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SETS OF UNIQUENESS AND SYSTEMS
OF INEQUALITIES HAVING A UNIQUE SOLUTION

J. H. B. KEMPERMAN

Suppose a number of X-ray pictures is taken of the same object,
but from different directions. One typically likes to know to what
degree the pictures determine the object and exactly when an object
is uniquely determined. Replacing picture taking by projections, that
is, images relative to specified mappings, these same problems are
easily formulated for higher dimensions and even for abstract spaces.
The objects on hand might be data structures.

With this general framework, starting from an arbitrary but fixed
collection of mappings, we study a new and very useful class of objects
(sets) each of which is uniquely determined by its projections. In
the process, we disprove a previously conjectured characterization of
uniqueness relative to the one-dimensional projections in R" . For all
situations where the underlying space is finite, a complete and rather
simple characterization of uniqueness is obtained.

1. Introduction. Suppose an X-ray picture is made of an object S
in R? of uniform unit density. This corresponds to the creation of
an image of S on a photographic plate Y by means of a central or
parallel projection m: R3 — Y . The darkness of the image at y € Y is
directly related to the length |LNS| of the part of L inside S, with L
as the straight line L = n~1{y} = {x € R3:nx = y}. Hence, having
such a zm-photograph of S is equivalent to knowing the precise value
(SN A), for each set of the form 4 = n7!B = {x € R3:nx € B}.
Here, B can be any subset of Y while A is Lebesgue measure on R3.

Given any finite class of such photographic maps z;: R3 > Y;, we
would like to know exactly what subsets S of R3 are such that S is
uniquely determined by its set of images.

The subset S of R3 can be identified with the measure us; on
R3 defined by ug(4) = A(SN A). Thus us has its density relative
to Lebesgue measure A equal to the function 13(x) on X (1 on S
and O on its complement S¢). If n: R3 - Y is any map then the =-
projection of u; onto Y (also nonchalantly called the n-projection of
S') is the mass distribution (measure) nus; on Y, whose mass inside
any subset of B of Y equals us(4) = A(SNA) with 4 =n"!B =
{x € R¥:7nx € B}. Knowing the m-photograph of S is the same as
knowing the projection mwu; of u;.

275



276 J. H. B. KEMPERMAN

More generally, let X be any space supplied with a reference mea-
sure A. Let further {n;, j € J} be a fixed finite or infinite collection
of maps #;: X — Y;. A subset S of X will be identified with the
associated measure du; = 1;dA on X, (carried by S and having a
uniform density there). In particular, subsets S and 7 equal a.e.
[A] are identified. The =;-projection of S is defined as the measure
mjus on Y; whose mass (7;us)(B) inside any subset B of Y; equals
ps(A) =A(SNA) with 4= (n;)"'B={xeX:njx € B}.

In the literature, much attention is given to the following situa-
tion, which we will refer to as the classical case. Here, X = R"
supplied with n-dimensional Lebesgue measure A = m, and projec-
tions m;,..., m,, with m; as the orthogonal projection of R” onto
the jth coordinate axis. Relative to this classical case, knowing the
mj-projections of a subset S of R"” (j = 1,..., n) is the same as
knowing the (n — 1)-dimensional volume of the cross section of S
with each hyperplane x; = ¢ perpendicular to one of the coordinate
axes.

Going back to the general case, we will be interested in the class
of subsets S of X that are uniquely determined by the associated
collection {rmjus:j € J} of projections of dus = 15dA. It is always
assumed that A(S) < co. We say that S is a weak set of uniqueness
(relative to X, A and the =) if there is no other set T such that
mjur = mjus, for all j € J. Here, we identify sets which are equal
a.e. [A]. And we call S a (strong) set of uniqueness if besides u;
there does not exist any measure u of the form du = ¢dA, with
¢: X — [0, 1], such that nju =m;us, forall jeJ.

These notions are distinct if X is discrete, see [2]. On the other
hand, the two notions of uniqueness coincide in the important case
that X = R" with A of the form A(dx) = q(x)dx while {n;:j € J}
is an arbitrary but finite set of linear or central projections 7z;: R" —
Y;, see (1], [4], [S]; (dimY; < n—1). This includes the above classical
case.

An important class of sets of uniqueness are the so-called additive
sets, first introduced for the classical case by Fishburn et al. [1], [2].

Let F(S) denote the class of all f: X — R of the special form

(L.1) fx) =3 fim;x),

JjeJ

with the f; as functions f;:Y; — R (j € J) satisfying the integrability
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condition (2.10). The importance of this class is due to the fact that

(1.2) /de,u=/deus=/sfd/1, for any f € F(S),

and any measure 4 on X having the same marginals as u; (relative
tothe m;; j € J). Asubset S of X with A(S) < oo, is said to be
additive if it admits a representation of the form

(1.3) S = {xeX:f(x):ij(njx)ZO},

jeJ
with f as a suitable function f € F(S) asin (1.1). One easily shows
that each additive set S in X is a (strong) set of uniqueness, see
Lemma 2.14.

An easy illustration, relative to the classical case, would be any prod-
uct set S =4; x---x A4, in R" with m;(4;) < oco. For, then § is of
the form (1.3) with f;(¢) = +1 or —n, depending on whether ¢ € 4;
or { ¢ A;, respectively, (( € R). Or choose S as an ellipsoid in
R™ having its axes parallel to the coordinate axes. On the other hand,
if S is an ellipsoid S = {x € R™}; ;a;;x;x; < 1} with aj; # 0
for some k > 2 then S is not a set of uniqueness, in fact, it has the
same projections as the ellipsoid 7 obtained by replacing all a;; by
—a1; (j > 2).

Naturally, one wonders whether conversely all sets of uniqueness
might be additive. This was shown to be true for the classical case
with n = 2 independently by Fishburn, Lagarias, Reeds and Shepp
[1] and by Kuba and Volcic [7], [9], each making an essential use of
the results due to Lorentz [8]. And for a while it was conjectured, for
the classical case, that the converse is always true.

One goal of the present paper is to show that this converse is false.
In §3, for the classical case with n > 3, we construct a large class of
sets S of uniqueness which are definitely not additive. One example
with n = 3 (see 3.22) has S as a subset of R3 equal to the union of a
tetrahedron, a prism, and two rectangular blocks parallel to the axes.

Our construction is based on a new generalized notion of additivity.
Ordinary additive sets are said to be additive of degree 1. A (stepwise)
additive set S of degree < 2 has the form S = {x € X: either
f(x) >0 or f(x) =0; g(x) > 0} with f, g as suitably chosen
functions in the class F(S). In an analogous way, one defines the
notion of an additive set S of degree < m, see Definition 3.1. It is
shown that each such generalized additive set S is a (strong) set of
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uniqueness, see Theorem 3.1. Whenever the latter set S can be shown
to be non-additive, one has an example of a set of uniqueness which
is not an additive set. In §3, this program is worked out in detail for
the classical case with n > 3, starting with a suitably chosen additive
set of degree < 2. There are still many open problems here.

