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MULTIPLICATION FORMULAE
FOR PERIODIC FUNCTIONS

HERBERT WALUM

Carlitz and others have proved that if / is a polynomial such that
it satisfies the formula

7=0

then / is (essentially) the kth degree Bernoulli! polynomial. The
purpose of this paper is to discuss the slightly more general formula

(1.2)
n{d)

when / is periodic with period 1. The notation n(d) under the
summation sign indicates that n runs through a complete system of
residues mod d. Formulae like (1.1) and (1.2) occur also in theories
of FraneΓs formula and in the elementary theory of Dedekind sums.

In this paper we will pretty much characterize the periodic bounded
variation solutions of (1.2). Then we provide a weak generalization
of the current best form of FraneΓs theorem, and use this result to
provide a method for constructing new solutions of (1.2) from old ones,
at least in principle.

1. Introduction. D. H. Lehmer discussed (1.1) and (1.2) at the 1986
West coast number theory conference in Tucson, Arizona and called
for examples of (1.1) and (1.2). He gave examples including poly-
nomials, step functions, bounded variation periodic functions, and
periodic meromorphic functions.

See [2, 3] for discussions of (1.1) and Bernoulli polynomials, [4,
6, 8, 11] for discussions of FraneΓs formula and [7] for discussions
of Dedekind sums. Since there is some measure of diversity in our
theorems, a section will be devoted to each one. Section 2 contains a
discussion of two new examples that arise from the fact that its main
theorem tells us where not to look for examples of (1.2). Section 4
contains as many examples of (1.2) that are bounded variation that I
know of.

2. Periodic bounded variation solutions of (1.2). In this section our
bounded variation functions will be identical to their Fourier series.
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One might note that the set of / that satisfies (1.2) is a real vector
space. Does (1.2) have non-zero solutions for a given 0? The next
two simple theorems give some information about this question.

THEOREM 2.1. Iff is a non-zero solution of

d-\

(2.1)

then θ is completely multiplicative.

The earliest form of our proof seems to be due to Carlitz. Note that
if / is a solution of (2.1), then

(2.2) θ(rs)f(rsx) J
j=o

m=0n=0

m=0 «=0

r-1

m=0

= θ(s)θ(r)f(rsx).

The conclusion θ(rs) = θ(r)θ(s) follows when x is chosen to be a
value so that f(rsx) Φ 0.

Having noted that θ must be completely multiplicative for (1.1) or
(1.2) or (2.1) to have non-zero solutions, we argue that many formulae
(1.2) do have solutions when θ is completely multiplicative. We use
the notation e(t) = e2πit.

THEOREM 2.2. If θ is completely multiplicative and

(2.3) /,(*) = Σ θ-ψe{nx)
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where the series always converges and where the domain of θ is ex-
tended so that θ(-n) = -θ(n), then fθ is a solution of (1.2). The
summation in (2.3) is over all non-zero integers.

The proof is easy.

2-j n

d\n

m d

Theorem 2.1 suggests asking for solutions of (1.2) when θ is a fa-
miliar completely multiplicative function, for example θ is a Dirichlet
character or given by the formula θ(d) = dn or the Liouville-Λ func-
tion. Theorem 2.3 gives a solution in case θ is a Dirichlet character,
but in case θ is λ, Theorem 2.2 gives information only at some cost.
For example, the convergence of the series for fχ is not trivial. This
example will be discussed in greater detail in §4.3.

What kind of converse of Theorem 2.2 can we arrange?

THEOREM 2.3. If f is (a) periodic with period 1 and satisfies (1.2)
with a completely multiplicative θ, (b) real and (c) bounded variation
and identical to its Fourier series, then f = cfθ where c is a constant

This result is also easy to prove. Since / is bounded variation,
period 1 we can write

f{x) =

for all values of x. Then, using (1.2), the series for x, interchanging
summations and finally using the formula for the sum of a geometric
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progression

(2.5) £ θ(d)ame(mdx) = θ(d)f(dx)
m

e (J-£) = J2 dane{nx)

By the identity theorem for Fourier series, θ(d)am = damd for all m
and d. Taking m = 1 gives a^ = a\ ̂  . Noting that since / is real,
α_^ = dd the result follows.

Where else would one look for solutions of (1.2)? We offer two
suggesions.

