to each other as graded modules of finite type over Z2 via the
formal correspondence

/=0

Hence, the above epimorphism is an isomorphism. As a consequence,
i*(q, n)\ Ker^*: Ker/z* —• Ker φ* is a monomorphism. Theorem 3.1 is
proved.

The remaining part of this section is devoted to prove Proposition
3.5.

Let G be a finite group, and E(G) a set of representatives for the
conjugacy classes of maximal elementary abelian 2-subgroups of G.
We recall

3.8. PROPOSITION {Quillen [17]). Let G = βm or 6 m ? 2 > the Sylow
2-subgroup of &m . Then the homomorphism

Res: H*(G)-+ J J H*(A)
AeE(G)

given by the restrictions Res(^, G): H*(G) -^ H*(A) for A e E{G) is
a monomorphism.

In [6; II.6.2], Huynh Mύi has computed the image of Res(^, &m)
for m = 2n and A = En by means of Dickson's invariant theory.
Namely, he has shown that

(3.9) We2ΛEn)

", &r) = /ί*(£Λ)
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Here the Weyl group W&2H(En) of En in βr acts on H*(En) by
the adjoint isomorphisms, and GL(n,Z2) acts canonically on

The invariant ring of GL(n, Z2) has been determined previously
by Dickson [3] as follows. Let Qk0, . . . , Qk,k-\ be the polynomials
of y\, . . . , yjt given by the inductive formula

(3.10) Qn9S = (ηnQn-l,s) Vn9n + ηnQl-i^-i , 0<S<Π,

where Vn^n is defined in (2.14), Qk,k — ̂  {k > 0) by convention,
and ηn is the following transformation of variable

/0 1\

(3.11) ηn = n, z2).
1

oy
Then, Qn,o, ••• , Qn,n-ι are GL(n, Z2)-invariants and Dickson has
proved that

(3.12) Z 2 [ y i , . . . , y n ] G L ( " ' z

2 ) = Z 2 [ β Λ > 0 , ••• , Qn,n-ι]

Further, according to Quillen, Milgram, Huynh Mϋi (see [18], [6;
Appendix]) we have

(3.13) R e s ( £ " , G2")WnyS = Qn,s, 0<s<n.

3.14. LEMMA. Let (W ,̂o) denote the ideal of H*(&2

n) generated
by Wn t o. Then we have

Proof. Suppose that we get

Then, combining these with 2.8 and 2.10, we prove the lemma as
follows.

Hence, it suffices to verify (3.15). To this end, following Proposition
3.8 we consider the restrictions of the elements in (3.15) to every
maximal elementary abelian 2-subgroup of &2

n

 2
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According to Nakamura (see [6; Π.2.7]) such a subgroup is conjugate
in &2

n 2 t 0 a certain group A being of the following two kinds:
(a) First kind: A is a maximal elementary abelian 2-subgroup of

< S 2 " - 1 , 2 '

(b) Second kind: A = A1 x En , where A1 is a maximal elementary
abelian 2-subgroup of the diagonal 62«-i 2 in β^-i 2

First we show that

(3.16) Res(^,β2-,2)(2, I >o = O

for every maximal elementary abelian 2-subgroup A which is not con-
jugate to En in &2

n 2 -

By [6; II.2.8] and by a simple computation of rank of groups, we
note that such a group A is a subgroup of a certain maximal elemen-
tary abelian 2-subgroup A\ of &2» which is not conjugate to En in
&2». By [6; II.2.3], A\ is conjugate in 62« to a subgroup ^2 of
6^-1 . Since 62«-i 2 is a Sylow 2-subgroup of 62«-i so ^2 is conju-
gate in 6^-1 to a subgroup of 6^-1 2 . Thus, A is conjugate in 62«
to a certain subgroup of 6^-1 2 .

In [15; 3.4] we have proved that

Res(6^_,, 6

Since the diagram of restrictions

",2)

I

is commutative, we obtain

Res(6^_ 1 ) 2 , β 2 . > 2 )β π > o = Res(6 2

Λ - 1 ? 2 , Θ r ) ^ , o = 0.