Let us now restrict ourselves to the case where the set X is fi-
nite, though we allow for the possibility of infinitely many projections
nji:X — Y; (j € J). In this situation, generalized additivity is the
same as ordinary additivity, see Lemma 3.8. Moreover, a subset S
of X 1is a (strong) set of uniqueness if and only if it is additive, see
Theorem 4.50. For the special case that X = [1, 2,..., N]* with
coordinate projections x — x; (j =1, ..., n), the latter result is due
to Fishburn, Lagarias, Reeds and Shepp [2]. The analogous result for
weak sets of uniqueness is false, see [2] for a counterexample.

The proof of Theorem 4.50 is largely based on a new set of nec-
essary and sufficient conditions in order that a solution x° of an ar-
bitrary finite system of linear inequalities of type }_;a;;x; > b; (i =
l,....,m); a; <x; < B; (j=1,...,n) be the only such solution.
One necessary condition is that x° be additive in a certain sense. See
Theorem 4.15 for further details.

2. Sets of uniqueness. Let X be a measurable space and J an
arbitrary index set. For each j € J, let Y; be a measurable space and
nj: X — Y; a measurable map. The collection n = {=n;; j € J} of
projections is kept fixed from now on. If u is any measure on X then
its so-called 7 j-marginal (or z;-projection) is the measure 7;u on Y;
defined by (7;u)(B) = u(n;'B). It follows that, for each measurable
function g;:Y; — R,

/ g;(mx)u(dx) = / &) (dy),
x 7

provided g; is either nonnegative or (7;u)-integrable. In particular,
this integral is fully determined by the marginal z;u of u. Thus,
if another measure v on X has the same marginals as u, that is,
njv=mnju (j €J), then

1) [ etwidn = [ sGoutdx)
if g: X — R is of the form g(x) = Egj(njx).
jeJ
Here, the g;:Y; — R are assumed to be measurable such that
Y jes J;18i(mix)|u(dx) < oo.
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2.2. In the sequel, A is a fixed finite or o-finite measure on X . We
shall identify functions on X (or subsets of X ) which are equal a.e.
[4]. Define M; as the collection of measurable functions

Mo={¢:X—>R;OS¢(x)51(xeX);/ngdl<oo};

(the latter condition is automatic when A is finite). Further M will
denote the associated class of (finite) measures du, = ¢di on X
having density ¢ € M. If ¢ = 1; is the indicator function of a subset
S of X then pu, is also denoted as us; thus, us(dx) = 15(x)A(dx).
In the sequel, S always denotes a measurable subset of X satisfying
A(S) < 0. Hence, 15 € My, equivalently, u; € M.

For each ue M, let

(2.3) Mu)={veM:nju=mnv forall jeJ},

be the collection of all ¥ € M having exactly the same marginals as
u. Similarly for ¢ € My, let My(¢) be the set of all ¥ € My such
that u, has the same marginals as u,; that is, uy, € M(uy). In
particular, u € M(u) and ¢ € My(¢).

2.4. DerFINITION. We will call a function ¢: X — R a uniqueness
function if ¢ € M, and, moreover, My(¢) = {¢}. Equivalently,

M(pg) = {ug} -

We will say that a set .S is a weak set of uniqueness if there exists no
measurable subset 7 of X distinct from §, such that du; = 17dA
has the same marginals as dus; = 15dA. Equivalently, Mj(1;) con-
tains no indicator function 17 different from 1;. But we do not rule
out the possibility that w € My(15) for some non-indicator function
0 < w <1 distinct from 1. If also that possibility is ruled out then
we will say that S is a set of uniqueness. In other words, a subset S
of X is a (strong) set of uniqueness if its indicator function 1; is a
uniqueness function, equivalently, if My(1;) = {15}.

All these notions are relative to the given choice of the measure A
on X and maps n;:X — Y; (j € J) and the standing assumption
that A(S) < 0.

2.5. Since we identify sets S, T or functions ¢, y differing only
on a A-null set, one could identify a measurable set S or a function
¢ € My with the corresponding measure du; = 1;,dA or ¢dAi, re-
spectively. For instance, one could speak of the marginals of S or



280 J. H. B. KEMPERMAN

¢. These marginals of S are analogous to the X-ray pictures from
different directions of an object in R3.

The set S is a set of uniqueness set precisely when there is no
vy € M, different from 1;, such that du, = wdA has exactly the
same marginals as dus; = 1,dA. It implies that S is also a weak set
of uniqueness, meaning that there exists no other subset 7" of X can
have the same marginals as §'.

In many applications, the two notions are equivalent, in other words,
any weak set S of uniqueness is also a (strong) set of uniqueness. This
equivalence holds, for instance, when X, A and =n; (j € J) are as in
the following Example 2.76 and moreover, A is finite, see [1] and [4].
However, it fails in Example 2.7, see [2].

2.6. ExaMmpLE. The following system {X, A, n; (j € J)} will be
referred to as the classical case. Here, m,(dx) = dx denotes n-
dimensional Lebesgue measure on R”, while ‘measurable’ is the same
as my-measurable. Namely, choose X as a measurable subset of
R" and A as an (absolutely continuous) measure A(dx) = gq(x)dx.
Often one will choose A as the restriction of m, to X ; it would be

finite when m,(X) < oo. In addition, choose J = {l,..., n} and
mj: X — R as the projection which maps x = (x;, ..., x,) toits jth
coordinate x; (j=1,---,n).

We are interested in finite measures 4 on X of the form du =
¢pdl = ¢(x)g(x)dx; 0 < ¢ <1, (often ¢ = 15). In the present
example, the z;u (j =1, .-, n) are precisely the one-dimensional
marginals of u. Clearly, 7;u is an absolutely continuous measure on
R with density function

hj(&) = /er)(x)q(x)dxl cedxj_1dxjpy o dxn,
(xj=¢€R;j=1,...,n).

Moreover, ¢ is a uniqueness function precisely when no other func-
tion 0 < y <1 leads to precisely the same marginal densities 4; (j =
1, -, n) X

2.7. EXaMPLE. Let X ={1, 2, ..., a}" and choose J and the 7«;
as in Example 2.6. Let A(x) = A({x}). Presently, the jth marginal
nju of a measure du = ¢dx on X is the measure on {1,..., a}
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with discrete density function

h;i(&) = (mu)({<})
=Z{¢(x1, coes Xp)AX1, oo, X)X €EX G x5 =E,
{¢=1,...,a;j=1,...,n}
2.8. DeFINITION. Given a set S with A(5) < oo, let F(S) denote

the linear set consisting of all functions f: X — R having the special
form

(2.9) f(x) =) filmx),
j€J
with the f;:Y; — R (j € J) as measurable functions such that

(2.10) > / 1 (1) |A(dx) < oo,
jer’s

Note from (2.1) that each f € F(S) is integrable relative to each
U € M(us) while, moreover, the corresponding integral [ fdu is
fully determined by the marginals 7;us (j € J) of us.

Let further F be the class of all f: X — R of the form (2.9) and
satisfying
> / | fi(7;x)|A(dx) < oo.
jer X
The latter condition requires in particular that f; is (m;4)-integrable,
as happens when A is finite and f; is bounded. Clearly, F(S) D F
for any . Further each f € F is integrable relative to each u € M .
Of special interest is the case that all but finitely many f; (j € J) are
identically zero.

2.11. DEFINITION. A subset S of X is said to be additive if S is
measurable, with A(S) < oo, and, moreover, S is of the form

(2.12) S=Sy={xeX:f(x)>0}, forsome f e F(S).

