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SOME EXAMPLES OF NON-TAUT SUBSPACES

SATYA DEO AND K. VARADARAJAN

We obtain a necessary and sufficient condition for the tautness of
each closed subspace of a Hausdorff space X w.r.t. the Alexander-
Spanier cohomology functor H°. This is used to give an example
of a normal Hausdorff space on which the concepts of an L-theory
and a continuous cohomology theory (as defined by Spanier) are not
equivalent. Finally, we provide examples of non-taut subspaces with
respect to the classical cohomology theories which possess some fur-
ther curious properties.

1. Introduction. Let Ibeatopologicalspace, i c l b e a s u b s p a c e
and {Hp}p>o be the cohomology functors of a cohomology theory for
which all subspaces of X and inclusion maps among them are admis-
sible. Since the set of all neighbourhoods of A in X is a directed set
(directed downward by inclusion maps), we can form, for each p > 0
and each coefficient group G, the limit group

\im {HP(N, G)\N runs over all neighbourhoods of A in X}

where the bonding homomorphisms are induced by inclusion maps.
Also, for each N we have the inclusion maps A —• N which induce
a natural homomorphism

(*) η: \im HP(N,G)^HP(A,G).
NDA

We say that A is tautly embedded in X w.r.t. the cohomology the-
ory (Hp, δ) if for each coefficient group G and for each p > 0, the
above map η is an isomorphism. (See [2], [3], [7], [9] for basic re-
sults.) In order to establish the existence of non-taut subspaces for the
Alexander-Spanier cohomology, Spanier proved ([7], Theorem 2) the
following necessary condition: If each closed subspace of a space X is
taut in X w.r.t. the zero-dimensional Alexander-Spanier cohomology
functor Ή°, then X must be a normal space. Our first result of this
paper is to show that normality of X is not a sufficient condition for
each closed subspace of Xto be taut in X w.r.t. H°. In fact in §2, we
prove that a necessary and sufficient condition for each closed subspace
of X to be tautly embedded in X w.r.t. H° is that X be collectionwise
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normal. In §3, we study the exact relationship between an L-theory
as defined by Lawson in [5] and a non-negative continuous cohomol-
ogy theory as defined by Spanier in [8]. We use the results of §2 to
show that although these two theories are equivalent on paracompact
HausdorfF spaces as proved in [8], they are really distinct on normal
Hausdorff spaces.

Concerning the definition of tautness, the following is a natural
question frequently asked: Give an example of a non-taut subspace
w.r.t. a given cohomology theory (Hp , δ) such that if N runs over all
neighbourhoods of A in X, then

lim

for all p > 0 and all coefficients G. In §4, we provide such curious
examples for singular cohomology, Alexander-Spanier cohomology ( «
Cech cohomology) and for sheaf cohomology (only partially).

All of our notations are standard. The symbols Hp always stand for
the Alexander-Spanier cohomology functors as in [9]; sheaf theoretic
functions are from [1].

2. A necessary and sufficient condition. Recall ([10] p. 168) that
a HausdorfF space X is called coUectionwise normal if for any dis-
crete collection of sets (or, equivalently, for any discrete collection
of closed sets) {Ai\i e /} of X , there exists a discrete collection
{Ui\i G /} of open sets of X such that At c C/, for each i e I. Every
paracompact HausdorfF space is coUectionwise normal [4] and every
coUectionwise normal space is evidently normal HausdorfF. However,
it is well known that the converse of none of the above is true. A Haus-
dorfF space X is said to be completely coUectionwise normal if given
a family {̂ 4/} of closed (or arbitrary) subsets of X which is discrete
in its union (called relatively discrete), there exists a discrete family
{£//} of open sets of X such that At c C/, for each /. Evidently each
completely coUectionwise normal space is completely normal, but the
converse is not ture. Also, note that every hereditarily paracompact
space is completely coUectionwise normal while the converse is again
not ture.

The following result is due to Spanier.