By the above discussion and from the fact that

β Λ > o e I m R e s ( 6 2 " > 2 , 6 2 « ) ,

it implies (3.16).
Combine (3.16) with

Res(£", β^^Λf-^oo, n)* = 0

as seen in 2.16, we obtain the first equality of (3.15).
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Next we prove that

(3.17) ^ ^

for A as in 3.16.

From 2.2 and 2.3 we note that m o,...,o, I = V*n, l does not belong

n

to the image of the homomorphism

induced by the inclusion &\n-\ 2 C ©2",2 So we have

This implies (3.17) in the case where A is of the first kind.
Let A = A1 x En be of the second kind and not conjugate to En in

6 2«> 2. So A' is not conjugate to En~ι in 62«-i 2 . We prove (3.17)
by induction on n. For n = 1, the problem is trivial because there
exists no such subgroup A in Θ2,2 = E. Suppose n > 1 and (3.17)
is true for n — 1. Let us regard the commutative diagram

Res

L //* (A' ί Eλ ^*=ReS //*(4' X £„),

where P 's denote the Steenrod maps. As seen in (2.12), we have

Vn,r = P(Vn-l,r-l), \ < V < Π.

Using the diagram and the inductive hypothesis, we obtain

= 0.

This completes the proof of (3.17).

At last, we prove

(3.18) R e s ( £ Λ , Θ 2 . j 2 ) β Λ > o

In the other words, we must show that
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We set Vr = ηnVn,r for 1 < r < n. From (2.14) we note that Vr

depends only on y{, . . . , yr. By means of (3.10) we get

This implies

Qn,0 = *lnQn,0= * * , 1 ' ' " **,/i-

Combining (3.16), (3.17) and (3.18) we have the second equality of
(3.15). The proof of the lemma is completed.

Proof of Proposition 3.5. According to [15; 3.4 and 3.8] we get

KerRes(6*,-i, βr) = W , o ) = Wn^Z2[Wn^, . . . , Wn^{\.

It implies from (3.14) that

f(θC, n)((Wn9U)) = Qn^llQn^, ... , Qn,n-l]

On the other hand, by Theorem 2.10, we obtain

i*(M,q)Z2[Vn9l9...9Vnjn]

By Proposition 2.16, the homomorphism

dn\jt(oo9nr'^2[Vn9U ••• , Vn,n] ~

is an isomorphism. Further, we have

From the above discussion, Proposition 3.5 is proved by the following.

3.19. LEMMA. Let

be the projection. Then, for the subrίng Z2[Qn,o> ••• > Qn,n-\] of
Z 2 [K r t j l , . . . , K r t,Λ], wehave

Here I(Q, q) denotes the ideal of'Z2[Qn , o , ••• , Qn,n-\] generated by
monomials of degree q .

Proof. Let */„: Z2[y\,... ,yn] ^ Z2LV1 ? . ? ^ ] be the ring iso-
morphism induced by the transformation of variable ηn given in
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(3.11). Since Qn,s is an invariant of GL(«, z 2 ) , we observe that
ηnQn,s = Qn,s for 0 < s < n . We set

Vr = ηnVn9r, I < r < n.

Then, the lemma admits the equivalent form as follows. Let

pτ:Z2[Vl9...9Vn]-+Z2[VΪ9...9Vn]/(V*9...9V*)

be the projection. We must prove that

prZ 2 [β π > o, . . . , Qn,n-\]

The proof proceeds by induction on n. The lemma is trivial for
n = 1. Suppose that n > 1 and it is true for n - 1. Note that
Qn-1,0, > Qn-\ ,n-2 are algebraically independent and they depend
only on yx, ... ,yn_χm Meanwhile, Vn depends not only on y\, . . . ,
j/rt-i but also yn. Hence, the system β r t_i,o, ••• ? βn-1,/1-2, F« is
algebraically independent.

From the Dickson formula (3.10) and the fact that η% = 1, we get

(3.20) Qn9s = Qn-l,s Vn + Q*_Us_ι.

