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ON CENTRAL TYPE FACTOR GROUPS

SHAHRIAR SHAHRIARI

Γ is a group of central type if it possesses an irreducible complex
character of degree |Γ: Z(Γ) | ! / 2 . This is the largest possible degree
for an ordinary irreducible character of a finite group. A group G
which is isomorphic to Γ/Z(Γ), where Γ is some group of central
type, is called a central type factor group (ctfg). A variety of restric-
tions on ctfgs are found. These include a local characterization of
ctfgs, and restrictions on normal and subnormal structures of ctfgs.

1. Introduction. It is easy to see (see Corollary 2.30 of [10]) that the
degree of an irreducible character of a finite group Γ cannot be larger
than |Γ: Z(Γ)!1/2 . A group Γ that has an irreducible character of this
maximal degree is called a group of central type. A group G which
is isomorphic to Γ/Z(Γ), where Γ is some group of central type, is
called a central type factor group (ctfg for short).

A configuration that occurs often in character theory of solvable
groups, and therefore has been the object of much research, is that of
fully ramified sections (see [4], [6], [8], [9], [14]). A normal subgroup
N of Γ is said to be fully ramified in Γ, if there exists an irreducible
character θ of N, such that θτ = eχ, for / some irreducible charac-
ter of G, and χN = eθ. Now, if N is fully ramified in Γ, then Γ/N
is a ctfg (see Lemma 2.6), and thus the study of fully ramified sections
reduces to that of ctfgs. Another reason why characterizations of ctfgs
are sought after is that a group G is a ctfg if and only if it possesses a
2-cocycle a such that the twisted group algebra Ca[G] is simple (see
Theorem 2.7).

The study of these groups goes back to Iwahori and Matsumoto in
1964. They conjectured that ctfgs must be solvable (see [11]). Various
properties of ctfgs were discovered in [3], [4], and [12]. In 1982,
Howlett and Isaacs [6] proved the solvability of ctfgs.

The problem of understanding solvable ctfgs remains open. In this
paper, we will get more restrictions on the structure of a ctfg.

DeMeyer and Janusz [3] proved that if G is a ctfg then so are its
Sylow subgroups. However, to get that G is a ctfg it is not enough
to know that its Sylow subgroups are ctfg. DeMeyer and Janusz
do provide enough additional conditions to assure that G is a ctfg.
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However, their conditions are not local, that is, to know whether a
group G is a ctfg they still need certain information about the whole
group G. Using the techniques of group cohomology, the following
local characterization of ctfgs is obtained.

THEOREM A. A group G is a ctfg if and only if every Sylow p-
subgroup P of G has a 2-cocycle a such that Ca[P] is simple and
[a] is stabilized by NG(Q) for all XφQCP.

The same techniques are applied to give the following characteriza-
tion of ctfgs of odd order with abelian Sylow subgroups:

THEOREM B. A group G of odd order is a ctfg with abelian Sylows if
and only if for every P e Sylp(G) there is a nondegenerate alternating
bilinear map a: P x P —• C x which is preserved by N(?(P).

S. Gagola [4] has proved that any solvable group can be a subgroup
of a ctfg. This severely limits the restrictions one might hope to put
on ctfgs, since most conditions carry over to subgroups. In proving
the solvability of groups of central type, Howlett and Isaacs [6] found
some restrictions on normal subgroups of ctfgs. This, of course, is in
sharp contrast to Gagola's result. Given these two results a natural
question is whether there is any restrictions on subnormal subgroups
of ctfgs. This question was answered in the affirmative. In fact we
prove that a certain explicit set of groups cannot occur as subnormal
subgroups of ctfgs.

THEOREM C. Let S be the nonabelian group of order pq, where
p and q are primes with p\q - \. Then S cannot be a subnormal
subgroup of a ctfg.

