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INDEX FOR PAIRS OF FINITE
VON NEUMANN ALGEBRAS

PAUL JOLISSAINT

The Jones’ index of a pair N C M of finite von Neumann algebras
with finite dimensional centers has been given two definitions: one
ring-theoretic, and one using Markov traces. We extend here the
second definition to the case of finite, o-finite von Neumann algebras
and we show that the two definitions agree when the algebras are
direct sums of finite factors. We also study Markov traces on such
pairs.

Introduction. The purpose of the present article is twofold:

(1) If N c M is a pair of direct sums of finite factors, we prove
that the index [M : N] defined in Chapter 3 of [3] is equal to the
ring-theoretic index introduced in Chapter 2 of [3].

(2) We give a definition of the index for a pair as above in terms
of canonical objects associated to N and M such as center-valued
traces and coupling operators.

In fact, we present a solution of problem (2) providing a framework
in which problem (1) is easily solved. More precisely, let M be a
finite, o-finite von Neumann algebra and let N be a von Neumann
subalgebra of M containing the identity of A . If N is of finite index
in M, ie. if M acts on some Hilbert space H in such a way that
the commutant Ny of N is finite, and that the coupling operators
cu(H)*! and cy(H)*! are bounded, then we define two bounded,
linear, normal maps

CM e L.(Z(N)) and DY e L.(Z(M))

which do not depend on the chosen representation and which have the
same spectral radius.

Thus the index of N in M, denoted by [M : N], is the common
spectral radius of C¥ and DY .

Let (M, L*(M), J, P) be the standard form of M ([4]). The
basic construction associated to the pair N C M gives the finite von
Neumann algebra JN'J, denoted by (M, ey). Then M is of finite
index in (M, ey) and [(M, ey): M] =[M : N], so it is possible to
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iterate the basic construction and we get a tower of finite von Neumann
algebras (M )r>o with

Mo=NcM=Mc---CM,CM,C---

where M), ; comes from the basic construction associated to the pair
M, _; C M, . Let us state the main result of this paper:

THEOREM 1. Assume that N and M are finite or countable direct
sums of finite factors, N being of finite index in M. Then the tower
(M) is isomorphic to the ring-theoretic tower of Chapter 2 of [3], and

[M : N] = lim sup[rk(M} | My)]/*
k—o00

where tk(M;|My) denotes the smallest possible number of generators
of My, as a right My-module.

Except for a technical lemma concerning some suitable trace on M,
Theorem I follows readily from the following proposition which gives
a nice relationship between the endomorphisms C# and Cffk :

ProvposITiON II. Suppose that N C M is a pair of finite, g-finite
von Neumann algebras, N being of finite index in M . Then we have
for every positive integer k :

M
Cy* = (CHHE.
We prove similarly that DX = (D )k
N M,_ ) -

The motivation for the choice of the map D% is explained by the

following result:

ProrosITION III. (1) Let N C M be a pair as in Proposition 11 and
let ¢ be a normal, faithful, finite trace on M. Then ¢ is a Markov
trace of modulus B for the pair N C M (see Definition 5.1) if and
only if-

9 o DA = Bo|Z(M).

(2) Suppose that ¢ is a Markov trace of modulus B for N C M.
Then its extension to (M, ey) is a Markov trace of modulus B for
M cC (M, ey).

We will see that Markov traces do not always exist, but classical
Perron-Frobenius theory implies that such traces exist when Z(M)
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and Z(N) are finite dimensional and when Z(N)NZ(M) = C (see
[3], 3.7.4). When the pair N C M has a Markov trace try; of modulus
[M : N], then the triple (N, M, try;) behaves more or less like a pair
of factors, as the next two results show:

THEOREM 1V. If the pair N C M admits a Markov trace try; of
modulus [M : N] then the basic construction (M, , ey) associated to
the pair N C My, is isomorphic to M, for every k.

Remark that Theorem IV is a generalization of Theorem 2.6 of [7].
Finally, the last proposition may be compared to the definition of
index in the case of factors [5]:

PROPOSITION V. Assume that try, is a normalized Markov trace of
modulus [M : N] for the pair N C M . Denote by try the restriction to
N of try,. Then the pair M' ¢ N' C B(L?(M)) admits a normalized
Markov trace try of modulus [N’ : M'] = [M : N] and we have for
every & in L*(M):

[M : Nty (ef") = tra(ef™),

where eéA) is the orthogonal projection onto the closed subspace [AE]
of L3(M).

I would like to thank P. de la Harpe, V. Jones and G. Skandalis for
their suggestions and comments during the preparation of this article.

1. Preliminaries. Throughout this paper M will be a finite, o-finite
von Neumann algebra, i.e. M admits a normal, faithful finite trace.
Z(M) denotes the center of M and f,, its canonical Z(M)-valued
trace. If M acts on some Hilbert space H in such a way that its com-
mutant M7, is finite, then there exists a unique positive, selfadjoint
operator cy(H), which is affiliated with Z (M) and invertible in the
sense of unbounded operators, such that

(e )your = cpg (H)(e{™)fm,

for every ¢ in H, where eéA) is the projection onto the closed sub-
space [4¢] of H and where f; denotes the trace on M}, . The
operator c;,(H) is called the coupling operator associated to M and

H and it possesses the following properties:
(i) cpr(H) = cm(H)™



46 PAUL JOLISSAINT

(i1) cqm(qH) = qcp(H) for every central projection ¢ ;
(iii) if €' is a projection in M7}, with central support 1, then:

cu, (€' H) = e'(e")iney (H).
Let us recall that if ¢’ is as in (iii) above, one has:
(xp ) = e'(xtn) and (x\)l =e'(e/tn) ! (e'xe’ i,

for x in M and x' in My, where iy, (resp. b, ) denotes the
canonical trace on My, (resp. M, , M},). (See [2] or [8]).

Two projections e and f of M are said to be equivalent if there
exists # in M such that: u*u =e and uu* = f. We write this fact:
e ~ f. If a projection e is equivalent to a subprojection of f, we
write: e < f. By Corollary V.2.8 of [10], if ¢ and f are projections
in M, then e < f if and only if es < fin .

