
PACIFIC JOURNAL OF MATHEMATICS

Vol. 146, No. 2, 1990

ON /^-MIXING EXCEPT ON SMALL SETS

RICHARD C. BRADLEY

For stochastic processes, some conditions of " /^-mixing except on
small sets" are shown to be equivalent to the (Rosenblatt) strong
mixing condition.

I. Introduction. Suppose (Ω, &) is a measurable space. For any
probability measure μ on (Ω, 5^), and any two σ-fields sf and 3S c
SF, define the following measures of dependence:

( ) | , A ex? , B

- μ(B)\, iGJ/, fi

L2(Ω ,

ι = l 7 = 1

where the last sup is taken over all pairs of partitions {^ , . . . , Aj}
and {B\, . . . , i?/} of Ω such that Λ/ G J / for all / and Bj e 3§ for
all j . Here of course μ(B\A) := μ(A πB)/μ(A)9 0/0 is interpreted
to be 0, and

where Eμh := fΩhdμ. In what follows, we shall be working with a
given probability measure P, and these definitions will be used with
μ = P and with μ — P(-\D) for various events D.

Suppose X := (X^, k G Z) is a strictly stationary sequence of
random variables on a probability space (Ω, &~, P). For — oo < / <
L < oo let ^ L denote the σ-field of events generated by the r.v.'s
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? J <k <L). This sequence X is said to be

strongly mixing [8] if a(n) := aψ'^ , ̂ °° P) —• 0 as Λ —• oc,

0-mixing [6] if <£(/ι) := ^ O ^ , ^°° P) -+ 0 as n -> ex),

/>-mixing [7] if />(*) := ?{??„, ^°° P) - 0 as * - oo,

absolutely regular [10] if jϊ(/i) := 0 G^L0*,, ̂ °° P) -> 0 as n -+ oc.

It is well known (see e.g. [2]) that (i) p-mixing implies strong mix-
ing, (ii) absolute regularity implies strong mixing, (iii) ^-mixing im-
plies /^-mixing and absolute regularity, and (iv) aside from transitivity,
there are no other implications between these four mixing conditions.
Also (see [1], [3], [5]), /7-mixing is equivalent to the condition

λ(n) := λψ-^ ,&n

oo;P)-+0 as n -> oo.

The following proposition is already well known, at least in princi-
ple:

PROPOSITION 1.1. Suppose X := (Xk 9kez) is a strictly stationary

sequence of random variables on a probability space (Ω, &, P). Then

the following two statements are equivalent

(1) X is absolutely regular.
(2) There exists a sequence of events D\, Dι, D3, . . . e ^L0^ such

that Lim^oo P(Dn) = 1 and L i m , ^ </>(&?„, ^°° P( \Dn))
= 0.

Thus the absolute regularity condition is in essence a condition of" φ-
mixing except on small sets" (the "small" exceptional sets being D\,

The argument for Proposition 1.1 is elementary; its main features
are in e.g. [9, Chapters 6 and 12], where the absolute regularity condi-
tion is formulated under the name "weak Bernoulli." Let us quickly
review it here: One can show that for each n > 1,

β(n) = EplsutfPiB^) - P(B)\ 9BeS^°]

where PM^PQO) is a regular conditional probability (whose existence
may be assumed without loss of generality). From this and elemen-
tary calculations, Proposition 1.1 holds with the very last equation in
Proposition 1.1 replaced by

P(A)>0, BeSΓ

n

oo] = 0.
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From this and an elementary calculation (using e.g. Lemma 2.2 in §2
of this note), one has Proposition 1.1 itself.

M. Peligrad and the author [4] studied conditions which might be
described as " p-mixing except on small sets." Our purpose here is to
show that some of these conditions are equivalent to strong mixing.
Our results are formulated in Theorems 1.2 and 1.3 below; statement
(2) in Theorem 1.3 gives the main version of "/^-mixing except on
small sets."

THEOREM 1.2. For each ε > 0, there exists δ > 0 such that the
following statement holds:

If (Ω, &, P) is a probability space and si and 38 are o-fields
C & such that a(si , 38 P) < δ, then there exists an event D e si
such that P(D) > 1 - ε and p(si , 38 P{-\D)) < e.