The study of the normal structure of a ctfg is continued by proving
several restrictions on possible normal subgroups of a ctfg. These
include:

THEOREM D. Assume that G is a ctfg, and S is a noncyclic normal
subgroup of G. Then the Schur Multiplier of S, M(S), and the Schur
Multiplier of the Fitting subgroup of S, M(F(S)), are not trivial.

THEOREM E. Let S be the semi-direct product N x H. Assume
(\N\, |if I) = 1, and CN(H) = 1. Then S is a normal subgroup of a
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ctfg if and only if
(a) N has a 2-cocycle a with Ca[N] simple (i.e. N is a ctfg).
(b) H is a normal subgroup of a ctfg GQ .
(c) GQ acts on N with H acting as in S, and a admits Go.

THEOREM F. Assume A is a direct summand of a ctfg. Then A is
ctfg by abelian.

The definition of a ctfg raises questions about two related config-
urations: Which groups are isomorphic to Γ/Z(Γ) for some finite
group Γ? These groups are called capable and were studied in [13].
Restrictions on capable groups result on further restrictions on ctfgs.
For example, let Q be a generalized quaternion group of order 2n

(n > 2), or a semidihedral group of order 2n (n > 3), or an ex-
traspecial group of order p3 with exponent p2 (p > 2). Assume
Q < S. Then it follows from the results of [13] that S cannot be a
ctfg, and also S cannot be a system normalizer of a ctfg.

The second related configuration is that of fully ramified subgroups
that are not necessarily normal. This occurs when the restriction of
an irreducible character to a subgroup (not necessarily normal) is the
multiple of a single irreducible character, and the ratio of the degrees
of these two characters is the square root of the index of the subgroup.
Restrictions on these fully ramified subgroups, and their consequences
for ctfgs, were discussed in [14].

We have also included a brief exposition of bilinear pairings on
pairs of groups. The results are part of the folklore, and are usually
presented in a vector space context. However the field free approach
presented here can be helpful when studying central extensions.

2. Definitions and preliminaries. In this section we will first estab-
lish some notation, and then present some definitions and known facts
that will be needed in what follows.We need to use some elementary
facts from group cohomology. However, we will limit our attention
to two dimensional cohomology groups with trivial action, since these
are all that will be needed. Most of the facts mentioned are true in
much more generality. All groups considered are finite, except perhaps
the cohomology coefficient groups.

For any group G and an abelian group A, let Z(G, A), B(G, A)
and H(G,A) denote Z 2 ( G , A), B2(G, A) and H2(G,A) respec-
tively. The action of G on A will be trivial. In fact most of the
time we will take A to be C x , the multiplicative group of nonzero
complex numbers. If a is a cocycle of G (that is, a e Z(G, A)), then
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we denote by [a] the image of a in H(G, A) under the canonical
homomorphism. That is [a] e H(G, A) is the coset of B(G, A) that
contains a.

If K c G, and a is a cocycle of G (that is, α e Z(G, ^4)), then via
the usual restriction map we get an element of Z(K, A). This map
can be viewed as a homomorphism on H(G, A) when appropriate.
We denote the image of a under this map by α^ . Similarly, the core-
striction or transfer is a homomorphism from H{K, A) to //((?, ^4).
If a is in the domain of this map then its image will be denoted by
aG. This is not the standard notation, and is chosen to emphasize
the similarity between statements in group cohomology and those in
character theory.

Let K be a subgroup of G and a be an element of Z(K, A). Then
an element ag of Z(Kg, A) is defined by ag(ug, ?;£) = α(w, ^) for
u and i; elements of K and any g e G. For [α] e / / ( ^ , A) define
[α]* € if CK*, A) by [α]* = [ag]. This is well defined by Problem 6
p. 225 of [15]. We say that [a] is stable in G if [α] and [α]^ are the
same when restricted to K Γ\Kg for all g e G.

A lot is known about the concepts defined above; however all we
need is their existence and the few facts listed below. For an exposition
and proof see [15] and [1].

(2.1) PROPOSITION. Let G be any group and K and L be sub-
groups of G.