Let (M, L2(M), J, P) be the standard form of M ([4]): M acts
normally and faithfully on the Hilbert space L2(M), P is a selfdual
cone of L*(M), J is an antilinear involution on L?(M) and the
following relations hold:

(1) JIMJ =M,

(2) JoJ =c* for ¢ in Z(M);

(3) JE=¢& for £ in P,

(4) aJaJ(P) is contained in P for a in M.

M, denotes the predual of M and M, . denotes the set of central
elements of M., i.e. those elements ¢ in M, such that ¢(xy) =
¢(yx) for every x, y in M. A normal, finite trace on M is then a
positive element of M, .. The preadjoint of the canonical trace b,
is an isometric isomorphism from Z(M). onto M, . whose inverse
is the map ¢ — ¢|Z (M) from M, . onto Z(M)., i.e.

(p|Z(M))(x*») = p(x) for x in M and ¢ in M, ..
If F is a bounded, normal linear map from Z (M) to the center

Z(N), where N is some finite, o-finite von Neumann algebra, we
denote by F, the map from N, . to M, . defined by

F.(p)=9poFoly

for every ¢ in N, ..
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We end this section with two lemmas which are certainly well known,
but we could not find any reference for them:

LeEMMA 1.1. Suppose that M is contained in B(H) and let e be a

projection in M such that there exist &, ..., &, in H with
" o)
e=\/ e,
i=1
Then there exist 1y, ..., N, in H such that the projections e,({w ) are

pairwise orthogonal and

n
e=3ef
i=1

Proof. Set e; = eé(M ) for ¢ in H. We prove the lemma by induc-
tion on »: the assertion is obvious for n» = 1; assume that it is true
for some 7, and let e be a projection in M such that

n+l1

e=\/e
i=1

with &, ..., ¢&,41 in H. Set
n+1
f= V € -
i=2
There exist 7, ..., l,+1 in H such that the e, are pairwise orthog-

onal with sum f. Moreover
e—f=e¢lvf—f~e¢l—eél/\fSeél,
and hence there exists 7, in H with e — f=¢, . m]
LEMMA 1.2. Let N be a von Neumann subalgebra of M containing
the identity of M. Then:
(1) (¥*)w =y for every y in N;
(2) if y € Ny is such that y' is invertible, then y's is invertible.

Proof. (1) We have to prove that one has for every { in Z(M),:

L(()o) = L ().

Fix some { in Z(M). and let ¢, be the unique element of M., .
such that ¢;|Z(M) ={. Then ¢;(y') = ¢,(y) since y*~ belongs to
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the norm-closed convex hull of the set {vyv*; v unitary in N} and
since ¢¢|N is central. Hence

L)) = e (v') = g (v) = L)

(2) There exists a positive number ¢ such that y® > c¢. One gets
from (1): yi» = (y%)% > ¢, and y' is invertible. i

2. Finite representations; index. In this section, A/ denotes a finite,
o-finite von Neumann algebra and N is a von Neumann subalgebra
of M containing the identity of M .

DEFINITION 2.1. (1) A (normal, faithful) representation (7, H) of
M s a finite representation of M if the commutant n(M) of n(M)
is finite and if the coupling operators c;(y)(H) and ¢,y (H) are
bounded operators.

(2) A representation (n, H) of M is a finite representation of the
pair N ¢ M if it is a finite representation for M and N.

Notation. Let (n, H) be a representation of M. We denote by
My (resp. Np) the commutant of n(M) (resp. n(N)) in B(H).
We simply denote by M’ (resp. N') the commutant of M (resp. N)
in B(L*(M)).

LEMMA 2.2. Suppose that M is contained in B(H) and that the
action of M on H is a finite representation of M. Let (n, K) be
another finite representation of M . Then there exist:

(1) an integer n > 1.

(2) aprojection €' in My®B(K,) with invertible trace (K, denotes
the Hilbert space of dimension n),

(3) a surjective isometry u from K onto e'(H ® K,), such that

n(x)=u*(x®1,)e'u for x in M.

Proof. Let cp(K) be the element of Z(M) C B(H) such that
n(cm(K)) = cyary(K). There exists an integer m > 1 such that
cu(K) < m and cy(H) > m~'. By Propositions 3 and 6, pages
300 and 302, of [2], and by Lemma 1.1, the identity of M} is the
orthogonal sum of m cyclic projections, and every positive normal
form on M is the sum of m cyclic forms. Set n = m?. By Theorem
3, page 61, of [2], there exists a projection e’ in My ® B(K,) such
that n(M) is spatially isomorphic to (M ® 1,)e'. Moreover

em(K)® 1, = n(e' ey (H) ® 1,
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which shows that (e’ )h; 1s invertible as c)(H) and cp(K) are. (We
denote by B, the canonical trace on My ® B(K}).) O

We are presenting now the main tools needed in this paper:

THEOREM 2.3. Let N C M be a pair as above.
(a) The following conditions are equivalent:
(al) there exists a finite representation of the pair N C M ;
(a2) the standard representation of M is a finite representation of
the pair N Cc M ;
(a3) any finite representation of M is a finite representation of the
pair NC M.
(b) Assume that one of the conditions in (a) holds, and let H be a
finite representation of the pair N C M. Define S¥: Z(M) — Z(N)
and T¥: Z(N) — Z(M) by

SN (2) = en(H)(ep(H) ™')™
and
T (w) = whv,
for every z in Z(M) and every w in Z(N). Set also
CM =SYTY¥ and DY =THSY.

(bl) The maps S¥, TM CM, DM are completely positive and
normal.

(b2) S¥ does not depend on the chosen finite representation: if
(p, K) is a finite representation of the pair N C M, one has for z
in Z(M)

plen(H)(ep(H) ™ 2)™) = e ooy (K)(Cpian (K) ™ p(2)) %

In particular CY¥ and DY do not depend on the chosen finite repre-
sentation.
(b3) The maps C¥ and DY have the same spectral radius.

