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TWO APPLICATIONS OF THE UNIT NORMAL BUNDLE
OF A MINIMAL SURFACE IN RY

NoRriIo EJirI
Dedicated to Professor Shingo Murakami on his sixtieth birthday

A Gauss parametrization of a minimal surface in R> is well known.
We prove a generalization.

THEOREM A. Let U be an open set of S¥(1) and f a function on
U such that
AsNyf=-Nf
and 0 is an eigenvalue of Hess f+ f( , ) of multiplicity N—2, where
(, ) is the metric of SN(1) and AgNyy) is the Laplacian of S™(1).
Then the map of U into RNt defined by

(*) fn+gradf

is of rank 2 and gives a minimal surface, where n is the identity map on
SN (1). Conversely, for a minimal surface M in RN+, a neighborhood
of each point of M without geodesic points has this representation.

If M is a complete orientable minimal surface of finite total curva-
ture, then there is a global representation (*) of A . Using this idea,
we obtain the following.

THEOREM B. Let M be a complete orientable minimal surface of
finite total curvature in RN*!. Then there exist a positive real number
¢(N) depending on N such that

index(M) < ¢(N) / (=K) % Loy,

where K is the Gauss curvature of M and *1,; is the area form of
M.

Theorem B gives an answer for an open question posed by Cheng
and Tysk in [CY1]. After this paper was submitted, the author learned
that Cheng and Tysk in [CT2] obtained a similar result as Theorem B
by using another Gauss map (generalized Gauss map).
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Finally we consider a generalization of minimal herissons [RT].

I’d like to thank Professors J. Eells, J. Rawnsley, M. Micallef and
K. Ohshika for their hospitality while visiting at the University of
Warwick.

2. Second variation formula. Let M be a minimal surface in RV+!
and x the immersion. Let U(M) be the unit normal bundle of the
normal bundle N(M). Then we define a Gauss map G of U(M) into
the N-dimensional unit sphere SV (1) by G(x, n) = n for (x,n) €
U(M). G induces a degenerate Riemannian metric of constant curva-
ture 1 on U(M). Let & be a section of N(M) with compact support.
Then a function F: on U(M) is defined by

Fe(x,n)=(,n),

where (x,n) € UM). Let I(&, &) be the second variation of the
area functional in the direction of ¢. Then we get

ProrosITION 2.1.
I, &) = (N - 1)/) / (IVEP = NF2) Lyan

where w is the volume of SN=2(1) and *1y ) is the volume form of
U(M).

This is well known in the case of N = 2.

Proof. Let x be a point of M and e, for a=3,..., N+1 bea
local orthonormal framing of N (M) such that

V)l(ea =0 for all tangent vectors X at x,

where V+ is the normal connection of N(M). Furthermore we may
consider that the second fundamental form A4, in the direction of 7

is diagonal and given by
A 0
0 —-A)°

Then we get G.(é;) = —4e;, G.(é;) = de; and G.({) = {, where
é,, &, are horizontal lifts of principal vectors e;, e, at x to the
tangent space of U(M) at (x,n) and { is a normal vector with
(n, {) = 0. Thus the induced metric is given by
/12
12
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and the volume form is A2 % 1j/ * Lgv ;). Note that 4% is (1/2)|4,[*.
Since

éF;=(Vy¢,n) and (Fr=(¢,0),
we have

VE = ((1/2) Y (VEE, m)2) + &P - F2,

which implies

/|VFé|2 * Lyon = /(1/2)|VF¢|2|A,,|2 * Lg% Lgwagy).