It implies that

Z2[βΛ,0, .-• ? β/i./i-ll C Z 2 [β r t - i , 0 , . . . , β Λ -l , Λ -2, ^ ]

CZ2[Vl9...9Vn].

Further, we have the commutative diagram

where the vertical arrows are the canonical injections. From this dia-
gram and the inductive hypothesis, we obtain

prZ 2 [β π -i ,o, ..- , Qn-l,n-s, Vn] = Z2[Qn-i ,0 , .-• , β Λ -l, r t -2, Vn]/I

where / denotes the ideal of Z2[Q/7_i,o? > Q«—1,«—2» ^ ] gener-
ated by V% and monomials of βπ_i,o> ••• > β«-i,«-2 of degree #.
At last, using the Dickson formula (3.20), we can verify directly that

This completes the proof of Lemma 3.19. Proposition 3.5 follows.
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4. The algebras H*(F(Rq, m)/&m). In this section, we shall de-
termine the algebras H*(F(R<ί, m)/&m) by means of the universal
Dickson characteristic classes introduced in [15].

Remember that, according to Huynh Mϋi's result on R e s ^ " , 62")
(see (3.9), (3.12), (3.13)), we get

H*(βr) = KerRes(^, &r)®12[Wn^, ... , Wn^n_{\.

We defined in [13; 2.4] and [15; 3.5] the Dickson elements Dk k
0 ' * * * ' n — 1

in //*(62») C //*(6oo), for k, > 0, by the conditions

(4-1) (At0 ,...,*„_,, KerRes(£n ,&r)) = 0,
I %Λ 1 \

/ Yl—Y \ s Λ /K 1- \ / lj K \

\ o' " n-\? 11 n>s y o, otherwise.

Here and from now on, ( , •) denotes the dual pairing. Then we
obtained

4.2 THEOREM [13; 2.5], [15; 3.7 and 3.8].

(i) i/*(6oo) = Z2[DK; K e /+(oo)] as algebras with multiplicity.
Here the multiplicity of Dk ,...,& is given to be 2n. So we have an
isomorphism of Z2-modules for arbitrary m

H*{&m) = Z2[DK K e /+(oo)](m).

The basis of this module consisting of all monomials in

Z2[Dκ K G «/ (oo)]

of multiplicities < m will be called the Dickson basis.

(ii) The comultiplίcation Δ of the Hopf algebra //*(©oo) satisfies
the formula

ADk k = Y^ Di 1 ®Dm m

for ki, //, mi > 0, 0 < i < n.
(iii) We have the reduction formula

In [15; 3.4] we have shown that, under the identification H*(&2

n) =
H*(F(ΈL°°, 2n)/βr), WΆiS coincides with the (2" - 25)-the Stiefel-
Whitney class of the vector bundle

pr: R2" x e „ F(R°°, 2n) -+ F(R°° , 2n)/βr
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for 0 < s < n. Here the group 62« acts on R2" by permutations of
coordinates. So we shall denote also by WnjS, for 0 < s < n, the
(2n - 2s) th Stiefel-Whitney class of the vector bundle

pr: R2" xe2Λ F(R«, 2") -> F(R«, 2Λ)/β 2-.

Obviously we have

(4.3) Γ ( F , ήf): H

Wn,s^ Wn9S9 0<s<n.

To describe the structure of the Hopf algebra H*(F(Rq, oo)/6oo)
we need the following two lemmas, which will be proved by use of the
embeddings i{q, ή): M{q, n) —• ^(R^ , 2n)/&2

n a s a main tool.

4.4. LEMMA.

i*(F, q)((Wn,0)) = Wn9θZ2[Wnto,..., Wn,n-i\/I{W9 q),

q) denotes the ideal of Wn^Z2[Wn^, ..., Wn,n-\] gen-
erated by monomials of degree q.