Proof. The implications (a3) = (a2) => (al) are obvious. We show
that (al) = (a3): Assume that M is contained in B(H) and that
the action of M on H is a finite representation of the pair N C M,
and let (7, K) be a finite representation of M. By Lemma 2.2, we
may assume that K = ¢/(H ® K,;) and n(x) = (x ® 1,)e’, where n
and e’ are as in Lemma 2.2. Then Ny = ¢'(Ny,; ® B(Ky))e' is a finite
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von Neumann algebra and
cxm) (K) = né'(e')iven (H) © 1,

belongs to Z(n(N)) and is invertible by Lemma 1.2. (The trace on
Ny ® B(K,) being denoted by f),.) The assertions (bl) and (b3) are
obvious. Let us prove (b2): let (p, K) be as in (b2). By Lemma 2.1,
it suffices to consider the case where p is a spatial isomorphism, a
finite dimensional ampliation or the induction by a projection with
invertible trace. The first two cases are easy; so assume that p is the
induction by some projection e’ in M}, such that (e’)b'H is invertible,
where f; denotes the trace on M}, . Denote by by, (resp. h%) the
trace on Ny (resp. Ng). Then K =¢€'H, and

cm, (K)=e'(e)n - cp(H) and cn,(K) = e'(e")n - cy(H).
One gets for every z in Z(M):

e (K)(Cpan (K) ™' p(2))k
= e'cy(H)e'ln (")~ (e'(e"n)~ cpr (H) ™' 2)f
= e'cn(H)((e'(e"n)  epr(H) ™' 2)ln )
= e'cn(H)(cp(H) ™' 2)h.

We used Lemma 1.2 in the third line of the computation. The rest of
the statement follows now easily. O

DEFINITION 2.4. (1) N is said to be of finite index in M if the pair
N C M satisfies one of the equivalent conditions of Theorem 2.3(a).

(2) If N is of finite index in M, then the index of N in M,
denoted by [M : N], is the common spectral radius of the maps C¥
and DY .

(3) (See [3], Definition 3.5.3.) The inclusion of N in M is con-
nected if Z(NYNZ(M)=C.

REMARK. Suppose that Z(N) and Z (M) are finite dimensional.
Then the index above coincides with the index introduced in [3], Def-
inition 3.7.5. Indeed, denote by p;, ..., pm (resp. 4y, ..., gn) the
minimal central projections of A (resp. N). By Proposition 3.6.8 of
[3], one verifies that the matrices of the maps S}},l and T}\‘,l written in
the bases p;, ..., pm and qy, ..., g, are precisely the matrices f"/\‘,l
and T of Definition 3.7.5.
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COROLLARY 2.5. Let N C M C L be finite, o-finite von Neumann
algebras.

(1) If N (resp. M) is of finite index in M (resp. L) then N is
of finite index in L.

(2) If N is of finite index in L then N (resp. M) is of finite index
in M (resp. L).

(3) Assume that condition (1) or (2) above is satisfied. Then:

(i) Sy =Sy Si;

(i) TF=TLTH,

(ili) Ck = SMCL M,

(iv) Dk = TLDMSL

Proof. (1) follows from a straightforward application of condition
(a3) of Theorem 2.3.

(2) Let H be some finite representation of the pair N C L. We
have to prove that the operators ¢, (H)*! are bounded. There exists
an integer n > 1 such that cy(H) < n. By Proposition 5, page 301,
of [2], there exist &, ..., &, in H such that

! (N)
= e .

As N is contained in M we get

n o
1= (\/ e ) < ZCM(H Mo < ney(H)™,
=1

and hence cy(H)<n.

Similarly there exists m > 1 such that ¢;(H)~! < m. By applying
the proof above to the pair L}, C M}, we get cy(H)™!' <m.

(3)(1) Let H be some finite representation of L . One has for every
x in Z(L)

SY Sk (x) = en(H)(car(H) ™ St (x))™
= en(H) (e (H) ™ ear(H) (e (H) ™ x) i)™
= en(H)(co(H) 'x)™ by Lemma 1.2
= Sk(x).

(ii) follows immediately from Lemma 1.2, and (iii) and (iv) are
straightforward applications of (i) and (ii). o
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Let us establish the expressions of the maps S¥ , C¥ and D¥ in
the standard representation L2(M) since they will be used frequently:
Set ¢y = cy(L*(M)) and recall that ¢ (L3(M)) = 1. Then

S¥(2) = en(LA(M))(car (LA(M)) ' 2)w
=cyz™  for every z in Z(M).

Hence

CM(w) = S¥TH (w) = cy(wv)  for w in Z(N), and
D¥(z) = TYSYH(z) = (cyz')  for z in Z(M).

Before considering some examples of such pairs, let us study the case
of the pair My C Ny where H is some finite representation of N C
M:

COROLLARY 2.6. Suppose that N is of finite index in M and let H
be some finite representation of the pair N C M . Then M}, is of finite
index in Ny, and

[N}y : Myy] = [M : N].

Proof. Ny, is obviously finite and o-finite, so M}, is of finite index
in Ny. Let I': Z(M) — Z(M) be the multiplication operator by
cy(H). Then we get for z in Z(M) = Z(Mpy)

T DYT(z2) = car(H) ™" (e (H) (car(H) ™ ear (H) z) i Y
= cyp, (H) ey (H) ™" 2% Yo

NI
= CMZ(Z).

Hence the spectral radius of Cﬁ’,’ is equal to the spectral radius of

H

M
DN. D

ExXAMPLE 2.7. Let M be a finite factor and let N be a von Neu-
mann subalgebra of M containing the identity of M . Denote by try,
the standard trace on M, i.e. x = try(x) 1y for x in M. We
will see in §4 that Z(N) is finite dimensional if N is of finite index
in M. Let q;, ..., g, denote the minimal central projections of N .
One has

nh
ey =y dimg n(q;L*(M))g;  (see Chapter 3 of [3]),
i=1

and D,’{{ is the multiplication operator on C = Z(M) by try(cn).
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Hence
n
[M : N]= try(en) = ) dimg n(g;L% (M) trar(g))
=1
) 1
= > M, : N ]
i=1
since
[M,, : Ny ] = dim, n(g,L*(M))/ dimyg s (a;L*(M)
and

dimg rrg (9;L2(M)) = trar(g;) ™"

ExAMPLE 2.8. Let 4 be an abelian, g-finite von Neumann algebra
and let a be an automorphism of 4. Assume that there exists a
normal, faithful, semifinite trace 4 on 4 which is invariant under
a. Set M = Mat,(A), and

N={(J(; ) €4}

Let H = L*(A4, #)®C? and let u be the unitary operator on L?(A4, u)
such that a = Ad(«). Then

uc d

a bur\" _1(a+a"'(d) 0
uc d 2 0 ala)+d

for a, b, ¢, d in A. Hence cy(H) =2 and cy(H) =1/2,s0 N
is of finite index in M . Moreover

D¥(a)=2a+a(a)+a (@) forain A= Z(M), and

mfa O D(a) 0 M
Cy (O a(a)) = ( 0 a(D(a))) where D = Dy .
As DM(1) =4, we have [M : N]=4.