Now we have the integral over the fibre at x as follows:
[ARIVEA * 190,
= / { Z(V;fé, n)? + (1/2)|4,%1€)* - (1/2)|A,,|2F62} * Lgn-a
When we put 7 =) y“e,, we have
[{Z e 2} e1gmg,
= [{Srohvit eavic. e v g

It follows from
[ 38 s 15y = (@) = 1)6g

that we obtain

/ {ZWéf’ﬂ)z} Lgv-rqy = (@/(N = 1)V

and

J DI ¢ 15,
=72 [ { S hhlyeshiet ot

= (w/2(N = 1))|a &,
where ;= (4. e;, e;) and o2 = > hi;hg; . On the other hand, since

/ (/DA PF2 * 1gnos,

/D [{ S hgtysty e etes @« 19
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holds and we may consider e; = £/|€|, by

[P 03 ¢ 1gvesy = (@F(N + DV = 1) Bap + 2632835)
we obtain

(1/2) / Ay PF2 5 Tguoa,
= (©/2(N + 1)(N - D)o Pl
+ @O+ DOV = )] T o€ ).

where o;; = }_ hf;e, . Thus we have

/(|VF¢|2 - NFéZ) * IU(M)

— @/ -1) [ (TR - )€ o) s . O

ProPOSITION 2.2. Let & be a normal vector field of N(M). Then &
is a Jacobi field if and only if

Proof. We fix a point (x, n) of U(M). Let y(s) be a geodesic
with arc length parameter s such that y(0) = x. We denote by X
the tangent of y(s) at x. Let e; and e, be the principal vectors
of A, such that 4,e; = le; and A,e; = —Ae; and e(s) and e;(s)
the parallel vector fields along y(s) with respect to the connection of
T (M) such that e;(0) =e; and e,(0) =e,. Let ey, a=3,..., eny1
be an orthonormal basis of Ny(M) and e,(s) the parallel vector fields
along y(s) with respect to V< such that e,(0) = e,. We may set
e3(0) = n. Then (y(s), e3(s)) is the horizontal lift of y(s) through
(x, n) in U(M). By the definition of G, we obtain

G.(P«(5)) = —Aes(s)Y*(S)-

Let V be the covariant differentiation with respect to the degenerate
metric induced by G. Then we have

G*(%,_(o)?*(s)) = the component of [-d A, (5)7«(s)/dS]s=0
orthogonal to 7.
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It follows that

~

Vs 0)7«(8) = ((n, (Vxo)(X, e))/A)é
- (n, (Vxo)(X, e2))/4)é;

N-1 2
- Z Z(r]’ U(X9 eK)><eaa U(Xa eK)>a'
a=4 k=1
It is easy to extend ¢, for a = 4,..., N — 1 to the vertical vector

fields é, on U(M) such that
%ﬂéa =0 at(x,n).

Furthermore, for the horizontal lift Y of a vector field Y defined on
a neighborhood at x, we have

Ve Y = ((4c Y, e1)/A)é1 — ({4 Y , €2) /)&, at (x, ).

Using these vector fields, we obtain the following for each point (x, 7)
eU(M).

Hess Fz(X, X) = (1, Hess&(X, X) + > (o(X, &), &)o (X , &)
—{n, (Vxo)(X, e)){n Vy&)/4
(1, (Vxo) (X, ehin - VEE) /2
=D, a(X, )’ F,

Hess F:(e,, e,) = —F; fora=4,... , N-1
Hess Fz (X, e.) = (ea, V& — ((n, V2&)/A)a(X, e1)
+((n, VEO/Ha(X , e)).
Thus we have
Ay Fe = —(1/A)n, J(E)) — NFz,
where J is the Jacobi operator of N(M). O
We know that yt = S7(x, e.)e, is a Jacobi field, where y is the

position vector of M . By the calculation as in Proposition 2.2, we
obtain

LEMMA 2.1. Hess F;-+ F;*( , ) has an eigenvalue O of multiplicity
N-2at (x,n) € UM) such that detA4, #0.
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Now we may consider that in is locally a function on an open set
U of S¥(1). Then we define a map of U into RV*! such that

F;'" + grad F.