2.1. THEOREM ([7] Theorem 2). If X is a space such that every
closed {respectively arbitrary) subspace of X is tautly embedded in X
w.r.t Ή°, then X is normal (respectively completely normal).
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In particular, this tells us that each subspace of a paracompact
Hausdorff space X need not be taut in X unless X is hereditarily
paracompact. For instance, consider the usual Tychonoff-Plank X =
[0, Ω] x [0, ω] where Ω is the first uncountable ordinal and ω is the
first infinite ordinal ([10], p. 106). We know that X is compact Haus-
dorff but not completely normal and so it has a subspace which is not
taut w.r.t. Ή° in fact, the deleted Tychonoff Plank T = X- {(Ω, ω)}
is not tautly embedded in X. Likewise, since T is not normal, there
is a closed subspace of T which is not tautly embedded in T. In fact,
the closed subspace A = {(Ω, a)\a < ω} U {(α, ω)\a < Ω} of T is
not tautly embedded in T.

When we use the full force of the arbitrariness of the coefficient
group G for tautness, we obtain that collectionwise normality is indeed
a necessary condition for each closed subspace of X to be taut in X.
Then, interestingly enough, this necessary condition turns out to be
also sufficient. We have

2.2. THEOREM. Let X be a T\-space. Then a necessary and suf-
ficient condition for each closed (resp. arbitrary) subspace of X to be
tautly embedded in X w.r.t H° is that X be collectionwise normal
(resp. completely collectionwise normal).

Proof. We will prove the necessity part of the first case—the neces-
sity part of the other case is similar. Thus we now assume that each
closed subspace of X is tautly embedded in X w.r.t. Ή°. Then from
Theorem 2.1 it follows that X is Hausdorff. Let {Aa\a el} be a dis-
crete family of closed subsets of X. Then, clearly A = |J{Λ*|α e /}
is closed in X. Hence the natural map

η: lim{7Γ(C/; G)\U is a neighbourhood of A in X}^Ή°(A)

is an isomorphism for each coefficient group G. Since any set can be
given the structure of an abelian group, we can regard the indexing
set / to be an abelian group. Now define a map / : A —• / by setting
fφ) = a if b G Aa . Then clearly / is a zero-cocycle on A. Since A
is taut in X, this cocycle can be extended to a zero cocycle, say / ,
on some open neighbourhood of A. Because a zero cocycle is simply
a locally constant function, f:U-+I must be a locally constant
function on U and so Ua = f~ι({a}), ot e / , is a collection of
mutually disjoint open sets of X which separaie the family {Aa\a e /}
of closed subsets of X. Thus X is collectionwise normal.
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Next we prove the converse part of the second case—the converse
of the first case is analogous, and is omitted. Assume that X is com-
pletely collectionwise normal and A c X. We have to prove that
the natural map η is an isomorphism for each coefficient group G
and for p = 0. It is obvious that η is always one-one. To prove
that it is onto, let / : A -> G be any zero cocycle on A, i.e., / is
a locally constant function on A. Now decompose A = \JAa into
mutually disjoint open sets Aa relative to A so that f(Aa) e G. This
means {Aa} is a relatively discrete family of subsets of X. Since X
is completely collectionwise normal, this family can be separated by
mutually disjoint open sets {Ua} of X. Now define / : (J Ua —• G
by hUa) = f(Aa) VQ. Then, clearly / 6 7t(U, G) and f\A = / .
This proves that η is onto. D

2.3. REMARK. The Hausdorff condition is needed in all tautness
theorems for Alexander-Spanier cohomology because there are closed
subsets of a compact 7\-space which are not taut (see Example (4.2)).

Now we give an example which shows that a closed subspace of even
a completely normal Hausdorff space need not be tautly embedded
w.r.t. Alexander-Spanier cohomology function H*.