Finally, remark that the inclusion of N in M is connected if and
only if « is ergodic.

The motivation for our definition of index needs the basic construc-
tion which is the subject of the next section.

3. The basic construction. Throughout this section N C M is a
pair of finite, o-finite von Neumann algebras, N being of finite index
in M.

N},:{(a bu );a,b,c,deA} is finite, and
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For ¢ in M, ., wedenote by Q, € P C L?>(M) the unique positive
vector in L2(M) such that

p(x) = (xQ,, Qp) forx in M (see [4]).

If ¢ isa normal, faithful, finite trace, we denote by E% the (unique)
conditional expectation associated to ¢, and by e]‘(’, the orthogonal

projection onto [N€Q,].

ProprosITION 3.1. Let ¢ be a normal, faithful, finite trace on M .
Set (M, e%) = (MuU{ek})". Then

(1) (ef)w =cx's

(2) J commutes with e}, and e§xe¥ = E%(x)ek for x in M;

(3) if v is another normal, faithful, finite trace on M then the
projections e}, and el are equivalent in N' and

(M, e%) = (M,e¥) =JINJ.

Moreover, el‘(’, and e}(} are equivalent in JN'J .

Proof. (1) By faithfulness of ¢, the vector Q, is cyclic and sepa-

rating for M ; thus e’ )=1. As ey = egv ), we have by definition of

ey = en(L*(M))
en(ef) = 1.

(2) Let J, be the involution on L?(M) extending the map: xQ, —
x*Q,. By Lemma 2.9 of [4], we have J, = J. Hence Je§ = e} J
and ey xe} = E%(x)ey for x in M. See [5], §3.

(3) It follows from (2) that N = M n{e%} , and that (M, ef) =
JN'J. By (1), e} and e} are equivalent in N', as they have the
same trace. Finally, they are equivalent in JN'J since they commute
with J . o

Thus, in order to define the basic construction for the pair N C M,
we choose an arbitrary normal, faithful, finite trace tr on M, and
we set ey = el and (M, ey) = JN'J which is equal to (M, e) for
any other such trace ¢ on M. As M = JM'J, then M is of finite
index in (M, ey) and [(M, ey) : M] = [M : N]. This allows us to
iterate the basic construction and we get a tower of finite, o-finite von
Neumann algebras (M )r>o with

My=N, M =M, and My =(Mk,€Mk_|) =JkM;(_le,

where J; is the involution on the standard representation L?(Mj).
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Recall now that for every normal, faithful, finite trace ¢ on M,
there exists a unique normal, faithful, semifinite trace T1’¢ on N’
with the following property:

Tr,(efy'ek) = (V'Qy, Qp), fory'in N'.

In fact, Tr’q, is the trace on N’ whose spatial derivative (in the sense
of [1]) with respect to ¢|N is equal to 1. Let then Tr, denote the
corresponding trace on (M, e}) = (M, ey) = JN'J . It is the unique
normal, faithful trace on (M, ey) such that

Try(efxed) = (xQ,, Q,) for x in (M, ey).

Moreover, one has another nice interpretation of the trace Tr,: By
Proposition 3.6.1(v) of [3], the map ¥, from N to the reduced al-
gebra el (M, en)el given by W¥(y) = ye} for y in N is an isomor-
phism and it is easily checked that Tr, is the unique normal trace on
(M, ey) such that

Try €% (M, en)el = po ¥ 1.

We are ready to interpret the maps D¥ and S%’eN) in terms of
the traces ¢ and Tr, on M and (M, ey) respectively. Recall that
D, is a map from M, . to itself and S, is a map from M, . to
(M, eN)s,c, where we set D =D¥ and S = S}(‘y’e”) .

PROPOSITION 3.2. The map S, is the unique positive, linear, bounded
map from M, . to (M, en). . such that

(1) §*((/)) = Tr, for every normal, faithful, finite trace ¢ on M .
Moreover we have for every ¢ in M, .:

(2) Si(9)|M = D.(p).

Proof. Uniqueness of such a map follows from its continuity, from
uniqueness of Tr, and from density of normal, faithful, finite traces
in the positive part of M, .. Let us prove (2) first: we have for any
¢ in M, . and any z in Z(M)

~ M, .
Su(p)(2) = p(Siy" ¥ (Lhowem))
= o((JenJJ z* J)hw')
= p((ex2™)) = 9(D(2)) = D.(p)(2),

since ¢y ¢ (L2 (M)) = Jey'J .
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In order to prove (1), let us fix a normal, faithful, finite trace ¢ on
M . We establish first the identity:

*) yiv = cn(ef Jy*J)  for every y in N.

Indeed, set §(y) = cy(efJy*J)* for y in N. Itis easy to check that
0 is linear, positive, bounded and normal, that 6(y;y,) = 6(y,y;) for
Y1, ¥2 in N, and finally that 6(w) =w for w in Z(N), since one
has for such a w: e{Jw*J = e{w, which implies that §(w) = w
using Proposition 3.1. By uniqueness of the canonical Z(N)-valued
trace, we get 6 =, and (*) is proved. Now take a and b in M,
and set y = E{(a)EX (). Then

S.(9)(e§ (aekb)ef) = Su(p)(ved)
= o((JenJ (ved) o Yiur)
= g((cn(efTy*J ) )i)
= (™)) = p(y)
= (aefbQ,, Q,).

Hence §*(¢) = Tr, by uniqueness of Tr, and by density of the set of
finite sums of elements of the form ae%b (a, b in M) in the algebra
(M, ey) (Lemma 1.1 of [6]). O

In the next sections we will need to study the relationships between
the maps CIQ,J" and Dj:,lk , and the maps C,{‘,l and DZ: respectively.
1

The following proposition is the first step in this direction:

ProrosiTioN 3.3. Consider a pair N C M as above. Then the
following identities hold.