By a simple calculation, it is just y. Conversely let f/ be an eigen-
function of eigenvalue N on an open set U in S¥(1) such that the
eigenvalue of the Hess f + f( , ) has O of multiplicity N — 2. Then

fn+grad f

is a map of rank 2 and hence gives a minimal surface. Thus we obtain
a Gauss parametrization of a minimal surface in RV+!.
As a generalization of Theorem A, we easily obtain the following.

PROPOSITION 2.3. Let U be an open set of SN(1) and f a function
on U such that Hess f + f( , ) has an eigenvalue 0 of multiplic-
ity N—m. Then fn+gradf is a map of U into RN*! of rank
m and furthermore gives an m-dimensional submanifold such that the
(m — 1)st mean curvature vector vanishes. We call the representation
the Gauss parametrization by an eigenfunction. Conversely let M be
an m-dimensional submanifold in RN*! such that the (m—1)st mean
curvature vector vanishes, then a neighborhood of each point such that
det A, # O for some normal vector n the Gauss parametrization by an
eigenfunction.

REMARK. In [DG], similar constructions are presented.

COROLLARY 2.1. Let M be a complex m-dimensional Kaehler sub-
manifold in CN*'. Then a neighborhood of each point such that
detA, # 0 for some normal vector n admits the Gauss parametri-
zation by an eigenfunction.

Proof.. 1t is well known that the (2m — 1)st mean curvature vector
vanishes on M .

Let M be a minimal surface in RV*! and ¢ a Jacobi field. Then
Proposition 2.2 implies that F; is an eigenfunction of eigenvalue N.
We define the rank y: of Jacobi field by N — u, where u is the
multiplicity of eigenvalue 0 of

HCSSFé + F{( , ).

By Proposition 2.3, we have a y,-dimensional submanifold with zero
(7 — 1)st mean curvature vector. For example, let M be a minimal
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surface in R3. Then 7¢ = 0 or 2 holds for a Jacobi field ¢ and if
¢ = 2 holds, then we obtain a minimal surface

E= (4 H(VEE, ne;,

which gives a minimal deformation of M — {geodesic points} whose
normal variation vector field is £. In fact

x+s{EX (47T (VEE, me; |

is a one parameter family of minimal surfaces, where y is the immer-
sion of M into R3.

Next let M be a minimal surface in R* and ¢ a Jacobi field. Then
e is 0, 2 or 3. In the case of y: = 3, we have a hypersurface of zero
second mean curvature in R*, which implies zero scalar curvature.
Thus the first given minimal surface is a limit of deformation of hy-
persurfaces of zero scalar curvature in R*.

3. The index of minimal surfaces. Let M be a complete orientable
minimal surface of finite total curvature in R¥+!, Then there exists a
compact orientable Riemann surface M and finite points p,, ..., p,
€ M such that M is conformally equivalentto M —{p,, ..., p;} and
the generalized Gauss map of M into G,(RM*!) is extendable over
M . Let L be the tautological vector bundle over G,(RV*!) with rank
N — 1. Then the restriction of the induced bundle over M to M is
the normal bundle N(M). So the unit sphere bundle U(M) over M
gives a compactification of U(M) such that the ends are fibres at p;.
It is clear that the map G is extendable on U(A) and we denote by
G the map. Note that G is real analytic.

LEMMA 3.1. The degenerate set S for G is an analytic set of codi-
mension > 2 if M is not in some R3.