2.4. EXAMPLE. We consider the example given by Michael in ([6],
p. 279, last paragraph) of a perfectly normal HausdorfF space X which
is not collectionwise normal. Since a perfectly normal space is com-
pletely normal, X is completely normal Hausdorff. Therefore, by
the above theorem there must be a closed subspace of X which is
not tautly embedded in X w.r.t. Alexander-Spanier cohomology. In
fact, there is a closed discrete subspace of X whose points cannot
be separated by mutually disjoint open sets. Any such closed discrete
subspace of X will not be taut in X.

Recall that a point subspace of any space X is tautly embedded
in X [2] w.r.t. Alexander-Spanier cohomology. Since Michael's space
mentioned above has a discrete family {xa} of points which cannot
be separated by disjoint open sets, we conclude that the union of a
discrete family of taut subspaces of a space X need not be taut in X.
However, we have the following result which will be needed later on.

2.5. PROPOSITION. Let X be a collectionwise normal space {Aa\ae
1} be a discrete family of subspaces of X. Then, with respect to any
additive cohomology theory {Hp}, the union A = U{4*|<* € /} is
taut in X iff Aa is taut in X for each a e / .
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Proof. Since X is collectionwise normal, there exists a mutually
disjoint family {Na\a G /} of open sets of X such that Aa c Na for
each a e I. This obviously means that if Uλ is any neighbourhood
of A in X, then {t/Λ Π Λ^Q|α G /} is a discrete family of open sets
such that for each a G / , Λ* c Uλ Π iVα . It follows that the set of all
such discrete neighbourhoods {{N*}λ\Aa c N*9 Vα G /} of 4̂ form
a cofinal system of neighbourhoods of A in X. Since ^ is taut in
JSΓ, for each p > 0 and for each coefficient group G, the natural map

where |J N* runs over all discrete family of neighbourhoods of A in
X, is an isomorphism. By the additivity of H, we find that

lim Π#P Λ Γα> G) -^YlH'iAa, G)
X a a

via the natural map. In particular, this implies that the natural map

lim *

is an isomorphism for each p > 0 and each coefficient group G hence
Aa is taut in X for each a e I.

Conversely, suppose each Aa is taut in X. If {C/̂ |A G Λ} varies
over all neighbourhoods of Aa in X which are contained in Na, then
the natural map

is an isomorphism for each a. Hence we have

lim77* MJl/i, (?) « limIJ^(C/i, (?)

a λ

Hp ({jAa, G) .

Since {|J C/̂ |A G Λ} is a cofinal system of neighbourhoods of \JAa

in X and since the composition of all of the above isomorphisms is
the natural map η, A = \J Aa is taut in X. D
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3. Continuous cohomology theories and L-theories. In this section
we will show that on a normal HausdorfF space the concepts of a con-
tinuous cohomology theory and an L-theory as defined in [8], in gen-
eral, are not equivalent.

If X is a normal Hausdorff space, we consider the category 3 of
all continuous cohomology theories on X—the objects are continuous
cohomology theories on X and the morphisms are natural transforma-
tions between them commuting with δ and δ1 up to sign. Similarly,
we consider the category 3 of L-theories on X. Let ^ + denote
the subcategory of 3 consisting of all non-negative cohomology the-
ories on X. Consider the two functors L: S+ -» 3 and S: 3 -• S+

defined by Spanier ([8], Theorem (3.1)). We refer to L as the restric-
tion functor and S as the extension functor. If H e S+, then for any
A G cl(ΛΓ) we have

(S o L)(H)(A) = S(L(H)(A)) = S(H)(A) = H{A).

Thus S o L = Is+, the identity functor. Conversely, for any H E3 ,
there is a natural map (LoS)(H)(A) = S(H)(A) = Um{H(N)\N a
closed neighbourhood of A in X} —• H(A) induced by the restriction
homomorphisms. Clearly, the above is a homomorphism from the L-
theory (LoS)(H) into H. If X is paracompact and H is additive,
then it is shown in [8] that (LoS)(H) is also additive. Thus (LoS){H)
and H are two additive L-theories on a paracompact Hausdorίf space
X which are isomorphic for point subspaces x e X. Therefore, by
Lawson's Theorem [5], the above map is an isomorphism for all A e
c\(X). Thus, we have

3.1. THEOREM (Spanier). If X is a normal Hausdorff space and
L: S+ -> 3 , S: 3* -> S+ are the Wo functors above, then SoL = Is+.
Furthermore, if X is paracompact Hausdorff then for any additive L-
theory He3f (LoS)(H) = H.