Proof. From Diagram (3.7) and Proposition 3.5 it implies

i*(q,n)i*(F,q)((Wn>0)) = i*(M, q)i*(oc, n)((Wn,0))

= i*{M, ήf)/*(oo,/i)KerRes(eL-i>β2") (see [15; 3.4 and3.8]),

According to 3.1, /*(<?, ή) is a monomorphism. So we get

i*(F, q){{Wn^)) = Wn^Έ2[Wn^, . . . , Wn9n-{]/I(W9 q).

The lemma is proved.

4.5. LEMMA. 77^ image of the monomorphism

U{F, «): //*(F(R^ , oo)/6oo) -

Im / , (F, q) = Z2[Z)^ ΛΓ G / + ( ^ ) ] , 1 < q < oo.

Via this monomorphism, H*(F(M? , oc)/6oo) becomes a Hopf sub-
algebra as well as a subalgebra with multiplicity of H*(F(R°°, oo)/6oo).
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Hence as a consequence of 4.2 and 4.5 we have

4.6. THEOREM, (i) H*(F(Rq, oo)/&oo) = Z2[DK;K e J+(q)] as
algebras with multiplicity for q > 0. Here Dk _k is of multiplicity
2n. So we have the isomorphism of Z2-modules for every m

H*(F(Rq , m)l&m) = Z2[DK K e J+{q)](m).

The Dickson basis for this module is defined similarly as in 4.2.
(ii) Let

J(q) = {(ko, . . . , kn-\) Φ 0; n>0, fc/GZ+5 k$-\ \-kn-\ < q}.

The comultiplication Δ of the Hopf algebra H*{F{Rq , oc)/6oo) is
given by

ι

ι+
m

ι=K

f o r ( k o , ... , fcΛ_i) € / ( # ) , l i , m i > 0 , 0 < i < n .

Proof of Lemma 4.5. Set

We obtain clearly H*{e2") = R

First, we are going to show

(4.7) H*(F(K?,2n)/β2 ) = i*(F,q)R®i*(F,q)((Wn,0)).

By Theorem 3.4, z*(.F, ^) is an epimorphism. So it suffices to prove

i*(F,q)Rni*(F,q)((Wn>0)) = {0}.

Since /*(^, ή) is a monomorphism, this is equivalent to

i*(q, n)i*(F, q)ROi*(q, n)i*(F, </)((WB>0)) = {0},

or equivalent to (by Diagram (3.7))

i*(M, q)i*(oo, n)Rni*(M, q)i*(oo, n){{Wn^)) = {0}.

From Propositions 3.5 and 2.16 it implies

i*(M, < 7 ) Γ ( o o , n ) { ( W n , 0 ) ) = QH7θZ2[Qn,o, ••• , Q n , n - ι

(4.8) i*{M, q)i*(oo, n)KeτRes(En , 6 2 )

C Γ(M, ί)^f-L(oo, «)* dML{q, n)*.
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Let us consider the diagram

H*(M(oo,n)) <

H*(M(q, n)) ^— Z2[VnΛ,... , Kn,Λ]

where a denotes the split given in 2.15 and a' is defined so that the
diagram is commutative (see 2.10). We have

}ns) — i*(M, q)Qns modJf(q, n)*,

for 0 < s < n. From this and Lemma 3.19 we obtain

(4.9) i*{M,q)i*{oo,n)Z2[WnΛ,..., Wn,n_x\

= i*(M,q)Z2[Qn, i , . . . , Qn,n-Λ

= %2[Qn,\ > -->~Qn,n-\\lJ m θ d *X(q , «)* ,

where / is the ideal of Z2[QnX, ..., Qn^n-{\ generated by mono-
mials of degree q.

Combining (4.8) and (4.9) we get (4.7).
Now for K — (ko,..., kn-\) e J+{q) we can define the element

(which is also denoted by) Dκ = A^,...,*,_, in H*(F(B?, 2n)/er) c
H*(F(R«, oo)/βoo) by the conditions

(4-10) (Dko,...,kn^ , i*(F, q)R) = 0 ,

I D T]whΛ = l 1 ' {ko, ••• , k n - i ) = {h, ••• , K - \ ) ,
\ o' ' n-\' l i n's I y o otherwise.