(i) Suppose aeH(G,A). Then α# is stable in G.
(ii) Suppose β G H{K, A) is stable in G, and K has finite index

in G. Then (βG)κ = \G : K\β.
(iii) Suppose Kg π L is trivial for all g e G, and β e H(K, A).

Then (βG)L = 0.
(iv) Suppose G is a finite π-group where π is a set of primes. Then

H(G, A) is a π-group.

Proof, (i) is 40.3 in [1]. Parts (ii) and (iii) follow from the double
coset formula (Mackey's Theorem) 40.2 in [1], and (iv) is Corollary 5,
of 7.26 in [15]. β

The second cohomology group H2(G, C x ) is also known as the
Schur Multiplier and is denoted by M(G). This group plays a sub-
stantial role in the theory of group extensions. We only need to know
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the following:

(2.2) PROPOSITION, (i) Let G be a group with n generators and
n relations, then M(G) = 1. In particular the Schur multiplier of the
cyclic group and the generalized quaternion group is trivial. Also the
Schur multiplier of a group with cyclic sylows is trivial, (ii) Let G be
an abelian group, with G = A\ xAjx xAn where each At is cyclic
of order ait Let aij = gcd(αί, aj), and let A\j be a cyclic group of
order ay. Then M(G) is the direct product of {Aij\l < i < j <n}.

Proof, (i) is Theorem 25.2 and 25.3 of [7], and (ii) is Problem 4, p.
264 of [15]. D

We also need to introduce the complex twisted group algebra, Ca[G].
Let G be a finite group and let a e Z(G, C x ) . Then CQ[G] is the
C-vector space with basis (g\g e G). Define multiplication in Ca[G]
by ~g h = gha(g, h) and extend via the distributive law. It is easily
verified that Ca[G] is a finite dimensional algebra. In fact (Problem
11.7 of [10]) Ca[G] is semisimple. Now if α and β are equivalent,
that is, they belong to the same coset o f £ ( G , C x ) i n Z ( ( / , C x ) , then
Ca[G] and C^[G] are isomorphic (Problem 11.1 of [10]). Thus we
can think of Ca[G] as having been defined for [a] e H(G, C x ) .

We are interested in restrictions on the group G if G has a 2-cocycle
a such that Ca[G] is simple. Since Ca[G] is a semisimple algebra,
it is simple if and only if the vector space dimension of its center is
one. Now let α be a 2-cocycle of G we say that g e G is a-special
if a(g, c) = α(c, g) for all c € Co(g). It is easily seen (Problem
11.4 of [10]) that if g is α-special then so is every conjugate of g in
G. Also if a and β are equivalent then g e G is α-special if and
only if it is ^-special. Thus we can speak of [α]-special classes of G.
Because of the following lemma the α-special classes are relevant to
our discussion.

(2.3) LEMMA. Let a e Z(G, C x ) . Then the dimension of the cen-
ter of Ca[G] is equal to the number of conjugacy classes of a-special
elements of G. In particular, Ca[G] is simple if and only if the identity
is the only a-special element of G.

Proof This is problem 11.8 of [10]. D

The pair of groups (Γ, N) is called a central extension by G if
N c Z(Γ) and Γ/N is isomorphic to G. The following notation will
be fixed for the rest of the paper: If (Γ, N) is a central extension by
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G then forHQG define H+ to be the inverse image of H under the
canonical homomorphism from Γ to G, which means N c H+ c Γ,
and H+/N is isomorphic to H.

In Lemma 2.3 we saw that the dimension of the center of a twisted
group algebra Ca[G] is the same as the number of α-special classes.
The next result will relate this number to the ordinary character theory
of a central extension by G (we use the notation Irr(Γ|0) to denote
the set of irreducible constituents of ΘΓ where θ is an irreducible
character of some subgroup of Γ).