Theorem 1.2 will be proved in §2. By the simple inequality

a{sf 93B\μ)< ρ{$f , 38 μ)

and Lemma 2.2 below, one trivially obtains the following
"converse" of Theorem 1.2: If ε > 0 , J / and 38 are σ-fields,
D is an event (not necessarily in si V 38), P(D) > 1 - ε and
p(si , 38 P(-\D)) < ε, then a(si ,38\P)<Aε. As an application

of Theorem 1.2 together with this "converse", we have the following
analog of Proposition 1.1:

THEOREM 1.3. Suppose X := (Xk, k e Z) is a strictly stationary
sequence of random variables on a probability space (Ω, &, P). Then
the following two statements are equivalent:

(1) X is strongly mixing.
(2) There exists a sequence of events D\, Z>2, D^, . . . G 3^^ such

that

= \ and L i m , ^ ^ ( ^ , ^°° P(.\Dn)) = 0.

REMARK 1.4. Let us define (for the moment) statements (2;) resp.
(2") to be statement (2) in Theorem 1.3 with the very last equation
replaced by

Lim^oo λ { ^ , ^T P{'\Dn)) = 0 resp. L i m ^ L{n) = 0

where
\P(A ΠBnDn)- P(A ΠDn)P(B ΠDn)\

L(n) := sup
[P(AnDn)P(BnDn)]V2
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A e 9^^, B e 3^°°. By elementary arguments, (2) (in Theorem
1.3) => (2') => (2") => (1) (strong mixing). Hence Theorem 1.3 im-
plies that (2') and (2") are also equivalent to strong mixing. Thus
a negative answer is provided to a conjecture in [4] that conditions
such as (2) or (2') or (2") might describe a proper subclass of the
stationary strongly mixing sequences.

REMARK 1.5. Theorem 1.3 and Remark 1.4 hold with the restriction
Dn G 9^^ replaced by, say, the weaker restriction Dn E 9^ . This
holds very simply by Theorem 1.3 itself and elementary calculations.

REMARK 1.6. Under a hypothesis similar to statement (2) in Theo-
rem 1.3, with P(Dn) converging to 1 sufficiently fast, weak and strong
invariance principles were proved by M. Peligrad and the author [4,
Theorems 1 and 2], In [4, Theorem 3], stationary random sequences
were constructed which were covered by [4, Theorems 1 and 2] but
were not covered by previous limit theorems under mixing conditions
(because they were not /^-mixing and were strongly mixing with too
slow a mixing rate). Thus conditions such as (2) in Theorem 1.3 are
useful in extending the class of stationary sequences which are known
to satisfy certain limit theorems. For further discussion of this, see
the introduction of [4].

II. Proof of Theorem 1.2. To prove Theorem 1.2, it will suffice to
prove the following proposition:

PROPOSITION 2.1. Suppose ( Ω , ^ , P) is a probability space, sz?
and 33 are o -fields e 9', and

(2.1) q := a{sf , & P) < (1/24)11.

Then 3D e si such that P(D) > 1 - q*ln and λ(sf ,3B\ P(-\D)) <
qχln.

By [1] or [3, Theorem 1.1] or [5], one has Theorem 1.2 as an im-
mediate consequence of Proposition 2.1.

Proof of Proposition 2.1. Suppose that the hypothesis of Proposition
2.1 is true but the conclusion is false. We shall aim for a contradiction.

We assume q > 0. (Otherwise the conclusion of Proposition 2.1
would hold trivially with D = Ω.)

We are supposing that for each D e si with P(D) > 1 - g8/1 1,
there exist events Aessf and 5 E J such that

(2.2) \P(AΓiB\D)-P(A\D)P(B\D)\>qι'n -[P(A\D)P{B\D)]χl2.
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When making use of this, we can and will always impose the additional
restriction that A c D. (Otherwise we could simply replace A by
A Π D without changing any numbers in (2.2).)