Proof. It is clear that S is an analytic set. Assume that S has an
open set of U(M). Then as analytic function |4,|> on U(M) is zero
on some open set, which implies that M is plane. Assume that .S has
codimension 1. Then we note that the rank of 6|s is 1 or 2, where
0 is the projection of U(M) onto M . If the rank is 2, there is an
open set U of M such that each fibre at x € U has an (N — 3)-
dimensional submanifold where |4}| = 0. For each x € U, we have
an orthonormal basis es, ..., ey, such that, forall a« > 5,

(A0 (0 (00
=6 %) #=(ut) +-(00o)
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and hence, for any unit normal vector 1 = ae3+bes+ others, det 4, =
0 holds if and only if @242 + b2u? = 0, which implies that if A # 0
and u # 0, then the set where det 4, =0 is an (N — 4)-dimensional
sphere. It is a contradiction and hence A or u = 0, which implies the
first normal space on U is at most 1-dimensional. It is easy to see
that M isin some R3. Next assume that the rank of 6| is 1. Then,
on the image 6(S), the second fundamental form of M vanishes.
On the other hand, it is well known that totally geodesic points are
isolated. It is contradiction. O

By the result in [H], we can have a stratification of S such that if'
a stratum T satisfies 7NS # J, then S O T. So G(S) has a strat-

ification and G (G(S)) is a sum of finite stratums of codimension
> 2. By a simple argument, we get
LEMMA 3.2
G:UMING ' (G(S)) — SY(D\G(S)

is a k-sheeted covering map, where k is the total curvature of M/2m.

From Proposition 2.1, we obtain the following:
index(M) < the number of eigenvalues of AU(H) that are
strictly less than N.

Let {4i}72, and {u;}2, be eigenvalues of AgN) and Ay, 57 , respec-
tively. A theorem in [S], together with Lemma 3.2 implies

Ze'”l’ <k (Z e‘i:’) )

Thus we conclude that

(index(M))e Nt < Z e Ml < Ze‘/‘:’ <k (Z e’“) .

u,<N

Hence
index(M) < e! (Z e"li’) k.

Note that if M is not in some R3, then c(N) is given by
. Nt —At
2mifie (X))

4. A generalization of minimal herissons. Recently Rosenberg and
Toubiana [RT] give some results on complete minimal finite branched
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surfaces in R3 of finite total curvature 4n, which are called minimal
herissons and parametrized by their Gauss image.

Let M be an m-dimensional submanifold of zero (m — 1)st mean
curvature vector in RVN*!. We consider the following condition (xx).

(%) There exist finite stratum S of U(M) and S’ of S¥(1)
such that codimensions of elements of S and S' > 2
and
G:U(M)\S — S¥(1\S'
is a k-sheeted covering.

Let 9 denote the space of m (2 < m < N)-dimensional submani-
folds of zero (m — 1)st mean curvature vector in R¥*! which satisfy

(xx) . Following as in [RT], we can define a sum operation in 91:

M+ My = { 3 6(x)+ X600 67 (2) = ().
Gz'l(z) = {y;}, where z € S¥(1)\S] USQ} ,

where G; and G, are the Gauss map of M; and M,, respectively
and S} and S} satisfy (+x) for G; and G,. Note that the equality
of dimensions of M, and M, is not necessary. This operation may
be considered as follows: for z € S¥(1)\S] US}, we define a function
f by
f(2) =Y Frx)+ > Fr i),
where x; and yx, are immersions of M; and M, into RN*! respec-
tively. It is clear that
AsNiyf=-Nf

on U = SM(1)\S{US} and hence f is analyticon U. By the analytic-
ity of f on U, the multiplicity of the eigenvalue O of Hess f+ f( , )
is constant N — m on some open dense set of U. Thus we get an

m-dimensional submanifold of zero (m — 1)st mean curvature vector
in RV*! which gives M| + M, .

PROPOSITION 4.1. Assume that M, + M, is of dimension m. Then
M, + M, is of zero (m— 1)st mean curvature vector and parametrized
by Gauss image. In particular, the total absolute curvature is the volume

of SN(1).

REMARK. The study of f which satisfies AgN(;)f = —N f has are-
lation to N-dimensional space-like minimal submanifolds of constant
curvature 1 in an (N + 2)-dimensional deSitter space time [K].
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In [N], Nayatani proves that, if M be a complete orientable mini-
mal surface of finite total curvature, then M has a finite index. But it
does not imply the existence of ¢(N).
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