(1) CA-erh —TMCH,

(2) Sy Dy = DSy,

Proof. (1) Fix w in Z(N). One gets

i T w) = " (i) = ST (v
= S (T (s )
= (Jex (Wt )
= (e (i) )
= (C¥ (w))ow = TH CY (w).
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(2) Similarly one has for w in Z(N)

Syt DY (Jwr ) = ST (Jeww* ) Yionem)
=S4 (I (enw* Yy )
= (Jen((enw™*)h)i: J )i
= (en((cyw)un ) )om
= DN ((cyw))
=D¥((JenJJw*J)w")
= DM (). O

COROLLARY 3.4. For every pair N C M as above and every positive
integer k, we have

(1) Cy* = (CI¥;
(2) Dy = (Dyt ).

Proof. (1) By induction on k. If k = 1 it is obvious. Suppose
that the assertion is true for some k and for every pair of finite, o-
finite von Neumann algebras of finite index. Applying the induction
hypothesis to the pair M C M, ; one gets

Cilet = SMCH TM by Corollary 2.5

M. ey
= sYcll kT

= S%(CLM’e”))k_l TH CY by Proposition 3.3(1)

Me, -
=S¥ Cy T (!
= SN TW (CANF = (GO,

The assertion (2) is proved in the same way. O

COROLLARY 3.5. Let N C M and k as above, one has
(1) Ck(1) = cn(L*(My)), where C = C¥;

(2) [M; : N]=[M: NI,

(3) [M:N]>1.

Proof. (1) Ck(1) = C¥*(1) = cy(L*(Mj)) when computed in the
finite representation L2(Mj,).
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[M : N1 = Lim [|(Cy*)™|'/™ = Tim [|C™& ||/
_ hm ncmk”l/mk)k (M : N]k

(3) By Proposition 3.1 we have cy(L2(M;))~! < 1, hence Ck(1) >
1, and ||Ck||'/k > 1 for every k since C is completely positive. O

4. The case of pairs with atomic centers. We assume here that
N C M is a pair of finite, g-finite von Neumann algebras with atomic
centers (see [10], Definition III.5.9). It is equivalent to say that N and
M are finite or countable direct sums of finite factors. The purpose
of the present section is to prove that the index defined above coin-
cides with the index introduced in §2.1 of [3]. We denote by Min(M)
the set of minimal central projections of M and by Min(N) the cor-
responding set of N. If p and p’ belong to Min(M), we say that
they are neighbors if there exists ¢ in Min(N) such that pg # 0 and
p'q # 0. We denote by W), the set of neighbors of p € Min(M).

LEMMA 4.1. There exists a positive integer n such that for every p
in Min(M) one has
card(W,) < n.
Moreover, the projection z(p) = Y ,cy € is the support of DX (p) in
Z(M).

Proof. Set Q, = {qg € Min(N); pq # 0} for p in Min(M). Then
quQ q is the central support of p in N’, and using Lemma 3.6.7
of [3], we see that:

chth = Z ('q'lz),q/cp,q)q >

q€Q,

where A2 , = [Mpg: Npgl > 1 and ¢, 4 = trpp(pg) . We get for g in
Qp

llewll - g > enp™q > (1/cp,q)q; hence ¢, gllenll > 1.

1= > tuPg) =Y ¢.q»

gEMin(N) q€Q,

But

which implies card(Q,) < ||cy||. Similarly, we have

card{p’ € Min(M); p'q # 0} < ||c¥||
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for every qg € Qp, since c?\‘/ = ¢, (L*(N")). Hence card(W,) <

llewll - ”C IE
Finally, as D} (p) = (cyp" )™ , the last claim is easy to check. O

LEMMA 4.2. There exists a normal, faithful, finite trace ¢ on M
with the following property: for every x in (M, ey), there exists a
unique y in M such that

9 _ ye?
xey =yey.

In particular, (M, en) = {3_]_, ajeyb;;a;j, bj € M}. (See Lemma
3.6.3 of [3].)

Proof. The proof is decomposed into two parts:
(1) We show that there exists a normal, faithful, finite trace ¢ on
M and a positive number ¢ such that

*) D,(¢) < co.
Indeed, if Z(N) or Z(M) is finite dimensional then they are both
finite dimensional by Lemma 4.1, and any faithful trace on A satisfies
(*). We assume that Z(N) and Z (M) are infinite dimensional and
that the inclusion of N in M is connected. Then fix an arbitrary
projection py in Min(M) and set V5 = {po} and V; = W, \},. For
k>1, we set

k
Vk+1={peMln U - and 3p’ € V), such that p' GW}

By connectedness of the pair N C M, we get that Min(M) is the
union of the ¥V ’s and that V, # & for every k (since if V), = O
for some k > 0, then the projection z = Elfzo Y .cy € belongs to
Z(N)N Z(M), hence equals 1). ’

Moreover, if n denotes the integer given by Lemma 4.1, it is easy
to verify that:

(i) card(V;) < n* for every k;

(ii) for every k and for every p in ¥, one has: W, C Ufﬂ: :
Then we set ¢(pg) = 1/2 and for p € Vy.: ¢(p) = n~*k=2. Thus there
exists ¢’ > 0 such that

Y. o) <co(p) and Z«)(p )< 5 +Zk ? < o0,
peW k>1

for every p in Min(M).
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As D(p) < |lenllz(p), the trace ¢ above satisfies (*) with ¢ =
llelle’. 5

(2) We take ¢ asin (1) and we set ¢ = S,(p) = Tr, € (M, en)x,c
(see Proposition 3.2). Let Ej, denote the conditional expectation
from (M, ey) onto M associated to ¢. We show that Ej(ef) is
invertible. Indeed, let Q, and Q; € P C L*(M) be the vectors
associated to ¢ and to ¢|M = D.(¢) respectively. We get for every
ain M

(Em(en)aQ;, aQ;) = ¢(Ep(efaa*)) = p(efaa*)
= (aa*Q,, Q,) by Proposition 3.2

= ¢(a*a)
> ¢ 'D.(p)(a%a) = ¢ (aQy , aQp).
We end the proof as in Lemma 3.6.3 of [3]. O

Before stating and proving the main result of this section, let us re-
call the definition of the ring-theoretic basic construction proposed in
§2.1 of [3]: We associate to the pair N C M the pair M C Endy (M),
where Endy (M) is the algebra of endomorphisms of M viewed as
a right N-module; M is identified with a subalgebra of Endy (M),
each x € M being identified with the left multiplication operator
(y —» xy) € Endy(M). If L is a right N-module we denote by
rk(L|N) the smallest possible number of generators of L as a right
N-module.