(2.4) PROPOSITION. Let (Γ, N) be a central extension by G. Let
X be a set of coset representatives for N in Γ and write X = {xg\
g G G} where xg ET is in the inverse image of g under the canonical
homomorphism. Define a: G x G —• N by xgx^ = a(g 9 h)xgh Then
a G Z(G9 N), and the equivalence class of a is independent of the
choice of X. Furthermore, if λ is a linear character of N define
a(g, h) = λ(ά{g9 h)). Then a G Z(G9 C x ) and the number of a-
special classes of G is equal to \ Irr(Γ|λ)|. In the case that [a] = 1,
the character λ extends to Γ.

Proof. The first part is Lemma 11.9 of [10]. The second part follows
from Problem 11.69 11.7, and 11.8 of [10]. The case that [a] = 1
follows from Theorem 11.7 of [10]. A straightforward calculation
shows that the [β] used in that theorem and constructed in the proof
of Theorem 11.2 is the inverse of our [a] in H(G, C x ) . D

A subgroup TV of Γ is said to be fully ramified in Γ if there exists
θ G Irr(TV) with ΘΓ = eχ, and χ^ = eθ, for some χ G Irr(Γ). In
such a situation we also say that θ is fully ramified in Γ, χ is fully
ramified over TV and / is fully ramified over θ .

In this paper we only consider normal fully ramified subgroups. For
a discussion of the more general case see [14]. The following lemma
is easy to prove, and gives various characterizations of fully ramified
characters:

(2.5) LEMMA. Let N be a normal subgroup of Γ, θ G lrτ(N),
χ G Irr(Γ|0) then the following are equivalent:

(i) ΘΓ = eχ, and χ^ — eθ {that is χ is fully ramified over θ).
(ii) θΓ = eχ, and e1 = |Γ : N\.

(in) χN = eθ, and e1 = |Γ : N\.
(iv) / vanishes off N and χ^ is a multiple of θ.
(v) χ vanishes off N and χ(l)2 = |Γ: N\θ{\)2 . π
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A group is said to be of central type if it is fully ramified over its
center. A group that is isomorphic to Γ/Z(Γ), where Γ is a group of
central type is said to be a central type factor group, or ctfg for short.

The next lemma shows that to study restrictions on groups T/N
where JV is fully ramified in Γ, it is enough to look only at ctfgs.

(2.6) LEMMA. Suppose that N is normal and fully ramified in Γ.
Then T/N is a ctfg.

Proof. This is Lemma 4.3 of [6]. D

In the light of Proposition 2.3, we mention the close connection
between simple twisted group algebras and ctfgs that will be needed
later.

(2.7) THEOREM. A group G is a ctfg if and only if it possesses a
2-cocycle a such that the twisted group algebra Ca[G] is simple.

Proof. This is Theorem 1 of [3]. One direction is immediate from
Proposition 2.4, and Lemma 2.3. The other direction follows after
looking at a Schur representation group for G. D

We will also need:

(2.8) THEOREM (Howlett and Isaacs). A ctfg must be solvable.

Proof. This is Theorem 7.3 of [6]. D

3. Bilinear pairings on groups. In this section we will bring together
some facts about bilinear pairings on groups. Some of these facts will
be used in the subsequent discussion, and most of them are known as
a part of the folklore, albeit in a slightly different form.

Let H and K be any groups, and let A be an abelian group. We
say that a map a from H x K into A is a bilinear pairing if

a(hti, k) = a(h, k)a(h', k) for all h, hi e H and k e K

and

a(h, kk') = α(Λ, k)a(h, k') for all h € H and k, k' e K.

Given a a bilinear pairing from H x K into A and L a sub-
group of H define L1 = {x e K \ a(l, x) = 1 for all I e L}.
Note that L1 is a subgroup of K. Similarly for any J c K define
J1 = {x e H I a(x, j) = 1 for all j e J}. We say that a is left
nondegenerate if K1 = 1, and is right nondegenerate if H1 = 1. a
is called nondegenerate if it is both left and right nondegenerate.
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(3.1) LEMMA. Suppose a is a bilinear pairing from H x K into
an abelian group A. Then the commutator subgroup H1 is contained
in K1, and K' is contained in H1 . In particular H/K1 and K/H1

are abelian, and if a is left nondegenerate then H is abelian.