From (4.1), (4.3) and (4.10) it is easy to see that

U{F, q): H*{F{Rq , oo)/6oo) -> H*(F(m°° , oo)/6oo),

for KeJ+{q).
Combining this with Theorem 4.2 it implies that

Imi*(F,q)DZ2[Dκ;K€J+(q)],

since the image is a subalgebra of H*(F(R°°, oo)/Θoo) Moreover, by
Theorem 3.4, both domains of this inclusion are isomorphic to each
other as graded Z2 -modules of finite type via the formal corresponding

KeJ+(q).
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So they are coincident. The proof of Lemma 4.5 is completed.
Recall that in [13; §3] and [15; §4] we have introduced the universal

Dickson class WH in H*(&oo), for H e /(oo), which is dual to Z>#
via the Dickson basis of //•(60 0). We recall that

n-\

(4.11) Res(62-, &ooWH = J ] Wn

h;s

5=0

if H = (ho, . . . , Aπ_i). Further, we have proved in [15; 4.10]

(4.12) /T(6oo) = li[WH H e /Odd(oc)]

as algebras, with /odd(°°) a s mentioned in the introduction.
Note that from Lemma 4.5 it implies

(4.13) i*(F,q)WHφ0&He J(q).

For simplicity, the Dickson class i*(F, q)WH of the map i(F, q)
will be denoted also by WH, for H e J(q). This is dual to DH via
the Dickson basis of H*(F(Rq, oo)/Θoo), according to Lemma 4.5.
Further, by (4.3) and (4.11), we have

n-\

5=0

for H = (λo, . . . , hn-\) G J(q). We are now ready to get the main
result of the paper.

4.15. THEOREM. We have an isomorphism of algebras

/T(F(R*,oo)/6oo)

= Z2[WH H e Joάά(q)]/((WH)2h^H) H e Joάά(q))

for 1 < q < oo. Here /Odd(<7) is as given in the introduction, and

h(q,H)= min{/*EN: 2h(h0 + + hn-{) > q)

Proof. According to Theorem 3.4, the restriction

i*(F, q): //*(6oo) = H*{F(R°° , oo)/6oo) -+ H*(F(R« , oc)/6oo)

is an epimorphism. By (4.12) and (4.13), this induces the surjection

Z2[WH H e Joάά(q)] - H*(F(R* , oo)/6oo).

In [15; 4.9] by passing Theorem 4.2 to the dual we obtained in H*(&oo)

(4.16) (WHγ = Wlk'H ΐoτHeJ(oo), k>0,
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where 2k H = H H \-H (2k terms). Here we must recall that, in
[15; §4] we equipped /(oc) with a partial addition by agreeing that
the sum H + K, where H = (h0, . . . , AΛ_i), K = (k0, . . . , hm-ι), is
defined iff n — m and in this case H+K = (ho+ko, . . . , hn-\+kn-\).
Since 2A(*'"> i/ is not in /(g), from (4.13), (4.16) we have

So we get the epimorphism induced by i*(F, q)

Z2[WH; H e / o V < 9 ' / )

To prove that this is an isomorphism, it remains to show that both
sides are isomorphic as graded modules (of finite type) over Z2.

There are isomorphisms of graded modules

H*(F(R« , oo)/6oo) S H.(F(Έt? , oo)/6oo) = I<i[Dκ K e J+(

= Z2[D2Kκ K € J^ά{q), A

where /^(ήf) = J+(q) Π Λ>dd(ί)
Note that we have

= ® Z 2 [^Ί/(^" + 1 ), for </ € N,
n>0

as graded modules. Applying this with x = D2
k κ> ^ = 2 Λ ^ ' ^ we

obtain an isomorphism of graded modules

,h<h(q, K)]
K"+1) tf € ^ ( ί ) , A < h{q,K))

Hinted by 4.6(iii) we define formally

0

As is easily seen, each H e /Odd(^) c a n be written uniquely in the
form

(4.17) // = /s:2

for K € /oddte), h < h{q,K), n > 0 . This implies h(q,H) =
h(q, K). So we have an isomorphism of graded modules

JΓ(F(R«,oo)/6oo)
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D~>h r ι-+ WH where H = K2

The theorem is proved.