The main idea of the proof of Proposition 2.1 is roughly as follows:
Equation (2.2) and some simple arithmetic will imply that P(A Π B)
will be "somewhat comparable" to P{A), and P(B) "won't be too
much larger" than P(A) (which may be "very small"). One can apply
(2.2) repeatedly, obtaining disjoint events A, and corresponding but
not necessarily disjoint events B the events A n B will be disjoint.
Taking the respective unions, one obtains "overall" events A and B
with P(A) "moderately small" but not "very small", P(AnB) "some-
what comparable" to P(A) (and hence "moderately small"), and P(B)
"not too much larger" than P(A). Then P(A) P(B), the product of
two "moderately small" numbers, will be considerably less than the
"moderately small" number P(A n B). Thus P(A ΠB)- P{A)P{B)
will be "moderately small" but will fail to be "very small", and thereby
(2.1) will be violated.

The following elementary lemma will be useful. We leave its proof
to the reader.

LEMMA 2.2. If D and F are events and P(D) > 0, then \P(F\D)-
P(F)\<P{DC).

We need to use the ordinals associated with well-orderings of finite
or countable sets. We shall refer to all of these ordinals as simply
"countable ordinals." Recall that the set of countable ordinals is itself
well-ordered in a natural way; it is uncountable, but each element is
greater than at most countably many others. The least (or "initial")
ordinal will be denoted 0, and the successor of any ordinal η will be
denoted η + 1.

Construction 2.3. For each countable ordinal η, we shall define
events Dη, Aη and Bη such that

(2.3) Dηej*?, Aηesf, AηcDη, and Bηe^.

The definition will be "transfinite inductive" and will use (2.2).
To start off with the least ordinal 0, define DQ = Ω, and let Ao e ssf

and Boe& be such that

(2.4) \P(AoΠBo)-P(Ao)P(Bo)\ > q

Trivially (2.3) holds for η = 0.
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Now suppose η is any countable ordinal > 0, and suppose that
for all ordinals γ < η the events Dγ, Aγ, and Bγ have already been
defined and satisfy (2.3) with η replaced by γ. Define the event
Dη = (\Jγ<ηAγ)

c. Thus Dηej/. If P(Dη) < 1 - q*ln , then define
Aη = Bη = 0 (the empty set). If instead P(Dη) > 1 - q*ln , then
define the events Aη e jnf and Bη e &, with Aη cDη, such that

(2.5) \P(Aη n Bη\Dη) - P(Aη\Dη)P(Bη\Dη)\

> qχln[P{Aη\Dη)P{Bη\Dη)]χl\

In either case (2.3) is satisfied. This completes Construction 2.3.

REMARK 2.4. For what follows, it should be kept in mind that (i) the
events Aη are (pairwise) disjoint; and (ii) eqn. (2.5) (and consequently
P(Aη\Dη) > 0 and P(Bη\Dη) > 0) holds for all η such that P(Dη) >
1 — ? 8 / / n , including η = 0.

LEMMA 2.5. Suppose η is a countable ordinal such that P(Dη) >
1 - q*ln . Then the following six statements hold:

(i) P(Dη)> 1/2.
(ii) P(Aη\Dη)>qVnP(Bη\Dη).

(iii) P{Bη\Dη)>q2lnP{Aη\Dη).
(iv) P(Aη) < P(Aη\Dη) < qS/n .

(v) ?(«<?'/».
(vi) P(AηnBη)>(\/2)qV"P(Aη).

Proof, (i) holds by (2.1).

Proof of (ii). Suppose P(Aη\Dη) < q2/uP(Bη\Dη). Then

\P(AηnBη\Dη) - P(Aη\Dη)P(Bη\Dη)\ < P(Aη\Dη)

<qχln[P{Aη\Dη)P{Bη\Dη)γl\

contradicting (2.5). Thus (ii) must hold after all.

The proof of (iii) is like that of (ii).

Proof of {iv). P{Aη) < P(Aη\Dη) since Aη C Dη .
Suppose P(Aη\Dη) > q5ln . Then by (iii), P(Bη\Dη) > qΊln .