THEOREM 4.3. Let N C M be a pair of finite, o-finite von Neumann
algebras with atomic centers, N being of finite index in M . Then

(1) ICHIl < tk(MIN) < [|CHN + 15

(2) MyM = (M, ey)as N-bimodules and Endy(M) = ((M, ey)
as C-algebras;

(3)
[M : N] = lim sup[rk(M®|N)]/*
k—o0
= lim sup[rk(M;|N)]/%,
k—o00
where M® = M @y M ---®y M, k times.

Proof. (1) We have by definition C¥ (1) = cy(L*(M)) = cy. Set
r = rk(M|N). Then there exist &, ..., & in L?(M) such that the
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subspace generated by the N¢&;’s is dense in L2(M). This means that

1= \/ e .
Thus:
r e r
= Ve | sl < rey!
=1 j=1 ’
which implies that

ICH (DI < 7 = tk(M|N).

As C¥ is completely positive, we have ||C¥|| = |C¥(1)|, and the
first inequality is proved.

In order to prove the second one, let ¢ be a normal, faithful, finite
trace on M as in Lemma 4.2, and let m be the integer such that

llewll < m < len|| + 1.

We are going to exhibit a basis {v;; i =1,..., m} of M over N
with the following properties:

(a) ES(viv) =0 if i #j;

(b) fi = E}(v}v;) isa projectionin N, v; f; = v;, and E§(vix) =
fiE%(vix) for every i and every x in M;

(c) every x in M has a unique expansion

m
x =Y vy; withy;in N;
i=1
in fact v;y; = v;ER(v}x).
Such a basis {v;} is called a Pimsner-Popa basis of M over N;

see [6] and Theorem 3.6.4 of [3].
Remark first that for every ¢ in Min(N) we have

st e (€ da)) > m™",

since (e)iv = c;,‘. Hence for every ¢ in Min(N) there exist m
pairwise orthogonal projections r;(g) such that

ri(q) 3 ekJqJ forevery i, and Zr, (q) = JqJ.
i=1
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If r; = quMin( ) ri(q), then the projections r;’s are pairwise or-
thogonal, their sum equals 1 and r; < e} for every i. Then there
exist m partial isometries w; € (M, ey) with

m
wiw; <ef and Y wiw! =1
i=1
By Lemma 4.2 there exist v, ..., v, In M such that w; = v,-ef\’,
for every i. It is easily verified that the collection {v;} is a Pimsner-
Popa basis of M over N: see the proof of Theorem 3.6.4 of [3]. This
implies that rk(M|N) < m, and (1) is proved.
Finally (2) follows from the existence of the Pimsner-Popa basis
above, and assertion (3) follows from assertions (1) and (2) and from
Corollary 3.4(1). m]

5. Markov traces. We return to the general case where N C M isa
pair of finite, g-finite von Neumann algebras with the same identity,
N being of finite index in M. We set as usual C = CY, D = D%
and S = S}(ly’e”). (Recall that F,(¢) = ¢ o F olfi.) Let us recall
Definition 3.7.1 of [3]:

DEFINITION 5.1. A normal, faithful, finite trace ¢ on M is a
Markov trace of modulus B for the pair N C M if it extends to a
normal, faithful, finite trace ¢ on (M, ey) such that

Bo(ekhx)=op(x) forx in M.

ProrosiTiON 5.2. (1) Let ¢ be a normal, faithful, finite trace on
M. Then ¢ is a Markov trace of modulus B for the pair N C M if
and only if

D.(p) = Bo.

(2) Suppose that ¢ is a Markov trace of modulus B for the pair
N C M. Then its extension to (M, ey) is equal to ﬂ"g*((p) and it
is a Markov trace of modulus B for the pair M C (M, ey).

Proof. (1) Assume that ¢ is a Markov trace of modulus f. We
prove that its extension ¢ isequalto B~1S,(¢). Indeed,if a, be M,
we have

Bé(ey(aeyblen) = Bo(ey EN(a)b)
= p(E%(a)b) = (aefbQy , Q,).
Hence the normal, faithful trace B¢ satisfies
Bo(ekhxed) = (xQ,, Q,) for x in (M, en).
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By Proposition 3.2 we get ¢ = Tr, = §(¢) , and

D.(p) = S.(p)|M = Bo|M = Bo.

Conversely, if ¢ is an eigenvector of D, with eigenvalue S, set ¢ =
B~'S.(p). Then

Bo(enx) = §*((/))(e}(',x) = (xQ,, Q) = ¢(x) for x in M.

Moreover ¢ extends ¢:
F|M = B7'S.(9)|M = B 'D.(p) =9 by assumption.

(2) By (1), we need only check that ¢ o Df‘y’em = B¢ . Using
Proposition 3.3(1), we get

o DM = gty o giMen) pl.ey)

=B 9o DYSH Y =908 = pg. o

CoOROLLARY 5.3. Suppose that there exists a normalized Markov
trace try; of modulus [M : N] for the pair N ¢ M. If (M) de-
notes the tower given by iterating the basic construction, let try; be the
Markov trace of modulus [M : N] extending try, .

Then for every k, the trace try, isa normalized Markov trace of
modulus [My : N1 =[M : NJ* for the pair N ¢ M.

Proof. Set Dy = Dy ; by Corollary 3.4 we have (D)% = Dy*.
As try, oD, =[M : N] try, , we see that

tray, OD% =[M : NJ¥ try, = [My : N]try, by Corollary 3.5. O

REMARK. Let p be a non-zero projection of Z(N)NZ(M). Then
the reduced algebra Np is of finite index in Mp and [Mp : Np] <
[M : N] since C%)p is the restriction of C¥ to Z(Np) = Z(N)p.
If ¢ is a Markov trace of modulus [M : N] for N ¢ M, then
the corresponding trace ¢, on Mp is a Markov trace of modulus
[M : N] for Np C Mp. Hence [Mp : Np] = [M : N] for any
non-zero projection p of Z(N)NZ(M).