Now we prepare for determination of the algebras

H*(F(R«,m)/βm).

For each (<T, T) = (Hx, . . . , Hr) x (h, . . . , ί r ) 6 / ( ί ) Γ x N Γ we set

(4.18) ^ f = ̂ . y^ = (D\ z)^r e H

where the dual is defined by the Dickson basis. If T = (1, . . . , 1)
(r times) we write simply W^ — WH\»-»^ instead of W^". This is
compatible with the notation WH above.

For σ e&r we have

where

Wf = rrσT ,

by the commutativity of the homology algebra H*(F(Rq, oo)/6oo)
This leads us to define the equivalence relation ~ on [ J r > 0 J(q)1 xN1

as follows. Suppose (&, T) e J(q)r x N r

? pΓ ' , Γ ) € / (^ ) 5 x N5.
Then [%T, Γ) - ( ^ ' , Γ;) iff r = 5 and there exists σ e &r such

that ( ^ ' , Γ') = ( σ ^ , σΓ) . Each equivalence class in this relation is
called an β-orbit.

As is easily seen, H*(F(Rg , oo)/Θoo) admits the additive basis con-
sisting of the elements

(4.19) Wf, ( , r , T) = (Hl9...9Hr)x(tl9...,tr)e J+{q)r x N'

with H\ < - - < Hr, r > 0. Here < denotes a certain order in J(q)
defined by length and by the lexicographic order for elements of the
same length; where by the length of H = (ho, ... , hn-\) we mean the
number l(H) = n .

Again, the above basis is called the Dickson basis of

In [13; 3.5], we defined for (JT, T) e J(oo)r x Ff and (JΓ, U) G
J{oo)s x N5 the subset (&, T) V (3t, U) of U/>o J(°°y x N r. We put

(4.20) (,r, Γ) v(^r, u) = ( ( ^ , r ) Voar, c/))n
J>0
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4.21. LEMMA. In terms of the Dickson basis the structure of the
Hopf algebra H*(F(Rg, oo)/6oo) is described as follows.

(i) For (JT, T), (JΓ, U) e U r > 0 - W x N* w

summation runs over the representatives of &-orbits of

pr, Γ)vpr, u).

The lemma can be implied from its special case where q = oo shown
in [13; 3.6] by means of Lemma 4.5.

4.22. DEFINITION, (i) The depth θ(z) of an element z in the
Dickson basis of H*(F(Rq , oo)/6oo) is defined by the formulas

0(1) = 0, ^ Γ ^
ι = l

(ii) Suppose that z = Σ{sr,τ) Wf is the linear decomposition of
z e H*(F(Rq, oo)/6oo) in terms of the Dickson basis. Then we put

θ(z) = min θ(Wf).

Note that Lemma 4.21 enables us to compute death of arbitrary z.

4.23. THEOREM. Let Joάά(q, m) = {H e /odd(ί)/ lKH) < m)
Γ/ẑ « we /ztfve ύf« isomorphism of algebras for arbitrary natural number
m

, m)l&m) = K2\WH H e Joάd(g, m)]//(^, m),

where I(q9 m) denotes the ideal generated by

{(WH)2HίH);HGJodd(q,m)} and

{z € Z2[WH H e /Odd(^, w)] 0(z) > m}.
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The theorem can be proved easily by use of the epimorphism

i*{F9 q): H*{6m) = H*(F(R"9m)/βm)^H*{F{R*,m)/βm)

and the result on H*(&m) due to the author (see [13; 3.8]).

REMARK. From Theorems 4.15 and 4.23 we obtain the results of
D. B. Fuks [5], G. Segal (see [1]) on H*(F(R2, m)/βm) and of F.
Cohen [2] on H*(F(R« , 2)/© 2).
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