Hence by (2.5),

(2.6) \P(AηΓ)Bη\Dη) - P(Aη\Dη)P(Bη\Dη)\ >
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By Lemma 2.2 and our hypothesis P(Dη) > 1 - q*ln , we have
\P(AηnBη\Dη)-P(AηnBη)\<q*/n and

\P(Aη\Dη)P(Bη\Dη) - P(Aη)P(Bη)\

< P(Aη\Dη)\P(Bη\Dη) - P(Bη)\ + P(Bη)\P(Aη\Dη) - P(Aη)\

Hence by (2.3), (2.6), and (2.1),

a(sf , & P) > \P(Aη n Bη) - P(Aη)P(Bη)\

contradicting (2.1). Thus P(Aη\Dη) < q5ln must hold after all. This
completes the proof of (iv).

The proof of (v) is like that of (iv).

Proof of {vϊ). By (iv) and (v),

P(Aη\Dη)P(Bη\Dη) < qχln[P{Aη\Dη)P{Bη\Dη)γl\

Since (2.5) holds, we therefore must have

P{Aη^Bη\Dη)>q'lu[P{Aη\Dη)P{Bη\Dη)\χl\

Hence by (i), (iii), and (iv),

P(AηnBη)>(\/2)P(AηnBη\Dη)

> {\l2)qχln[P{Aη\Dη)P{Bη\Dr,)γl2

>{\l2)q2'nP{Aη).

Thus (vi) holds. This completes the proof of Lemma 2.5.

LEMMA 2.6. There exists a countable ordinal η such that P{Dc

η) >
^8/11.

Proof. Suppose Lemma 2.6 is false. Define the number

(2.7) s : = sup Z>(Z )̂

where this sup is taken over all countable ordinals η. Then

(2.8) s<q8/n.
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For each n = 1 , 2 , 3 , . . . , let γ(n) be a countable ordinal such
that P(Dc

γ{n)) >s-l/n. Let γ be the least ordinal such that "in >
1, 7 > y{n). As is well known, γ is a countable ordinal. By Construc-
tion 2.3, one has that Vn > 1, Dc

γ D Dc

y{n) and hence P{Dc

γ) >s-l/n.

Hence by (2.7) and (2.8), P(Dc

γ) = s < q*ln . Thus (2.5) holds for
η = γ, and this forces P(Aγ) > 0. Since Aγ c Dγ and Dc

γ+ι =
Dc

γuAγ, we have P{D°y+ι) = P(Dc

γ) + P(Aγ) > s, contradicting (2.7).
Thus Lemma 2.6 holds after all.

Using Lemma 2.6, henceforth let τ denote the least countable or-
dinal such that P(Dc

τ) > q%ln .

LEMMA 2.7. P(Dc

τ) <2q5ln .

Proof. By Remark 2.4(i),

η<τ

Let T be a finite set of ordinals < τ such that ΣηeTP{Aη) >
Let γ denote the greatest element of T. Then

Since y < τ, this forces γ + 1 = τ to hold, by the definition of τ and
it also follows that P(Dc

γ) < q*ln . Hence by Lemma 2.5(iv), P(A7) <
q5ln . Hence P(Dc

τ) = i ^ ) + P(^ y ) < 2^ 5 / n . This completes the
proof of Lemma 2.7.

Now we are ready to complete the proof of Proposition 2.1. Define
the events

(2.9) A:=\jAη = Dc

τ and B := (J BΨ

By Remark 2.4(i), the events AηΓ)Bη are (pairwise) disjoint. Hence

(2.10) η<r n<x

= {\l2)q2'nP{A)

by Lemma 2.5(vi) and (2.9).
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Next (since Dc

η c Dc

τ Vη < τ), B c Dc

τ U [U^<T(^ n ^ ) l a n d h e n c e

(2.11)
η<τ

η<τ

η<τ

η<τ

by (2.9), Lemma 2.5(ii) and (i), (2.1), and Lemma 2.7.
Hence by (2.3), (2.9), (2.10), (2.11), (2.1), and the definition of τ,

α(j/ ,&;P)>P(AnB)- P(A)P(B)

> (l/4)q2/nP(A) > (l/4)qι°/n >q,

contradicting (2.1).
Thus Proposition 2.1 must hold after all. This completes the proof

of Theorem 1.2.
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