Note that 1; and S attain the suprema

(2.13) sup{/f¢dl:0$¢§1}

- saimsp - 10

(where f, = max(0, f)). For instance, relative to Example (2.6), the
closed unit ball § in R” is an additive set, as is seen by choosing
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f(x)=1-3;x?=1—||x]|*. In fact, S maximizes [(1-||x|?)dx;
therefore, S minimizes fTHxH2 dx among subsets 7" of R” volume

Jrdx=[gdx.
The following result is a straightforward generalization of a result

due to Fishburn et al. [2].

2.14. LEMMA. Each additive set S is also a (strong) set of unique-
ness.

2.15. Proof. Let S be of the form (2.12), with A(S) < oo, and
suppose that dv = wdi with 0 < w < 1 has the same marginals as
du=15dA (thus, v(X) = pu(X)=A(S) < oo and y € Mj). We must
show that v = u, thatis, y(x) = ls(x) a.e. [A]. It follows from
(2.1) that [ fdv = [ fdu, that is,

/X £0)(15(x) = w(x))A(dx) = 0.

From 0 < y < 1 and the definition of S, the latter integrand is
nonnegative and thus zero a.e. [A]. This shows that y(x) = 15(x) a.e.
[4] outside D = {x € X: f(x) = 0}. Here, S D D thus A(D) < c0.
Moreover,

/ (1 - w(x)A(dx) = / (1s(x) — w(x))A(dx)
D D
- /X (1s(x) — w(x))A(dx) = 0,

the latter since [du = [du = A(S) < oco. Here, 1 —y(x) > 0; hence
v(x)=1=1g(x) a.e. on D.

2.16. Property (A). We will say that the system {X,A;n; (j€J)}
has property (A) when, conversely, each set S of uniqueness in X is
necessarily additive.

2.17. In this direction, we can report the following results.

(i) Property (A) does hold in the classical case (Example 2.6) when
n =2 and X = R? while A is two-dimensional Lebesgue measure.
This result is essentially due to Lorentz [8]; see Fishburn et al. [1]3-
Kuba and Volcic [7], [9] for related results.

(ii) Property (A) will be shown to be false in the classical case
(Example 2.6) when n > 3 even when X = [0, 2]” and A is Lebesgue
measure. See §3 for details.
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(iii) Property (A) does hold for the discrete case of Example 2.7, as
was shown in [2].

(iv) More generally, property (A) holds whenever X is finite (even
when J is infinite). This result is obtained in §4 as a corollary to a
uniqueness result for systems of linear inequalities.

3. Generalized additivity. Here, we use the notations of §2. We
always assume that A(S) < co. Recall the linear classes F(S) and F
of functions f: X — R defined in 2.8. Further, an additive set S is
a subset of X such that § = {x € X: f(x) > 0} for some f € F(S).
From Lemma 2.12, each additive set is a set of uniqueness.

3.1. DEFINITION. Let S be a subset of X with A(S) < co. We will
way that S is (stepwise) additive of degree < 2 if it is of the form

(3.2) S={xeX:f(x)>0u{xeX:f(x)=0; g(x)>0},

for some f, g € F(S). More generally, .S will be said to be (stepwise)
additive of degree< m (with m as a positive integer), if it has the
following structure relative to a suitably chosen m-tuple of functions
fMeFS)(r=1,...,m).

(i) Anelement x € X belongsto S if and only if the first non-zero

element (if any) in the sequence f((x), ..., fU™(x) is positive.
(ii) In particular, x € S whenever f")(x) = 0 forall r = 1,
., m.

Equivalently, S is said to be additive of degree < m if it is of the
form
(3.3) S=U,u0,U---UUy,UZ,,
for some choice of the functions f() € F(S) (r=1, ..., m). Here,
(34) U={xeX:fOx)=0for1 <k <r;fN(x)>0};
Z,={xeX:fMN(x)=0for 1 <k <r}.

3.5. We will further use the notation

(3.6) Or={xeX: fOx)=0for1 <k <r; f(x)+#0}.

Note that X is the disjoint union of the sets Q;, ..., Oy, and Z,,.
If S is defined as in (3.3) and x € Q,, then x € S if and only if
fOx)>0(r=1,2,...,m).

Additivity of degree < m implies additivity of degree < m + 1.
This can be seen by choosing f("*+1) = (™) in which case Q,,+; and
thus U, is empty. We will say that S is additive of degree m if
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it is additive of degree < m and, moreover, m is minimal, that is,
S fails to be additive of any degree < m' foreach 1 < m' < m.
In particular, additivity of degree < 1, additivity of degree 1 and
ordinary additivity (as in Definiton 2.11) are all equivalent.

3.7. Analogously, one defines the notion of a subset S of X to be
additive of degree < oo. This means that, for some infinite sequence
f e F(S) (r=1,2,...,), S happens to the union of all the
associated sets U, (r > 1) as in (3.4), together with the set Z,, =
{x € X: f(x) =0 for all > 1}. If the latter set S is not additive
of any finite degree, we will say that S is additive of infinite degree.

The following result shows that additivity of higher degree is no
more general than ordinary additivity in the special case that X is
finite; (one may as well assume that A(X) < oo). Another proof for
this discrete case would be as follows: (i) Theorem 3.11 below shows
that an additive set of degree < m is always a set of uniqueness. (ii)
Theorem 4.50 below shows that each set of uniqueness is additive, as
long as X is finite.

3.8. LEMMA. If X is finite then any subset S of X which is additive
of degree < m, for some 1 < m < oo, is already additive (that is,
additive of degree 1).

3.9. Proof. Let 1 < m < oo and suppose S is additive of degree
< m asin (3.3), (3.4), (or 3.7 when m = +o00), where f() € F(S).
Functions f(), such that Q, is empty, serve no purpose and may
as well be dropped. In other words, one can assume without loss of
generality that all sets @, are non-empty (1 < r < m). But X is
finite and the Q, are disjoint, hence, m can be assumed to be finite.
Let

a= gg}f{lf("(X)l:f(’)(x) # 0}
b= sxu;:{lf(’)(x)l}; thus0<a<b < oo,
(where, x € X; 1 <r < m). Choose further 0 < p < a/(a+b) thus
p/(1 —p)<a/b, and consider
F=fWapf@ 4 p2f@ 4.4 pr=1£0) hence, f € F(S).
It suffices to show that S coincides with the additive set
T={xeX: f(x)>0}.
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If X9 € Zn, thatis, f®*)(xy) = 0 for 1 < k < m then clearly
Xo € SNT. Next, let xo ¢ Z,, and define r = r(xp) by 1 <r <
m; fK(xg) =0 for 1 < k <r and f(xg) # 0. From (3.3),
one has xp € S or xp € S¢ depending on whether f)(x) > 0 or
fM(xp) < 0, respectively. It suffices to show that in these cases one
has f(xg) > 0 or f(xg) < 0, respectively (to the effect that xo € T or
xo ¢ T, respectively). And that property follows immediately from

S A0 < b7/ - p) <ap <107
r<k<m

3.10. Let us return to the general case as in §2. For the classicial
case described in Example 2.6 (with n > 3), Theorem 3.11 will enable
us to construct sets of uniqueness which are not additive.