First, letting Q and R be the rationale and reals as usual, let V be
a rational vector space such that Q c V c R. Let pviv) = 1 when
υ G V and pγ(v) = 0 when υ £ V. Now x, x + ^ , dx (where
7 is in a complete residue system mod d) are all in V or none are
in V. From this fact Pv(x)f(x) is a solution of (1.2) when / is a
solution of (1.2).

Next, let F be a real arithmetic function such that F(dn, dr) =
F{n, r) and F{n + r, r) = F ( n , r ) . Define f(p/q) = F ( p , q). It is
easy to see that

(2.6) Σ F(n + J'd' rύ f) = 0(d)F(n, r)

is sufficient to derive (1.2) for / . I would think that characterizing the
set of F that satisfies the above three conditions would be interesting.
I offer one class of examples for F as just described. Let P be a set of
primes and let A be the set of all natural numbers all of whose prime
factors are in P. Define yp{ή) to be the largest factor of n that
is in A, and let Fp(x, r) be 1 if yp(r) divides x and 0 otherwise.
Since yp{r)\r, it follows that γp(r)\x is equivalent to yp{r)\x + r and
hence Fp(x + r, r) = Fp(x, r ) . It is also clear that γp is completely
multiplicative and that γp(dr)\dx is equivalent to yp{r)\x. Hence,
Fp(dx, dr) = FP(x,r). Finally,

1 = FP(x + jr, dr) *> γP(dr)\x + jr <* γP(d)γP(r)\x + jr
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Thus, there is a j so that Fp(x+jr, dr) = 1 only when fp(x , r) = 1.
Thus to prove (2.6) we only need consider the case Fp(x, r) = 1 since
Fp(x, r) = 0 implies that all the terms in (2.6) are 0. Thus, assume
Fp(x, r) = 1 or that yp(r)\x. Then

(2.7) 1 = FP(x + jr, dr) *> j(r/γP(r)) = (-x/γP(r)) (mod γP(d)).

This last congruence has exactly dγp(d) solutions as j runs through a
complete system of residue mod d. It follows that Fp satisfies (2.6)
with θ(d) = d/γp(d), i.e., θ(d) is the part of d that is made from
prime factors of d where the primes are not in P.

3. FranePs formula. FraneΓs formula is

(3.1) fψ{mt)ψ{nt) =
Jo \2mn

where ψ(t) = t - [t] - \ . It was made famous by Landau in his "Vor-
lesungen ϋber die Zahlentheorie," Mikolas [9, 10] has offered various
generalizations of (3.1), and here we prove, using standard methods,

THEOREM 3.1. Let f and g be periodic with period 1 and satisfy

(3.2)
Ad)

(3.2)

M

for all d and x so that the quantities x+jj and xd are in the domains
of f and g. Then if the integral on the left-hand side of

(3.3) / f(a + mt)g(β + nt)dt
Jo

θ ( n \ θ ( m \
mn

Jo \(m9n) J* \(m,n) J
exists for m and n integers and a and β real numbers, the integral
on the right-hand side of (3.3) exists and (3.3) is correct

The integrals in (3.3) must satisfy the following properties

ί [(3.1.1) / [ciA(t) + c2f2(t)]dt = cι ί Λ(t)dt + c2 [ f2(t)dt,
Ja Ja Ja
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l(b)
/
l(a

where l{x) = ex + d and

(3.1.2) / f(t)dt= f{l{x))l\x)dx,
Jl(a) Ja

(3.1.3) [bf(t)dt= Γf(ήdί+ [df(t)dt
Ja Ja Jc

so long as all the integrals exist. In case the integrals are Cauchy mean
values (we will use Cauchy mean values in §4) (3.13) is false, but
Theorem 3.1 is true so long as pa + q and pβ + q are finite points of
/ and g respectively where p and q are integers.

The proof uses familiar principles. We first prove under the hypoth-
esis of the theorem that the formulae

(3.4) / f(a + mt)g(β + nt)dt

\ r > / m β \

is true for all integers m and n. The integral on the right-hand side
of (3.4) has the same form as the integral on the left-hand side of
(3.4). Applying (3.4) to itself, so to speak, will give the Theorem. Let
d = (m,n), m = dM, n = dN. Then

f{« + mt)g(β + nt) dt = ±f" f(a + t)g [β + £ί) dt

1 w * N

+

ΣΣ*(/' + ir

Since (N, M) = 1, as N runs through a complete system of residues
mod m so does Nv . Thus, we may replace Λfy by v and obtain for
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the left-hand side of the above expression

v(M)

= — f f{μ + t)θg(M)g(Mβ + Nt) dt
m Jo

and (3.4) is deduced.