Proof. For k eK define a homomorphism φk from H into A by
φk(h) — a(h, k). This is a homomorphism into an abelian group and
therefore H/kev(φk) is abelian. It follows that Hf c ker(^) for all
k e K. However K1 is the intersection of all the ker(φk) for k e K,
and thus H' c K1. Similarly K' C H1. Ώ

Given A and B abelian groups, we let Hom(^ί, B) be the group
of homomorphisms from A into B with pointwise multiplication.

(3.2) PROPOSITION. Suppose a is a bilinear pairing from H x K
into an abelian group A. Then K/H1 is isomorphic to a subgroup of
Hom(///JfiΓ-L, A), and H/K1 is isomorphic to a subgroup of
Hom(K/Hλ, A).

Proof. As in the proof of Lemma 3.1, for k e K let φk be the ho-
momorphism from H into A defined by φk{h) = a(h, k). Clearly
KL c (k)L = ker(φk), and thus we can think of φk as an element of
HomiH/K1, A). Now define a map ψ from K into Hom(H/Kλ , A)
by ψ(k) = φk. This map is clearly a homomorphism and its kernel
is HL . Thus K/H1 is isomorphic to its image under this map. The
proof for H/K1 is identical. D

So far we did not explicitly need any of the groups to be finite.
However, from now on all groups considered, except C x , are finite.

(3.3) COROLLARY. Suppose a is a bilinear pairing from H x K
into an abelian group A. Then

(i) the prime p divides \KIHL\ if and only if it divides [H/K1],
(ii) if the prime p divides \H/KL\ or \K/H±\ then it divides \A\,

(iii) the groups H/K1 and K/H1 have equal exponents, and their
exponent is no greater than the exponent of A.

Proof. If L and A are finite abelian groups, write L = L\x Lιx\
- -xLn and A = A\ x xAm where Lz and Aj are cyclic. In this case
it is well known that Hom(L, A) is isomorphic to a direct product of
nm cyclic groups D/7 where the order of Z)/7 is the greatest common
divisor of |L/| and \Aj\. Now all the conclusions follow from this
together with Proposition 3.2. D
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We will now focus our attention to the case where we have a bilinear
pairing a from H x K into a finite cyclic group C. By composing
a with a faithful linear character of C, we get a bilinear pairing into
the multiplicative group of nonzero complexes C x . Since H1 and
K1 remain the same after this change of perspective, without loss of
generality we can assume a to be a bilinear pairing into C x .

(3.4) COROLLARY. Let a: HxK —>CX be a bilinear pairing. Then
H/K1 is abelίan and isomorphic to K/H1. In particular, assume
\H\ = \K\. Then a is left (or right) nondegenerate if and only if a is
nondegenerate.

Proof. Both H/K1 and K/H1 are abelian by Lemma 3.1, and
therefore K/H1 is isomorphic to Hom(AΓ///-L, C x ) . By Proposition
3.2 we have H/K1 c HomiK/H1, C x ) = K/H1. Similarly K/H1 c

H/K1. Thus it follows that H/K1 is isomorphic to K/H1. D

We say that a is a bilinear form on G if a is a bilinear pairing
from GxG into C x . A bilinear form a on G is said to be alternating
if a(g, g) = 1 for all geG.

The following is immediate from Lemma 3.1.

(3.5) COROLLARY. Let a be a nondegenerate bilinear form on G.
Then G is abelian. D

We can prove the following useful lemma.

(3.6) LEMMA. Let a be a nondegenerate bilinear form on G. Then
for any c e G there exists d e G such that o(c) = o(α(c, d)) < o(d).