3.11. THEOREM. Let S be a subset of X which is additive of degree
<m, for some 1 <m<oo. Then S is a (strong) set of uniqueness.

3.12. Proof. Let S be of the form (3.3) (or as in 3.7 when m =
+00), A(S) < oo. Let 0 <y <1 be such that the measure dv = y dA
has the same marginals as du = 15dA. In particular, from (2.1) and
f e F(S),onehas [fdv=[fDdu, that is,

(3.13) / FO(x)(1s(x) - w(x)A(dx) =0, forall 1 <r<m.

One must show that v = u, that is y(x) = 1g(x) a.e. [4].

Let Z, be asin (3.4) (asin 3.7 when r = o0), Zy= X, andlet Q,
be as in (3.6). In particular, Zy = X is the disjoint union of the m+1
sets O, and Z,, (1 <r<m;r<oo). We first prove, by an induction
on r,that y(x) =1g(x) ae. [AJon @, (r=1,...,m;r <o0). Let
1 < r < m; r finite, and suppose we already know that y(x) = 1g(x)
a.e. [A] or Oy, for 1 < k < r and, thus, on the full complement
QiU---UQ,_1=X/Z,_, of Z,_;. Hence, (3.13) yields that

(3.14) /Z FOX)(15(x) — w(x))A(dx) = 0.

Here, Z,_; = Q, U Z, with Q, and Z, disjoint. If x € Z, then
f)(x) = 0. On the other hand, if x € @, (thus f)(x) # 0) we have
from (3.3) and (3.4) that x belongs to S if and only if f()(x) > 0.
Therefore, the integrand in (3.14) (where 0 < yw < 1) is nonnegative
and thus equal to zero a.e. [A] on Z,_; and thus on Q,. Hence,
v(x) = 1g5(x) a.e. [A] on Q, which completes our proof by induction.
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We now know that y(x) = 1g(x) a.e. [A] on the full complement
Q1U---UQm=X/Z,. Further,

u(x)=/z//d/1=/1sd,1<oo, thus /Z (1s(x) — w(x))A(dx) = 0.

m

But S D Z,,, thus, the latter integrand is nonnegative, showing that
w(x) =1g a.e. [A] on Z,, . This completes the proof that y(x) = 1g
a.e. [A] on X.

3.15. REMARK. Theorem 3.11 and its proof even generalizes to sets
S which are additive of degree < a, with a as any countable ordinal
number. Here, an additive set S of degree < a would be a subset
S with A(S) < oo, which is determined in the following manner by
a suitable family {f(V; r < a} in F(S), with r running through the
ordinal numbers 7 < a. If x € X is such that f(x) = 0 for all
r < a then x € §. Otherwise, let r = r(x) be the smallest ordinal
number with f)(x) # 0 and assign x to S or S¢, respectively,
depending on whether f()(x) >0 or f")(x) < 0, respectively. If
is minimal (given S') one would say that S is additive of degree «. It
would be interesting to know (for instance, in the classical case 2.6) for
what ordinal numbers o there does exist a subset S of X, which is
additive of degree o . And also what systems {X, A, n; (j € J)} have
the following Property (B): To every set S of uniqueness in X there
corresponds a countable ordinal number «, such that S is additive of
degree < . This property is of a similar type as Property (A), which
was discussed in 2.16 and 2.17.

The proof of Theorem 3.11 also yields that 7= U; U U, U---U Uy,
is a set of uniqueness. However, this is nothing new, in fact, 7 is
additive of degree < m + 1, as is seen by introducing "+ = -1,

3.16. A non-additive set of uniqueness. From now on, in this section,
we will restrict ourselves to the classical case as in 2.6. We will take X
as a bounded subset of R"” supplied with Lebesgue measure. Further
the mju (j=1,...,n) are the one-dimensional marginals of du =
¢di,with 0 < ¢ < 1. Assuming that n > 3 (as is necessary by 2.17),
we would like to have an example of a subset of S of R” which i}
additive of exact degree 2. This means that:

(1) S isadditive of degree < 2, (asin (3.2)). Thus, from Theorem
3.11, S is also a set of uniqueness.
(i) S is not additive.
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3.17. Construction. Let m be a fixed integer, such that 2 < m <
n — 1 (as is only possible when n > 3). We will choose X as the
block

X=[0,2)"x[0, )™
={xeR"0<xj<2for j<m;0<x;<1forj>m}.

The reference measure A is chosen as Lebesgue measure m,, restricted
to X. One has F(S) D F with F astheclassof all f: X — R of the
form f(x) =3; fj(x;) with f; integrable on [0, 2) or [0, 1).

It will be convenient to regard the block X as the disjoint union of
the 2™ unit cubes X5 defined by

Xs={x€eX:d;<xj<dj+1, forj=1,..., m}

(6; € {0, 1}). Here, J runs through all the 2™ sequences 6 =
(61,...,0m) with é; € {0, 1}. The choice 6 = 0 leads to the spe-
cial unit cube Xp = {x e R:0< x; < 1,for j=1,...,n}. Let
S5 = SNS; denote the part of S in Ss.

The subset S of X will be defined as in (3.2), with f, g € F;
hence S is additive of degree < 2. Here, f and g are chosen to be
of the special form

(3.18) f(x)=> fi(x); g0)=Y_gx) =Y xj—n+1.
j=1 Jj=1 J=1

Thus, f; =0 for m < j < n. Further
(3.19) fi(x;))=0 if0<x;<1;

o) == (= 1) 1Sx<2, (=1, , m);
(much more general functions f and g would work equally well, see

Remark 3.32 below). Observe that f(x) =0 for all x € X;. Hence,
from (3.2),

(3.20) So=SNXy={x € Xp:g(x) >0}
={xeXpx + - +x,2n-1}

Clearly, Sy is a simplex (pyramid) in R" having the points (0, 1, ...,

;- ,(,...,1,0) and (1,...,1) asits n+ 1 vertices.

Ignoring the set {x € S/Xp; f(x) = 0}, which has m,-measure
zero, the remaining part of S is of the form

S/Xo={xeX: f(x)>0}
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and thus independent of the function g. Let § # O where 6 =
(61,...,0m) (6; € {0, 1}). It is immediate, from the definition of
Xs and (3.19), that S5 = SN X; consists of all x € R" satisfying

(i) 0<xj<lwhen j>moré;=0(y=1,---,n);

(ii) If ;=1 then 1 <x;<2(j=1, .-, m) in such a way that

(3.21) YAxj—1: d;=1;1<j<m}<d/m.

Here, d = |8| =d1+---+Jm; hence, 1 <d < m. Thus, S5 is a prism
S; = Bs x [0, 1)"~9 having as its base B; a simplex in R?, with

vertices (y1, ..., yq) for which y; = 1, with at most one exception,
in which case y; = 1+d/m. If d =1 this base is an interval and
Ss 1is a rectangular block. For instance, if # = (1,0, ..., 0) then

Sy =[1,1+1/m)x [0, )""!. If d = 2 then the base B; is a
triangle.