4. The construction of new examples from old. Parseval type formu-
lae. Examples. Let / and g satisfy

(4.1) / ( J C ) = V

where we temporarily assume the series are absolutely convergent. If
we form

(4.2) h(x)= [
Jo

then h(x) is equal to

s: nφO

o
(θf(m)θg(-m)/(-m))

m '

and h(x) will satisfy (1.2) with

(4.3) θ(d) = θf(d)θg(d)/d.

Theorem 4.1 will obtain the same conclusions on weaker hypotheses
and will be deduced from Theorem 3.1 instead of Fourier analysis.

THEOREM 4.1. Let f and g be periodic with period 1 and satisfy
(3.2). Let h be defined by equation (4.2). Then h satisfies (1.2) with
(4.3) being true.

From (4.2) we obtain

= θf(d) flg(t)f(dx
Jo
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By Theorem (3.1), the left-hand side of the above formula is

and the result follows so long as the integration method satisfies (3.1.1),
(3.1.2) and (3.1.3). If the integrals are Cauchy mean values, then we
must assume that px + q is a finite point of / and g when p and
q are integers.

We now proceed to a discussion of examples of (1.2).
In order to illustrate the above theorems, we will discuss exam-

ples of solutions of (1.2) in case θ(d) = dn, θ(d) = χ(d)dn and
θ(d) = λ(d)dn . In these examples, χ is a Dirichlet character, and λ
is Lioville's function, i.e., λ(p) = -1 for p a prime, and λ is com-
pletely multiplicative. Thus, we will have discussed (1.2) in the cases
when θ is one of the common completely multiplicative functions.
In the case θ(d) = dn and θ(d) = χ(d)dn we will encounter familiar
examples, when θ(d) = λ(d)dn, less so.

4.1. θ(d) = dn.
Since the series

(4.1.1) ψm(x) =

converges for m > 1 and differs from the periodic extension of the
Bernoulli polynomial of degree m by a constant factor, we have an
example with θ(d) = dn when n = 1 - m or when n is not a positive
integer. In fact, when n = 0, m = 1, ψ\{x) = ((x)), a familiar func-
tion from the theory of Dedekind sums [7, p. 1]. This same Cams
monograph just referred to also provides an example for n a pos-
itive integer. In fact, in the second variation of the third proof of
the reciprocity formula [see (27) page 18 of 7] for Dedekind sums,
Rademacher-Grosswald give (x = ky)

k

(4.1.2) ] Γ cot {y + j^j π = kcolkyπ

and thus cotyπ is an example of (1.2) with n = 1. Since cotπy
is meromorphic one can easily see that πι~ndn~ι/dyn~~ι cotπy is a
solution when n>2. It can easily be directly verified that

(4.1.3) * . W

is also a solution when n > 1 (see [10] also).
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I know of no other periodic meromorphic solutions of (1.2) when
n > 1. Of course, there can be no bounded variation periodic so-
lutions of (1.2) for n > 1, if these solutions are exactly equal to
their Fourier series, by Theorem 2.2. Naturally if py is the vector
space characteristic function from §2, pv(x)ψm{x) and py(x)Mn(z)
provide infinitely many solutions to (1.2) in the case θ{d) = dn . Nat-
urally, this last class of examples cannot be bounded variation.

(4.2.1) θ(d) = χ(d)d»

This section could be considered to be a generalization of 4.1. Here,
χ is a Dirichlet character. Define

(4.2.1) Ψ(χ,m9x) = (2

If r is the modulus of / , then

(4.2.2)

k(r) j=k(r)

Next, consider

(4.2.3) ir^i*+ *-)'(—)

Γme{jx).

Thus, if we combine (4.2.3) and (4.2.2) we obtain

(4.2.4) Ψ(χ,m,x) = -p2^2^χ{k)el—-\ψm

k(r) s(r) V 7

-sk

sir) k{r)

s(r)
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where Gt{χ) is the Gauss sum

(4.2.5)
k(r)

Thus, we have expressed ψ(χ,m,x) in terms of more familiar func-
tions. The reader might compare (4.2.4) to (4.9) of [9]. Also note
Proposition 9.7 of that same paper, and also the elegant formulae of
§10.