Of course, such a condition is almost never fulfilled in the noncon-
nected case. This shows that connectedness of the pair N ¢ M is
a reasonable hypothesis for the study of Markov traces of modulus
[M : N].
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DEFINITION 5.4. Let 4 be an abelian von Neumann algebra and let
F be some positive, normal endomorphism of 4. We say that F is
irreducible if no o-weakly closed ideal of A4, distinct from {0} and
A, is invariant under F.

REMARK. Let A and F be as above. The predual A, of A4 is a
Banach lattice, and a subspace V' of A, is solid (in the sense that if
p €V and y € A, and if |y| < |p| then y € V) if and only if it is
invariant under the action of 4,ie. a-¢ €V for a in 4 and ¢ in
V . Hence, using Theorem II1.2.7 of [10], it easy to verify that F is
irreducible if and only if its preadjoint F, is irreducible in the sense
of [9], page 269, i.e. no closed solid subspace, distinct from {0} and
A, , is invariant under F,.

The following result provides a link between connectedness of the
pair N € M and Perron-Frobenius theory for irreducible positive
maps on Banach lattices:

PROPOSITION 5.5. For a pair N C M as above, the following condi-
tions are equivalent:

(1) the inclusion of N in M is connected,
(2) the map C¥ is irreducible,
(3) the map D¥ is irreducible.

Proof. Connectedness of the pair N C M is equivalent to connect-
edness of the pair M’ C N' C B(LX(M)). As CY, = DM (see the
proof of Corollary 2.6), we need only prove equivalence between (1)
and (3). Thus assume first that Z(N)NZ(M) # C, let p be some
non-trivial projection of Z(N)NZ(M) and set I = Z(M)p. As
D(zp) = D(z)p for z in Z(M), we see that D is not irreducible.
Suppose now that the pair is connected, and let 7 # {0} be some
o-weakly closed invariant ideal of Z(M). Denote by p the support
of I:1=Z(M)p. Hence D(p) = D(p)p, and by faithfulness of b/,
we get piv' (1 —p) = 0. Let ¢ be the support of pi in Z(N). We
are going to prove that ¢ = p. We need only show that ¢(1—-p) =0,
because ¢ is also the central support of p in N’. For every integer
n>1 let g, € Z(N) be the spectral projection of p'~' corresponding
to the interval [1/n, o). The sequence (g,) increases to ¢ and as

P gy > (1/n)gy,

there exists a sequence (x,) in Z(N); such that x, = x,g9, and
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Xnp™' = g, for every n. Thus g,(1 —p) = x,p" (1 —p) =0 so
a(1-p)=\/a(1-p)=0. O
n

By classical Perron-Frobenius theory, if the centers Z(N) and Z (M)
are finite dimensional then the pair N ¢ M admits a unique Markov
trace of modulus [M : N], provided that the inclusion is connected.
See [3], Corollary 3.7.4. In the infinite dimensional case, we will see
that Markov traces may or may not exist. We need the following
result:

PROPOSITION 5.6. Suppose that the inclusion of N in M is con-
nected and that C¥ or DY admits a positive eigenvector associated
to the eigenvalue [M : N]. Then any non-negative, normalized eigen-
vector of D., if it exists, is a normalized Markov trace of modulus
[M : N1, and such a trace is unique.

Proof. In any case, we can assume that D admits a positive eigen-
vector associated to [M : N], since if 0 # wy € Z(N)4+ 1is such that

C(wo) = [M : Nwy then zo = wi¥ # 0 and D(zo) = [M : N]zo. Let
V={peM,_;l|p|l(z)=0}

It is easy to see that V" is a closed solid subspace of M, .. Moreover,
if peV, 9o =9+ ip; with ¢j=¢; then p; €V and

ID.(¢)|(20) < Di(l9])(20) = [M : N]|pj|(z0) =0,
which shows that D.(¢) = D.(¢,) + iD.(ps;) belongs to V. By the
irreducibility of D, we have V' = {0} since zy # 0. Now, if ¢ is an
element of M, . such that ¢ >0, ¢(1)=1 and D.(¢) = B¢ then

Bo(z0) = Du(9)(20) = [M : N]p(z0),
which proves that f = [M : N] since ¢(zo) > 0. Moreover, ¢ is
faithful: indeed, let I, = {z € Z(M) : ¢(z*z) = 0}. Then I, is a
o-weakly closed ideal of Z(M) and it is invariant under D: if Z is
in I, we get

¢(D(2)*D(2)) < |IDll¢(D(z*2)) = ||D||I[M : N]g(z"z) = 0.

Since I, # Z(M), we have I, = {0}.

Finally, if ¢,, ¢, are Markov traces of modulus [M : N], set
v =0 —¢,. Let vy =y, — w_ be the Jordan decomposition of ¥ .
Then

[M : N]ly| = |D.(¥)| < Du(l¥]),
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but D.(|y|)(z0) — [M : N]ly|(z0) = 0, so Di(ly|) = [M : N]|ly| and
v, and y_ are both eigenvectors of D, with eigenvalue [M : N]. As
their supports are orthogonal and as (1) =0, we see that ¥ =0.0

EXAMPLE 5.7. Let us consider the pair N C M of Example 2.7:
M = Mat,(A) with 4 abelian and

v={(3 ) e}

where « is an ergodic automorphism of 4. Recall that [M : N] =4,
and that D(a) = 2a+a(a)+a~!(a) forevery a in A= Z(M). Since
1 is a positive eigenvector of D associated to 4, D, has at most one
eigenvector associated to 4 which is normalized. As aoD = Doa, if
@ is such a vector, then ¢|4o0a = ¢|A4. Consequently, if 4 =[°(Z)
and if « is the shift automorphism then there is no Markov trace
for the pair N ¢ M. If S! denotes the unit circle, if 4 = L*(S!)
and if « is some irrational rotation, then the trace on M defined
by Lebesgue measure on S! is the unique Markov trace for the pair
N Cc M . These examples were suggested to me by G. Skandalis.
We generalize now Theorem 2.6 of [7]:

LEMMA 5.8. Suppose that there exists a normalized Markov trace
trys of modulus [M : N] for the pair N C M. Let L be a von
Neumann algebra containing M and let tr; be a normalized, nor-
mal, faithful, finite trace on L extending try,. Finally let e be some
projection of L. Then the following conditions are equivalent:

(1) There exists a spatial isomorphism = from (M, ey) onto L
such that:
n(x)=x forxin M and n(ey) =e,

where ey = eg’" ;
(2) L and e have the following properties:
(i) the central support of e in L is equal to 1;
(ii) exe = Ex(x)e for x in M ;
(iii) Epr(e) = B~!, where B =[M : N];
(iv) L= (MU{e})".