3.23. Consider the special case n» = 3 where m = 2. Then our
set S of uniqueness in R3 consists of: (i) The pyramid (tetrahedron)
with vertices (1,1,1); (0,1,1); (1,0,1); (1,1, 0). (i1) The rect-
angular blocks [1, 3/2)x[0, 1)x[0, 1) and [0, 1)x[1, 3/2)x[O0, 1).
(iii) The prism B x [0, 1) with B as the triangle B = {(x;, x3):x; >
l;xy > 1 x1+x <3}

3.23. THEOREM. The set S of uniqueness as constructed above is
not additive.

3.24. Proof. On the contrary, suppose there exist measurable func-
tions Ay, ..., hy on [0, 2); further measurable functions 4,,, ...,
h, on [0, 1) and a subset N of X, with m,(N) = 0, such that if
x=(X1,...,XxXn) € X/N then

(3.25) > hj(x;) > 0if and only if x € .
J

In the sequel, indices j, r and s will run through {1, ..., n};
{1, ..., m} and {m +1,..., n}, respectively. We write x =
(X1y...,Xn)€R"as x=(y, z),where y = V1, ..., Ym) = (X1, ...,
Xm) and z = (Zmy1s.-vs Zn) = (Xmat, ... » Xn). Let further

Hi(»)=>_ h(y); Ha(z)=)_ hs(zs);
Ll(y)=ZYr§ L2(Z)=Zzs-
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Thus, (3.25) can be written as if (¥, z) € X/N then

(3.26) H(y)+ Hy(z) >0 if and only if (y, z) € S.

In particular, (3.20) implies that if (y, z) € Xy/N then

(3.27) H(y)+ Hy(z) >0 ifandonlyif L{(y)+ Ly(z)>n—1.
Next, let us apply (3.26) for points (¥, z) € X; where { =

(I,...,1). Note that X, = [1,2)” x (0, 1)"™™ = e + Xy, where
e € R" has coordinates ¢, = 1 (r =1,...,m) and ¢ = 0 (s =
m+1,...,n). We see from (3.21) with § = { (thus d = |d| = m)
that

SNXy = {xeXgZ(x,— 1)< 1} =e+{(y, z) € Xo: Li(y) < 1}.

Hence, it follows from (3.27) that if (y, z) € Xp/N; then
(3.28) K,(y)+ Hy(z) >0 ifandonlyif L;(Y)< 1.
Here,

K(y)=)Y k(y) where k(&) =h(1+&) (r=1,...,m)

(y € [0, )™; & €[0,1)). Further, Ny = {x € Xp:e + x € N} thus
m,(N;) = 0. Note that {(y, z) € Xp: L;(y) = 0} has m,-measure
zero and can be ignored.

We will show that (3.27), (3.28) together lead to a contradiction.
In the sequel, y ranges through 7™ and z through I"~™, where
I=[0,1). Put

(3.29) a = essinf{H,(z)}: B =esssup{Hy(z)};

thus, a < 8, (possibly a = —oo0 or = +o00). We claim that a < .
Suppose not, equivalently, « is finite and H,(z) = a a.e. on ["™™,
Since m,(N) = 0, there exists a subset £ of I""™ with m,_,(E) =
0, such that, for each z € I""™/FE, one has (y, z) ¢ N for almost
all y € I"™. Note that the linear function L{(y) = ) ,y, on I™
takes all values in [0, m), while the linear function L,(z) = Y, zs
on I"~™ takes all values in [0, n — m). Clearly, there exist z’, z" €
I"=-m/E such that H,(z') = Hy(z") = «; further Ly(z') < Ly(z") and
n—m—1< Ly(z") < n— m. Next, there exists y € I such that

(y,2)¢N,(y,z")¢ N and
n—1-Lyz") < Li(y) <n—1-Ly(2);
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(just choose y such that L;(y) is slightly larger than the value p =
n —1— L,(z"), which satisfies m — 1 < p < m). Applying (3.27), we
see that (y, z/) ¢ N and L(y)+ Ly(z') <n—1 imply Hi(y)+a <
0. Similarly, (v, z") ¢ N and L;(y)+ Ly(z") > n— 1 imply that
H,(y) + a > 0 and we have a contradiction. This proves that a < .
Since m,(N;) = 0 there exists a subset D of I of ( m-dimensional
Lebesgue) measure zero, such that, for each y € D, one has (y, z) ¢
Ny for almost all z € I"~™, It follows from (3.28) and (3.29) that

(3.30) ifyelI™/D and L;(y)<1 thenK;(Y)+a>0;
ifyeI™/D and Li(y)>1 then K (y)+ B <0.

Here, Li(y) = >_y, takes all values in [0, m), thus, a and B are
finite. Let A = B — a; thus A > 0. At least intuitively, (3.30)
seems impossible. For, it would imply that, roughly speaking, K;(y) =
Y., kr(yr) makes a downward jump of size > A everywhere across the
hyperplane Li(y) =) y,=1. Here, r=1, ..., m where m > 2.

Let us write y € I"™ as y = (u, v), where u = (U1, ..., Upy—1) =
Diseoes Vmo1) €I™ 1V and v = y,, € I =[0,1). Thus L(y) =
Li(u,v)=Lo(y)+v where Lo(u) = u;+---+upy—; . Further K;(y) =
Ki(u, v) = Ko(u) + k(v), where Ko() = ki(u1) + - + K1 (Um—1)
and k(v) = kp(v).

Let C be a subset of I =[0, 1) of full measure m(C) =1 such
that (u,v) ¢ D, for almost all u € I"™"!, whenever v € C. Let
v',v" € C with v/ < v" be fixed for the moment. There exists
u € I ! such that (u,v') ¢ D; (u,v") ¢ D and 1-v" < Ly(u) <
1 —v’; (after all, Lo(u) is a linear function on I"”~1 taking all values
in (0, m—1) and thus all values in (1 —v”, 1 —v’); it is mainly here
that m > 2 is used). Since (u,v’) ¢ D and L(u,v') = Lo(u) +
v’ < 1, it follows from (3.30) that K;(u, v') = Ko(u) + k(v') > —a.
Similarly, since (u, v") ¢ D and Lo(u)+v"” > 1, one has that Ky(u)+
k(") < —=p. Consequently, k(v") —k(v') < -f+a=-A<0
whenever v', v"” € C with v/ < v"”. Choosing v; € C with v’ <
vy < - < vy <", it would follow that k(v”) — k(v') < MA for
M arbitrarily large and this is clearly impossible. This completes the
proof of Theorem 3.23.

3.31. REMARK. Omitting the proof, we assert that (3.25) restricted
to Xp (which is the same as (3.27)) has only trivial solutions 4 =
(h1, ..., ha), provided n > 3. More precisely, suppose that 4;:1 =
[0,1) - R (j=1,---,n) are measurable functions such that, for
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all x€I"/N,onehas }°;h;(x;) 20 ifand onlyif 3, x; >n—1.
Here, the subset N of I" satisfies m,(N) = 0. Then there exist
constants a > 0 and b; such that 4;(x;) = ax; — b; for almost all
xj=I(j=1,---,n). Naturally, 3°;b; = (n— 1)a. The analogous
result with n = 2 is false. After all, for each choice of the strictly
increasing function 6:[0, 1] = R, x;+x; > 1 ae. on [0, 1)2 is
equivalent to 8(x;) — (1 — x3) >0 a.e. on [0, 1),

3.32. REMARK. The proof of Theorem 3.23 is quite robust and uses
very few of the properties of the functions f, g € F defining S asin
(3.2). Let us maintain the structure of X and also the assumptions
that 2<m<n-1 and

fx)= if}(Xj), with f;(x;) =0if 0< x; < 1;
j=1

gx)=> gix) (xeX).
j=1

In particular, f; =0 if j > m. One has f(x) =0 forall x € Xp =
[0, 1)", thus, Sy =SNXy={x € Xp: g(x) > 0} is determined by the
restrictions g;:[0, 1) =R (j=1,---,n).