Proof. For g G G let φg be the homomorphism of G into C x

defined by φg{x) = a(g, x). Now define ψ: G —• Irr(Cr) by ψ(g) =
φg. It is clear that ψ is a homomorphism and its kernel is G1.
However a is nondegenerate and thus ψ is one to one. It follows
that ψ is an isomorphism. Therefore if o(c) is m then so is o(φc).
Now image of φc in C x is contained in the group of nth roots of
unity where n is the exponent of G. Thus image of φc is cyclic.
Let d be an element of G such that α(c, d) generates the image
of φc. Now a(c, d)m = a(cm, d) = 1, and if α(c, </)* = * t h e n

m = 0(0C) ^ k- Thus the order of a(c9 d) is m, which in turn
implies that the order of d in G cannot be smaller than m. The
proof is complete. D
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The following well-known theorem follows with a little effort from
Lemma 3.6, and induction.

(3.7) THEOREM. Let a be a nondegenerate alternating bilinear
form on a group G. Then G = HxH where H is abelian.

Proof. See Proposition 3 of [2]. D

If a is a bilinear form on G, then clearly a e Z(G, C x ) . We
would like to investigate the converse relationship, and use that to get
a necessary condition for a group to be a ctfg.

(3.8) THEOREM. Let a e Z(G, C x ) , and let H and K be sub-

groups of G with [H, K]=l. Define fa; HxK^ C x by fa(h,k) =
a(h9 k)a(k, h)~ι. Then fa is a bilinear pairing from HxK into C x ,
and fa = fβ if [a] = [β]. In particular for any x e G we have that
fa is a bilinear pairing from (x) x CG(X) into C x .

Proof. This is essentially the calculation on page 132 of [11]. D

(3.9) COROLLARY. Let a e Z(G, C x ) , and let fa be as above.
Then for x e G, we have fa is the trivial map on (x) x CQ(X) if and
only if x is a-special. In particular, if G is abelian and Ca[G] simple
then fa is a nondegenerate alternating bilinear form on G.

Proof. The first assertion is immediate from 3.8 and the definition
of α-special. The second follows from the first and Lemma 2.3. D

(3.10) COROLLARY. G is an abelian ctfg if and only if G = HxH
with H abelian.

Proof. One direction follows from Corollary 3.9 together with The-
orem 2.7. The other direction follows from a straightforward con-
struction (see Lemma 2 of [3]). D

(3.11) PROPOSITION. Assume G is a ctfg. Let x be a nonidentity
element of G, and J any set such that CG(x) = (J, CG(x)f). Then
x $L f](y) where the intersection is taken over all y e J.

Proof. Assume the contrary for x e G. Since G is a ctfg, by
Theorem 2.7 and Lemma 2.3 we get a 2-cocycle a such that there
are no nonidentity α-special elements. However we claim that x is
α-special. It follows from Corollary 3.9 that we need to show that fa
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is trivial. Now if y e / then by the hypothesis we have x = yι,
and thus fa(x,y) = fa(y, yY = l Therefore / is contained in
(x)1. On the other hand by Lemma 3.1 we have that the commutator
subgroup of CG(x), that is, Q?(*)', is also contained in (x)1. It
follows that CG(x) c ( x ) 1 . Thus / α : (x) x CG(x) -+ C x is trivial,
and we have the required contradiction. D

(3.12) COROLLARY (S. Gagola). Let G be a nontrivial ctfg. Then
G contains no selfcentralίzing cyclic subgroups. D

4. Local characterization of ctfgs. In this section we will obtain a
local characterization for a group to be a ctfg. Our starting point is
a theorem of DeMeyer and Janusz. However later we need a general-
ization of one of its directions, which we will present first. (The H+

notation was introduced after Lemma 2.3.)

(4.1) PROPOSITION. Let (Γ, N) be a central extension by G, and
let H be a subgroup of G. Assume that N is fully ramified in H+.
Then there exists a e Z(G, C x ) with Cβ[H] simple where β = aH.