From (4.2.1) it is obvious that ψ(χ9 m,x) is a solution of (1.2)
with θ(d) = χ{d)dι~n for n > 1. We use Theorem 4.1 to construct
solutions of (1.2) with θ(d) = χ{d)dn for n positive. Consider

(4.2.6) f{x) = / lψ(χ, 1, t)M3(t + x) dt
Jo

by Theorem 4.1, / satisfies (1.2) with θ(d) = χ(d)d3/d = d2χ(d) if
the integral (4.2.6) converges. We will see that (4.2.6) converges as a
Cauchy mean value in the process of computing (4.2.6).

We start with the indefinite integral, for n, a positive integer,

which is valid for t in any interval not containing m - x for m an
integer. Taking x e (0, 1),

X * [( 4 . 2 . 7 ) /
Jo
/ [
o Jl-x+ε

= Mn+Ϊ(x) + Q - xj
- ε(Mn+ι(-e) + ΛfΛ+i(β)) + (Mn(ε) - Mn(-ε)).

The limit, as ε tends to zero in (4.2.7) exists when n is odd. For odd
n, the Cauchy mean value

/ Ψι(t)Mn+2(t'
Jo

IS

Mn+ι(x) + ft^

By (4.1.3), the limit is —4nlζ(n) and hence,

(4.2.8) jΓ1 ψι(t)Mn+2(x + t)dt = Mn+ι(x) - 4n\ζ(n)

for n odd and positive.
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Keeping n odd and positive, and working backwards from a formal
calculation,

(4.2.9) -
s(r)

s(r)

= 7 Σ

s(r)

j f ( J) ^ ( ί + *) dt

By (4.2.8), this last integral exists as a Cauchy mean value and by
Theorem 4.1 satisfies (1.2) with

(4.2.10) θ(d) = χ(d)dn+2/d = χ(d)dn+ι.

Thus, we have an example of (1.2) with θ(d) = χ{d)dn for all in-
tegers n except negative odd integers. Differentiating M(χ,n,x)
when n is a negative even integer gives examples of (1.2) with θ(d) =
χ(d)dn+ι. Thus, we have examples for all exponents except - 1 . Pre-
sumably M(χ, 1, JC) should do the job, but the present theorems only
suggest that it does.

A word here about the domain of M(χ, n +1, x) = M. By (4.2.9),
the domain of M is the reals (or complexes) excluding the integers.
Thus, M{χ9 n9x) satisfies (1.2) for all d and some JC. Perhaps,
however, they are the best, or only, meromorphic solutions of (1.2).

(4.3) θ(d) = -λ(d)dn

By Theorem 2.1,

(4.3.1) L

satisfies (1.2) with θ(d) = λ{d)d~n for n > 1. The convergence
domain for (4.3.1) when n = 0 seems unknown, although it follows
from a theorem of Davenport's.
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The theorem of Davenport [5] is

THEOREM 4.3.1. If k is a positive number, and t is real then

(4.3.2)
n<x

uniformly in t as x tends to infinity.

A standard lattice point argument enables us to deduce the next
theorem from (4.3.2).

THEOREM 4.3.2. If k is a positive number and t is real, then

(4.3.3)

uniformly in t

Now, since

(4.3.4)

we have

(4.3.5)

2^λ(n)e(nt) = O(xlogκ x)
n<x

as x tends to infinity.

λ(n) = £ μ(υ)
u2v=n

Ύ^λ(n)e(nt) = ^ μ{v)e{u2vt).
n<* u2v<x

The sum on the right-hand side of (4.3.5) may be regarded as a sum
over the lattice points satisfying 1 <u, 1 < i;, u2υ < x. This region
may be broken into three parts by a point (H, K) on u2v = x in the
standard way one finds in elementary theories of the divisor problem.
One obtains

(4.3.6) Σλ{n)e{nt)= £ £ μ(v)e(v(u2ή)
u<Hυ<x/u

2

u<H
v<K
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The terms in these sums are one in absolute value, so 52 and S3 may
be estimated by their number of terms. Thus S2 = O(VxK) and
S3 = O(HK). Also,

if we take H = xχlA, K = φc and thus we obtain (4.3.3).
Now partial summation applied to

(4.3.8) £ ψ-e(nt)
n=P

using (4.3.3) gives (4.3.8) to be O(P/'\ogP)K~l) and thus by standard
theorems in the theory of uniform convergence

(4.3.9) fλ{t) =

is uniformly convergent and bounded for all t. Thus, also gχ is
bounded and continuous.
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