We now give an example to show that on a normal Hausdorίf space
the two concepts are really different.

3.2. EXAMPLE. Consider the normal Hausdorff space X con-
structed by Michael [6] which is not collectionwise normal. Let (H, δ)
denote the Alexander-Spanier cohomology theory in the sense of
Eilenberg-Steenrod. Since each point x e X is tautly embedded in
any closed set A of X containing x (in fact points are always taut
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in any space w.r.t. H*, see [2] for a more general result), (H, δ) is
an L-theory on X. Then, (S(H), S(δ)) is a continuous cohomol-
ogy theory on X. Since X is not collectionwise normal, there is a
closed subspace Ao of X by Theorem 2.2, which is not taut in X
w.r.t. Ή . I f L o 5 = 7> , then the natural map L o S(H)(A) -+ JΫ(^)
must be an isomorphism for each 4̂ e Cl(X). But (L o S)(H)(A) =
L(S(Ή))(A) = S(H)(A) = lim{Ή(N)\N is a closed neighbourhood
of A in X} This contradicts the fact that AQ is not taut in X w.r.t.
H. Thus L o S φ I& and we have the following:

3.4. THEOREM. Let X be any normal Hausdorff space which is
not collectionwise normal. Then there exists an additive L-theory on
X which cannot be obtained from its extension to a continuous co-
homology theory on X by the restriction functor. In particular, the
Alexander-Spanier cohomology is not a continuous cohomology theory
on such a normal Hausdorff space X.

It is worth noting that the extension functor S preserves additivity
on a collectionwise normal space; for paracompact Hausdorff spaces
this was proved in [8] and the same method works in the case of
collectionwise normal spaces yielding the following

3.5. PROPOSITION. Let X be a collectionwise normal space and
H, Δ be an additive L-theory on X. Then SH, SA is an additive
cohomology theory on X.

3.6. COROLLARY. In Example (3.4) of [8] if H is an additive func-
tor, then the function H defined there is also additive on any collec-
tionwise normal space.

4. Examples of non-taut subspaces. In this section we give examples
for various theories {Hp} to show that there are spaces X having a
closed subspace A such that

lim {Hp(U, G)\U is a neighbourhood of A in X } « HP(A, G)

for each p > 0 and each coefficient group G, but A is not tautly
embedded in X w.r.t. {Hp}. This implies that in the definition of
tautness of a subspace in a space X, we must insist that the natural
map η (see (*) in the Introduction) is an isomorphism for all p and
all coefficient groups G.
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4.1. EXAMPLE (Singular cohomology). Let X = R2 and AQ be the
topologist's sine curve in X. Then we know that AQ is not taut in
X w.r.t. singular cohomology ([9], p. 290). Now let us define point
subspaces An of X by

for n = 1 ,2 . . . . Consider the set A = \J{An\n = 0, 1 ,2 , . . . } .
Then, evidently A is the union of a discrete family of closed subsets
of X and X itself is collectionwise normal. Since AQ is not taut in
X, A cannot be taut in X by Proposition 2.6. However, we assert
that for any coefficient group G and for all p > 0,

lim {HP{U, G)\U is a neighbourhood of A in X} « #*(Λ, (?).