Writing x € Xy as x = (y, z) with y € [0, 1)™ and z € [0, 1),
we want that the property (v, z) € Sy depends in an essential way on
z. This in order that, as in the above proof, o and S as in (3.29)
will satisfy a < f. It would be sufficient that

esszinfz 8s(zs) < "Zgr(J’r) < esszsungs(zs) , ze[0, 1)~
s r s

(r—=1,...,m;s=m+1, ..., n) holds for a set of points y € [0, 1)™
of positive measure. For each such y, the set {(y, z):z € [0, 1)"~™}
meets both § and S°¢ in a set of positive measure.

The above method of proof easily leads to a contradiction (from
the assumption that S is additive), provided that, in addition, the
functions fi, ..., f;, are continuous on (1,2) in such a way that

m—1 m—1
3 ) < =fOm) < ~fym) < 3, S0,
r=1 r=1

for at least one choice of the numbers x,,y,€(1,2)(r=1,...,m).
This is a rather weak assumption. We omit the details.
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4. The finite case. Here, we characterize systems of linear inequali-
ties having a unique solution. Let m and »n be fixed positive integers

and I ={1,...,m}; J ={1,..., n}. Unspecified indices i and
J run through I and J, respectively. Further 4 = (a;;) € R™" is
a given m x n matrix and b = (by, ..., by)T € R™ a given column

vector. We will be interested in the system of inequalities Ax > b,
with x = (xq, ..., x,)T. That is,

(4.1) Za;jszb,-, foralliel.
jeJ

In addition, we impose the conditions

(4.2) ajSngﬂj, for all j € J.

Here, and from now on, the «; and f; are given extended real num-
bers such that

(4.3) —0<Laj<Bi<+o0  (JEJT);

(the case o = B, where x; = a; is prescribed, can be eliminated by
lowering n).

Specifically, we shall be interested in characterizing the situations
where (4.1), (4.2) have a unique solution x°. The special case where
(4.2) is void (that is aj = —o00; Bj = 400, forall j € J) leads to the
following definition.

4.4. DerFINITION. The matrix 4 = (a;;) is said to be a matrix of
uniqueness if
(4.5) x €R"; Ax >0 imply that x = 0.
Naturally, this would be equivalent to 4Ax < 0 implying that x =0.
Since the matrix A4 represents a map R” — R™, one is not allowed
to identify all empty matrices (having m = 0 or n = 0). In fact, (4.5)
forces the convention that an empty matrix with m =0 and n > 1 is
never a matrix of uniqueness. It will be convenient to regard an empty
m X n matrix with n = 0 columns as being a matrix of uniqueness.
The following result is known.

4.6. LEMMA. In order that A be a matrix of uniqueness it is neces-
sary and sufficient that

(4.7) for each z € R" there exists y € R™
such thaty > 0 and yA = z.

Here, y and z are row vectors.
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4.8. Proof. Assume property (4.7) and let x € R" satisfy Ax > 0.
Applying (4.7) with z = —xT, there exists y € R™ with y > 0 and
yA = —xT. Hence,

0 < y(dx) = (yA)x = —xTx = —||x||*, thus, x =0.

Next, suppose property (4.7) is false. That is, some zy € R" is not
contained in the convex cone K = {yA:y > 0}. It follows that K
is contained in some closed half space H, = {z € R":z¢c > 0} with
¢ € R" as a non-zero column vector. Thus y(A4c)c > 0, whenever
y > 0; hence, Ac > 0 contradicting (4.5).

4.9. REMARK. Geometrically, Lemma 4.6 is very intuitive. For
(4.5) requires that the finite collection of closed half spaces }_; a;;x; >
0 (i € I) has intersection {0}. And property (4.7) says that the convex
cone spanned by the associated normals (the rows of A4) is all of R”.

4.10. REMARK. The system of equalities Ax = 0 would be equiva-
lent to Bx > 0, where B is the 2m x n matrix B = (_AA) . Clearly,
B is a matrix of uniqueness if and only if 4 has rank#. Condition
(4.7) applied to B (instead of A) says that the rows of A span all of
R™.

4.11. In the sequel, x9 is a fixed solution of (4.1) and (4.2), while
I% and J9 denote the associated index sets

(4.12) 0= {iel:Za,-,-x?:b,};
J

(4.13) JO={jeJiaj<x?< B}

Further 4% denotes the (possibly empty) associated submatrix of 4
defined by

(4.14) A'={a;;iel’ jeJ%.

4.15. THEOREM. Let x° be a fixed solution of (4.1), (4.2) with
associated 1%, J° and A° as above. Then in order that x° be the only
solution of (4.1), (4.2), it is necessary and sufficient that x° satisfies
the following two conditions.
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(i) There must exist a vector f = (f1, ..., fm) of the form
(4.16) fi=Y viaij; yi20(€l; yi=00¢lI
iel
and satisfying

(4.17) fi<0 iffx?=0ay;
fi>0 iffx?=p;;
fi=0 iffaj<x¥<Bj; thatis, iff jeJ°

(ii) The matrix A° defined by (4.14) is a matrix of uniqueness.

4.18. REMARKS. Note that the above uniqueness criterion depends
on b € R™ only through the index set I° defined by (4.12). The vec-
tor f in (ii) is often far from unique. Condition (ii) is automatically
satisfied when JO is empty, that is, when x}) €{a;, p;} forall jeJ.

The necessity of condition (ii) is easily seen. For, if (ii) were
false then, from Definition 4.4, there would exist a non-zero func-
tion z:J — R carried by JO (thatis, z; =0 if x? =a; or x) = §))
such that }°;a;;z; > 0 forall i € I0. Replacing x° by x = x0+pz,
with p > 0 small, one obtains a different solution of (4.1), (4.2).

4.19. As a simple illustration, let n = 1. Here, x € R is subject to
aix>b; (i€l and a < x < B (where a < B). A solution x0 is
unique if and only if one of the following happens. Here, I = {i €
I: a,~x° = b,} .

(i) One has o < x% < B, that is, J® = {1}, and, moreover, there
exist 7, s € I with a, < 0 and a; > 0. Here, the above assertions
hold with y; =0, and thus f=)}",y;a; =0.

(ii) One has a = x% < B (thus JO is empty) and, in addition,
ar < 0 for some r € I° (thus a,x° = b,). Then choose y, = 1 and
yi=0(i#r);hence, f=3,yia;=0a,<0.

(iii) One has a < x0 = B (thus JO is empty) and a, > 0 for some
r € I°. Then choose y, =1 and y; = (i # r) so that f=a, > 0.