Proof. This follows directly from Proposition 2.4. Let a be defined
as in the statement of that Proposition where λ is chosen to be the
linear character of N that is fully ramified in H+ . Then β = an is
the corresponding cocycle for (H+, N) which is a central extension
by H. Now according to Proposition 2.4 the number of ^-special
classes of H is the same as | Irr(/ί+ |/l)|. This number is one since λ
is fully ramified in 7/+ . Thus by Lemma 2.3 we have that C^[H] is
simple. D

(4.2) PROPOSITION. Let (Γ, Z(Γ)) be a central extension by G,
where Γ is of central type. Then Z(Γ) is fully ramified in H+, where
H is a Hall π-subgroup of G for any set of primes π.

Proof. This is immediate from Proposition 2.9 of [14]. D

(4.3) THEOREM. {DeMeyer and Janusz). Let a e Z(G, C x ) . Then
Ca[G] is simple if and only if Cβ [P] is simple for all Sylow p-subgroups
P of Gf where β = ap.

Proof. This is Corollary 4 of [3]. One direction follows from Propo-
sitions 4.1 and 4.2. D
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Note that this is not yet a local characterization. To check whether
or not G is a ctfg we need the existence of a 2-cocycle of G with
certain properties.

(4.4) LEMMA. Let G be a finite group. Suppose that for each prime
divisor pi of \G\ we have Pi a Sylow pi-subgroup of G. Let α/ e
H(Pj,Cx) and assume that αz is stable for each i. Then there exists
a e H{G, C x ) with aP = α/ for all i. In particular, Ca'[P(] is
isomorphic to C^[P/] for each i where β — ap

Proof. By Proposition 2.1 (iv) we have that //(P z, C x ) is a ^
Since \G : Pz | is a number relatively prime to pi, we can find integers
Ui and Vi such that W/|G : P, | +v I |/iΓ(Pl , C

x ) | = 1. Let α = £ / M, αf.
Note that by Proposition 2.1(ii) we have (af)pι = |G : P/|α,, and it
follows from (iii) of the same proposition that (af)p = 0 for j Φ i.
Putting these together we get

aPι = Ut\G : Pi\*i = (1 - Vi\H(Pi, C X ) | K = α y . D

(4.5) THEOREM. A group G is a ctfg if and only if every Sylow p-
subgroup P of G has a 2-cocycle a such that Ca[P] is simple and
[a] is stable in G.

Proof. Assume that G is a ctfg. The conclusion follows from Theo-
rem 4.3, and Proposition 2.1(i). The latter stated that restrictions are
stable. The converse is also immediate from Lemma 4.4 and Theorem
4.3. D

Theorem 4.5 is closer to a local characterization of ctfgs. However
the requirement that [a] has to be stable in G is not a local property.
Thus we are interested in a local characterization of stability. Let
H c K c G. Assume that if for some g e G we have yι — xf, for
{Xi} and {>>/} two arbitrary subsets of H 9 then we can find k e K
such that yι — x\ for all /. Then we say that K controls G-fusion of
sets in H. Note that if P is a Sylow p-subgroup of G, then NG(P)
controls G-fusion of sets in CQ{P) .

(4.6) LEMMA. Let H c K c G. Assume that K controls G-fusion
of sets in H. Suppose a e Z(H, C x ) , and [a] is stable in K. Then
[a] is stable in G.

Proof. Let g be an arbitrary element of G. We need to show
that [a] and [ag] are the same when restricted to H Γ\Hg . Now K
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controls (/-fusion of sets in H. Pick the set to be all of HnHg. Thus
there exits k e K such that we have u = u\ for every u e HnHg

with u = u\, where U\ e H. Let v be another element of H n i ί *
with V\ defined similarly. Thus we have ag(u, v) = a(u\, i>i) =
α*(w, v). Therefore [α#] and [α^] are the same when restricted to
HΓ)Hg which is a subgroup of HnHk . However, by hypothesis the
restrictions of [a] and [ak] to HπHk are equal. It follows that [a]
and [α^] are the same when restricted to H Π Hg, and thus [a] is
stable in G. D

We remark that the proof of Lemma 4.6 also proves a similar state-
ment about characters: lϊ H C K C G and K controls G-fusion in
H, then any irreducible character of H that is stable in AΓ5 is also
stable in G.