For /? = 0, both of the above groups are isomorphic to Π Γ ^
p > 0, note that ^o consists of two path components, one homeo-
morphic to a closed interval / and the other homeomorphic to an
open interval / . Since / and J both are contractible, all positive
dimensional integral singular homologies of AQ vanish and so by the
Universal Coefficient Theorem HP(AO, G) = 0, Vp > 0. On the other
hand if U is any neighbourhood of AQ , then it can be seen that U
contains a contractible open neighbourhood of AQ . Consequently, the
set of all discrete collections {{Un\n = 0 , 1 , 2 , . . . } } where Un is a
contractible open set containing An, forms a cofinal family of open
neighbourhoods of A in X. This means, for all p > 0,

\im{Hp(U, G)\U is a neighbourhood of A in X} = 0.

4.2. EXAMPLE. (Alexander-Spanier Cohomology): Because of sev-
eral tautness theorems of very general nature for this cohomology [7],
no such examples can be found in any hereditarily paracompact Haus-
dorff space. The following would seem to be the simplest example
where cohomologies can be easily computed: Let Y = {0, 1, 2, . . . , ω}
be given the cofinite topology, where ω is the first countably infi-
nite ordinal. Then Y is clearly a compact T\ -space in which any two
open sets intersect. In fact all the open sets are homeomorphic to Y
which is clearly connected. Let B = {0, ω} be the closed subset of
Y and note that B is not taut in Y w.r.t. Alexander-Spanier coho-
mology. In fact ~H°(B,%) « Z Θ Z whereas if U\ D U-χ D B are
any two open sets containing B, then the restriction homomorphism
H°(U\, Z) —• Ή°(U2, Z) is an isomorphism, each being isomorphic
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to Z, i.e.

lim{H°(U, Z)\U is a neighbourhood of B in Y} « Z.

Now, let J5f = U^li 1« be the topological sum of countable number
of copies of Y, and let A = \J™=1 Bn where Bx = {0, ω}, Bn = {0}
for n > 1 with Bn c Yn. We claim that V/? > 0 and for each
coefficient group G,

lim {77P(C/, G)|£/ is a neighbourhood of A in ΛΓ} « 77P(Λ, G).

For p = 0, both groups are isomorphic to Π Γ G For /? > 0, clearly
ΉP(A, G) = 0. On the other hand, let us show that for p > 0,
ΉP(Y, G) = 0. To see this recall that Alexander-Spanier cohomology
H of any space is naturally isomorphic to the Cech cohomology H
of that space. Now if U = {U\, U2, ... , Un} is any finite open
cover of Y, then since their intersection is nonempty, the simplicial
complex K{U), i.e., the nerve of U is in fact an ^-simplex. Hence
Vp > 0, the simplicial cohomology groups HP(K(U), G) = 0. Since
&P(Y, G) = lim Hp(K{U), G) where C/ runs over all open covers

of Y and since 7 is compact, we find that Vp > 0, ϊίp(Y, G) = 0.
Now, by additivity of 77P, it follows clearly that if U runs over all
open neighbourhoods of A in X, then V/? > 0 and for all coefficient
groups G

4.3. EXAMPLE (Sheaf cohomology). In this case our problem is (cf.
[3] for tautness in sheaf cohomology) to give an example of a space
X, a closed subspace A of X and a family φ of supports on X such
that A is not 9?-taut in X and

, Λ/Λ0|JV is a neighbourhood of ^ in X}

for all /? > 0 and all sheaves A of abelian groups on X. The re-
quirement that the two groups be isomorphic for all sheaves on X
seems quite formidable and we have no such example. However, if
we require only that the above groups are isomorphic for all constant
sheaves on X then the needed example, similar to Example 4.1, is as
follows: Let X = R2, A = {(n, 0)\neZ} and φ = {(0, 0}Ucld|/7_,
where H- is the open half plane on the left of y-axis. Note that
Ao = {(0, 0)} is not φ-taut in X because for the constant sheaf
A = Z any nonzero section s € H°(AQ , Z) can never be extended to
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an element s' in H®nU(U, Z) for any open neighbourhood U of Ao .
Since R2 is collectionwise normal and A is the union of a discrete
family of point subspaces Ao, A cannot be ζMaut in X. However,
now one can easily verify that for any constant sheaf G on X

TT°° f JΛ Q
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