4.20. Consider the case that I° is empty, that is, 4x° > b. Then
Ax > b holds for all x in a sufficiently small neighborhood of x9,
showing that x° cannot possibly be a unique solution of (4.1), (4.2),
which must mean that either (i) or (ii) is false. Indeed, A° is not a
matrix of uniqueness unless possibly JO is empty, (see 4.4). But in
the latter case, (i) is false. Namely, (i) with I° empty would imply
that fj =0 forall j e J, thus, that JO=J #0.
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4.21. Proof of Theorem 4.15. Sufficiency. Suppose x° satisfies not
only (4.1), (4.2) but also (i) and (ii). Consider any solution x of
(4.1), (4.2). Multiplying (4.1) by y; > 0 and summing, and using
(4.16), one finds that f(x) := 33, fix; > 32, biyi = f(x), and thus,
>, fi(x) —x;) <0. But, in view of (4.2) and (4.17), each term in the
latter sum is nonnegative. Consequently, x; = x}‘.’ whenever f; # 0,
that is, whenever j ¢ JO. This already implies the uniqueness of x°
when JO is empty.

Otherwise, it suffices to prove z = 0 with z as the restriction of
x—x% to JO. In fact, 3°;a;x; > by = 35 a;;x?, for each i € I°.
We already know that x; = x?, for j ¢ JO, and hence 4%z > 0. But
this implies z = 0 since 4° is a matrix of uniqueness.

4.22. Necessity. The necessity of condition (ii) was already estab-
lished in 4.18. It remains to show that (4.16), (4.17) hold for some
vector f = (f1, ..., fn). The proof will be by induction with respect
to n=|J|. The case n = 0 is trivially true, while the case n = 1 was
verified in 4.19.

Decreasing x;, a; and B; by x}) (j € J) and decreasing b; by
> ajijQ (i € I), one may without loss of generality assume that
x%=0. Thus, x° = 0 is the unique solution of (4.1), (4.2). Therefore

a;j <0< B (jed); J'={jeJ:a;<0<B};
b;<0(iel); I°={iel:b;=0}.

We first observe that x0 = 0 is also the unique solution of (4.2)
together with the (homogeneous) system

(4.23) Y aix; >0 foralliel®
jeJ
(itself a subsystem of (4.1)). For, otherwise, there would exist x # 0
satisfying both (4.2) and (4.23). Since b; =0 (i € I°) and b; < 0 (i ¢
19, x' = px = (1 - p)- 0+ px would satisfy both (4.2) and the full
system (4.1), as soon as 0 < p < 1 is sufficiently small. But then
x9 =0 would not be the unique solution of (4.1), (4.2).
The just established uniqueness property says that K N Q = {0},

where _

K= {x €R™Y a;x; >0, forallie IO}

jeJ

and

Q={x€eR"a;<xj<B;, forall j e J}.
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Here, K is a closed and convex cone in R", possibly of the form
K = {0}. Further Q is a closed and convex subset of R” having a
non-empty interior int(Q) (because a; < f; forall j € J). One can
separate K and Q by a hyperplane as soon as K is disjoint from
int(Q).

First, consider the case that K is not disjoint from int(Q). Since
KN Q = {0}, this is equivalent to 0 € int(Q), thatis, a; < 0 < §;
for all j € J; equivalently, JO = J. But then property (i) holds with
yi=0 forall iel; thus, f;j=0 forall jeJ.

It remains to consider the situation that K Nint(Q) is empty. Then
there exists a hyperplane H = {x € R™:}_; fyx; = 0} in R" with
f=(f1,..., fn) non-zero such that K is a subset of H, = {x €
R™ 3, fixj >0} and Q isasubset of H_ ={x € R":}_; fjx; < 0}.
From a classical result, see Gale [3], p. 44, the fact H. D K implies
that there exist numbers y; (i € I) as in (4.16).

Next, the fact H_ D> Q means that o; < x; < B; (j € J) implies
> fixj £ 0. Recall that a; <0< B; (j € J). Choosing all but one
x; equal to zero, we have, for each j € J, that a; < x; < ; implies
fixj £ 0. Equivalently,

fj < 0implies aj =0; f; > 0 implies §; = 0.
Since JO = {j € J:a; <0< B;}, it follows that
JDJr2J% where J;={j€J:fj =0}

Note that J; is a proper subset of J since f; # 0 for at least one
Jj € J. The required property (4.17) (with x]Q = 0) holds as soon as
Jp=J 0. In particular, one is ready if J  is empty. However, it is
quite possible that J; is strictly larger than J 0, that is, there might
exist indices j € J, such that f; =0 and either a; =0 or §; =0.

Since x}) = 0 (j € J) is the unique solution of (4.2), (4.23), it
follows that x}) =0 (j € J) is certainly the unique solution of (4.2),
(4.23) but with J replaced by the proper subset J; of J. Therefore,
our induction assumption implies the existence of numbers z; > 0 (i €
I) with z; =0, for i ¢ I°, such that the associated numbers g =
Yiziaij (j € J) satisfy

(4.25) gj<0ifaj=0; gj>0if,b’j=0; gj=0ifaj<0<ﬂj,

provided j € J;. Now let p > 0 be small and consider 7, =
yi+ pz; (i € I) and the associated numbers ¢; =Y, n;a;; = fj + pg;
(jeJ). Onehas ;, >0 (i € I) and n; = 0 (i € 19 . Choosing
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p > 0 sufficiently small, one has f; + pg; <0 when f; <0 and f;+
pgi >0 when f; > 0. Using (4.24) and (4.25), one now easily veri-
fies that (4.16), (4.17) are true for y; replaced by #; (i € I) and f;
replaced by ¢; (j € J). This completes the proof of Theorem 4.15.

4.26. REMARK. Another necessary and sufficient condition for the
uniqueness of the solution x9 of (4.1), (4.2) would be the existence
of a vector f=(f;,..., fn) asin (4.16) satisfying

xV=a;if f;<0; xV=p;if f;>0; and

A4 = (aij; i1 € 1% fj = 0) is a matrix of uniqueness.
In particular, JO is a subset of J/ = {ie J; fj = 0} . The necessity
follows from Theorem 4.15 which shows that one can even attain that
J/ = JO. The sufficiency follows by the same reasoning as before, see
4.21.

4.27. THEOREM. Let x° € R" satisfy
(4.28) aj<x;j<B;  (JEJI)
Let further J = {j € J:a; < x) < p;}. Then in order that x° be

uniquely determined by the vector AxY together with the bounds (4.28),
it is necessary and sufficient that. (i) Some linear combination
(4.29) fi=Yvia; (i€Rsiel)
iel
of the rows of A has property (4.17).
(ii) The submatrix A° = (a;j;ie€1; j € JO) of A has full rank |J°|.
Equivalently, if Az=0 and z; =0 for j ¢ J° then z=0.

4.30. Proof. Apply Theorem 4.15 with A replaced by B = ( 4,)
and b replaced by (5 ) with b = Ax. Presently, I = I. The

matrix B? associated to B is a matrix of uniqueness if and only if
A° has rank|J9| (see 4.10).