Proof. The implication (1) = (2) is clear. Assume that (2) holds.
Denote by MeyM (resp. MeM) the subset of (M, ey) (resp. L)
constituted by all finite sums of elements of the form aeynb (resp.
aeb) with a, b in M. The MeyM (resp. MeM) is a strongly
dense *-subalgebra of (M, ey) (resp. L), by properties (i), (ii) and
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(iv): see [3], Proposition 3.6.1. Denote by Q € L?({M, ey)) and
by Q' € L?(L) the positive vectors associated to tr; M.e, andto trp
respectively. Then the subspaces MeyMQ and MeMS) are dense
in L>((M, ey)) and in L?(L) respectively. Using property (iii) one
verifies that the map

n n
Z ajer,-Q — Z ajeb,-Q’
j=1 j=1

is an isometry from MeyMQ to MeMQ'. Thus it extends to a sur-
jective isometry u from L2((M, ey)) onto L?>(L). Then we set

n(x) =uxu* for x in (M, ey).

We get
n n
/4 (Zajel\lbj) = Zajebj
j=1 j=1
for ay,...,a,, by,..., b, in M it is easy to check that n(x) = x
for x in M. O

Assume henceforth that there exists a normalized Markov trace tr,
of modulus g = [M : N] for the pair N C M. Denote by Ey,
the conditional expectation from M}, onto M) associated to the
Markov trace try,, and let (ec)x>1 be the sequence of projections
associated to the Markov traces. The following relations hold:

(a) ére = ee if |k - ll >2;

(b) erersiex = B ley for every k (see [5)).

Set for n >0 and for k > 1

gr]:( = (€nsklnik—1"""€k)(€nik+1 " €ks1) " (€nik " €nik)
€My ki1,

fnk+1 = y,,g,’{ ,  where Pn = ﬂ"("“)/z, and fy,; = fnl+1-

The proof of the following lemma is exactly the same as in the case
of factors [7], §2:

LEMMA 5.9. With the notations above, one has:
(1) (gri)* = gr} = (en41 - ’32n+l)g,i_1(92n “lnyl);
(i1) fn41 is a projection in N'N\ My, ;
(iil) EM2n+k(g’Il() = B—('H—l)gr]l(jll ;
(iv) Ep;, (fas1) = B0
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THEOREM 5.10. Let N C M be as above. Denote by ey , the
projection of L*(M),) onto the closed subspace [NQ,], where Q, is
the positive vector associated to tryy . Then there exists an isomorphism
mn from (M, ey n) onto M, such that

nn(x) =x for x in M, and nt,(en n) = fn.

Proof. By Lemma 5.8, assume that we have for some n > 1:

(i) the central support of f, in M>, equals 1;

(11) InXfo=EN n(x)fn for x in M,;

(iii) En (fu) = B";

(iv) Map = (Mo U{fn})".

Remark that (i) to (iv) hold for n = 1. Let us check them for n+1.
Condition (iii) is statement (iv) of Lemma 5.9.

(i) Every central projection of M3, ., is of the form JgJ where g
is a central projection of A, and where J is the canonical involution
on L2(M,,,). We prove that glJgJ #0 if ¢ #0:

€14 = (ens1--€m)enr18n_1(€2n - €nt1)Jg]
= (en1 - 'eZn)e2n+qu;1—1(e2n e lnil);
hence
trar, (8,JgJ) = B~V try (gg,—1) >0
by induction hypothesis.

(i1) It suffices to show that f,,1xe,y fy+1 = En_ ni1(xeny)fns1 for
x and y in M,,. As e,,; commutes with A, and as e,,,; commutes
with f, , we have:

for1Xeny fusy = (&) xeny g,
= Va(€ns1- - €2m) &1 X(€2ns1 - €n- - €2n1)VEn_1(€2n - €ns1)
= (2,22 B Nens1 - - €ans1) JuXV fu(€2n - - ps1)
= B EN n(x¥)fas1 = EN pi1(X€ny) futi-

(iv) By Kaplansky’s density theorem and by induction, it is easy to
see that the subspace M>,_1€5,_1€2,€2n41 M2, fnM>, is strongly dense
in My,yy. As try, is a Markov trace, and as My, is isomorphic
to (My, eN n),then My, f, = M,f, by Lemma 1.2 of [6]. Then by
going on in the same way, we see that the subspace

Mn+l(en+l o '32n+l)f;1(62n e )Mn+l

is strongly dense in My, ». As (€,41- - €ns1)fn(€2n - €ny1) is pro-
portional to f,,;, we have that M, f,. 1M, is strongly dense in
My i
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Finally, let us mention the following observation which may be com-
pared to the original definition of index in the case of factors [S]:

PROPOSITION 5.11. Assume that N C M is a pair as in Theorem
5.10. Denote by try the restriction to N of the Markov trace tryy.
Then the trace try: on N' C B(L*(M)) defined by

try (V') =M : NI™ trp(eny™) fory' in N',

is a normalized Markov trace of modulus [M : N1 = [N': M'] for the
pair M’ C N'. Moreover one has for every & in L*(M):

[M : Nty (ef)) = trn(efM).

Proof. We have: Dﬁ',(w) = ((cyw)™ ) for w in Z(N). Hence

try oD} (w) = [M : N~ trag((en((cnw)in)in Yin)
= [M : NY" " trar (DY ((cvw)s))
=[M : N)[M : NI trys(enw)
=[M : Nltry(w) for w in Z(N).

Moreover, try/ (1) = [M : N]~! trM(cg\‘,‘) =[M : NI Ttry (DY (1)) =
1. Finally, if & € L?(M), we get by definition of cy = cy(L2(M)):

ey = cn(ef™)iw,  hence

[M: Nty (eg) = trar(en(efM)v) = trw(ef™). o
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