4.31. COROLLARY. Let x% € R" satisfy
(4.32) xYe{a;, B}, foralljel.
Then in order that x° be unquely determiined by the vector Ax° to-
gether with the conditions (4.28), it is necessary and sufficient that there
exists a linear combination as in (4.29) such that
(4.33) fi<O0ifxj=a;; fi>0ifx;=p;.
In particular, f; #0 forall jeJ.
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4.34. REMARK. Theorem 4.27 and Corollary 4.31 remain valid
when [ is infinite, provided we add to (4.29) the condition that y;, = 0
for all but finitely many i € I. In such a situation, the condition
Ax = Ax® amounts to an infinite system of equalities.

It suffices to show that (i), (ii) are necessary. For each finite subset
H of I,let Dy be the closed convex set consisting of all x € R" satis-
fying (4.28) and }_;aijx; = }_; a,-jx]o, for each i € H. Assuming that
Ny Du = {x°}, it suffices to show that H exists with Dy = {x%},
that is, dimDy = 0. Let H* be such that dim Dy~ = infy dim Dy .
One easily verifies that Dy = Dy for each H D H* implying that
Dy = Ny Du = {x°}. Consequently, if x0 is a vector of unique-
ness relative to (4.1), (4.2) then also relative to (4.2) together with a
suitably chosen finite subsystem of (4.1).

4.35. REMARK. Relative to the prescribed m x n matrix 4 = (a;;)
and extended real numbers o;, B; (a; < Bj; j € J), let us say that
x0% € R” is a vector of uniqueness if it satisfies (4.28) and moreover,
there is no other vector x satisfying (4.28) and Ax = Ax9. If, in
addition, x0 satisfies (4.32), then we will say that x0 is a special
vector (of uniqueness). Corollary 4.31 amounts to a recipe for finding
all such special vectors x . Namely, define x; = o if f; <0; x; = §;
if f; > 0 with f as any linear combination, as in (4.29), such that
fi#0 forall j€J; (o finite if f; < 0; B; finite if f; > 0). In
many applications, such a sequence {f;} has only a limited number
of changes of sign thus severely limiting the possible special vectors
x0.

4.36. As is often true, suppose there exists z € R™ such that
(4.37) wj = Zz,a,-j >0 forall jeJ
iel
Then an equivalent recipe would be to define

(4.38) xj=0jif fj<0; x;=p;if f;>0, foralljelJ.

with f as any linear combination, as in (4.29), such that «; is finite
when f; < 0; B; is finite with f; > 0.

We already know that every special vector (of uniqueness) can be
realized in this manner even with f; # 0 for all j € J. That every
vector of the type (4.38) (with f as indicated) is a vector of unique-
ness can be seen either by an easy direct proof (analogous to the proof
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of Lemma 2.14) or else by introducing ¢; = f; + pw; (j € J) with
p >0 so small that f; <0 implies ¢; <0).

4.39. Measures determined by their marginals. Here, we change
some of the previous notations. Let X be a fixed finite non-empty set
and let nj: X — Y; (j € J) be given mappings, (where J can have
any cardinality). Let further —o0 < a(x) < f(x) < 400, (x € X), be
given extended real numbers and let

(4.40) My = {¢: X — R such that
a(x) < ¢(x) < B(x), forall x € X}.
Each such ¢ € M, can also be regarded as a finite signed measure

u on X with mass u({x}) = ¢(x) at x € X. The associated
nj-marginal (of ¢ or u) is given by

&) =@m({y}) => {o(x):nx=y}, (yeY;jel).

The following result characterizes the ¢ € M, which are uniquely
determined by these marginals.

4.42. THEOREM. Suppose X is finite. Let ¢ € My and put
(4.43) X% ={x e X:a(x) < ¢(x) < B(x)}.

In order that there exists no other w € My having the same marginals
as ¢, it is necessary and sufficient that:

(i) There does not exist any non-zero function h:X — R which
is supported by X° (that is, h(x) = 0 if x ¢ XO) and has all its
marginals equal to zero.

(i1) There exists a function f: X — R of the special form

(4.44) f(x) =" fi(m;x) with f;:Y; - R (€ J),
JjeJ

with only finitely many non-zero functions f;, and such that

(4.45) f(x)<0ifp(x)=a(x); f(x)>0if¢p(x)=pB(x);
f(x)=0ifx € X°.

4.46. Proof. Apply Theorem 4.27, extended as in Remark 4.34. In
the previous discussion, replace J = {1, ..., n} by X; J? by X9;
J by x; xj by ¢(x); a; by a(x) and B; by B(x). And finally
replace the index set I by the set of pairs (j, y) where j € J and
y € Y;. In view of (4.41), the condition that ¢ and y have the
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same marginals is analogous to Ax? = Ax with 4 as a matrix (one
row for each choice of j € J and y € Y;; if J is infinite then there
are infinity many rows). Clearly, the matrix element a(; ,) » which
corresponds to the pair of indices (j,y) € I and x € X, equals 1
if m;x =y and equals 0, otherwise. Therefore, (4.29) now takes the
form (4.44), while condition (4.17) of Theorem 4.27 takes the form
(4.45). Finally, the present condition (i) is precisely condition (ii) of
Theorem 4.27.

4.47. Additive sets. For convenience assume that a(x), B(x)
(x € X) are finite. Call ¢: X — R special if ¢(x) € {a(x), B(x)},
for all x € X, and further no other ¥ € M; has the same marginals
as ¢. From Theorem 4.42, ¢: X — R is special if and only if

(4.48)  o(x)=oa(x)if f(x) <0; ¢(x) = B(x) if f(x) >0,

for some f:Y — R of the form (4.44) and such that f(x) # 0 for all
xeX.
As an equivalent criterion, ¢: X — R is special if and only if

(4.49)  o(x) =a(x)if f(x) <0; ¢(x)=B(x)if f(x) 20,

for some f:X — R of the form (4.44). This follows from Remark
4.36. After all, 3, a;, ,),x =1, forall j and x so that condition
(4.37) is satisfied.

The case a(x) =0; B(x)=g(x) can be stated as follows, showing
that the converse of Lemma 2.14 holds when X is finite. For the case
that X and the n; are as in Example 2.7, the result is largely due to
Fishburn et al. [2].

4.50. THEOREM. Let S be a subset of X, where X is finite. Then
the following are equivalent.

(i) S is a set of uniqueness.

(i1) S is additive, that is, S = {x € X:f(x) > 0}, for some
f € F(S), see Definition 2.11.

(ili) S = {x € X:f(x) > 0} for some f:X — R of the form
f(x) = Xjes fi(mjx), with all but finitely many f;:Y; — R equal to
zero.

(iv) Same as (iii), except that we require in addition that f(x) #0,
forall xe X.

4.51. REMARK. The reader should keep in mind that, when X is
finite, there may exist subsets S of X such that, for no other set T
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does 17dA have the same projections as 1gdA, while nevertheless
¢ = lg is not a (special) vector of uniqueness; (this cannot happen in
the situation of Example 2.6, see [1], [4]). From Lemma 2.14, such a
set S cannot possibly be additive. Natually, the explanation is that
in such a situation there exists a function y: X — R, not of the form
w(x) € {0, 1}, such that y dA has the same projections as 1gdA.
An example of such a set S was given in [2]. It uses the structure of
Example 2.7 with n = 3; |S| = 66 and X = {1, 2, 3,4, 5}3 thus
|X]=125.
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