It is clear from Lemma 4.6 and Theorem 4.5 that results about con-
trolling fusion can be used to find local characterizations of
ctfgs. For example Alperin's fusion theorem asserts that fusion can be
determined by local properties. Thus to decide whether the equiva-
lence class of a given cocycle is stable in G, we only need information
about the local structure, that is, the normalizers of nonidentity /?-
subgroups, of G. To make this precise we have to recall Alperin's
theorem. If P and Q are Sylow p-subgroups of G, we shall say that
the intersection P n Q is tame provided NP(P Π Q) and NQ(P Π Q)
are each Sylow p-subgroups of NQ(P ΓΊ Q).

(4.7) THEOREM (Alperin). Let A and B be two subsets of a Sylow
p-subgroup P of G and suppose that Ax = B. Then there exist el-
ements Xi and Sylow p-subgroups Qi of G, for 1 < i < n, and an
element y o/N^(P) which satisfy the following conditions:

(i) x = xix2'-xny.
(ii) P Π Qi is a tame intersection for I < i < n.

(iii) Xi is a p-element of NG(PΠQi)yfor 1 <i <n.
(iv) A c P n Qx, while Ax^'"x^ CPn QM for \<i<n-\.

Proof. This is Theorem 2.6 of Chapter 7 of [5]. D

(4.8) THEOREM. A group G is a ctfg if and only if every Sylow p-
subgroup P of G has a 2-cocycle a such that Ca[P] is simple and
[a] is stabilized by T$G(P ΓΊ Q) for all Sylow p-subgroups Q for which
PπQ is tame and nontrivial
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Proof. By Theorem 4.5 we need to show that [a] is stable in G. Let
x e G, and let B = PΓ)PX . We would like to show that [ax]B = [a]B .
Let A = Bx , then apply Theorem 4.7 and get x = X\Xι xny with
the appropriate properties.

Claim, [a] and [ α ^ χ,] are equal when restricted to AX\X2"X>.

Proof of Claim. We induct on /. For z = 1, we have that X\ is an
element of NQ(PΠ Q\) which stabilizes [a]. The claim follows since
Ax\ c P n Px\. Now assume the result for i = k - 1. It immediately
follows that the restrictions of [axk] and [crW **] to Axιx2"xk are
equal. However xk is an element of N^(P Π β^) which stabilizes
[a]. Thus [α] and [α^] are equal when restricted to Ax\x2"xk since
this last group is contained in P n P x ^. The claim now follows.

Applying an identical argument to the conclusion of the claim for
i = n, we get [α]^ = [ay]β = [α^]^ since B C P nPy. The proof is
complete. D

Theorem 4.8 is a local characterization of ctfgs, and Theorem A is
just a less technical corollary of it. It should be noted that in general
this result is hard to use; however in some special cases it can be useful.
This will be demonstrated in the next section when we will turn our
attention to groups with abelian Sylow subgroups.

5. Ctfgs with abelian Sylows. In this section we will apply the results
of the previous section to obtain a necessary and sufficient condition
for an odd group with abelian Sylow subgroups to be a ctfg. The first
proposition is stated more generally than is needed here. However the
more general setting will be used in the subsequent sections.

Let H be a subgroup of G and let / be a bilinear form on H.
We say that / is preserved by (or invariant in) K a subgroup of G
if K c ΊSG(H) and f{xk, yk) = f{x, y) for ύΆkeK.

(5.1) PROPOSITION. Let (Γ, N) be a central extension by G, and
let H be an abelian subgroup of G. Assume that N is fully ramified
in H+. Then there exists a nondegenerate alternating bilinear form
on H that is preserved by

Proof. Proposition 4.1 applies and we get a e Z(G, C x ) such that
£0[H] is simple, where β is the restriction of a to H. Now define
f(x, y) = β(χ, y)β(yy x)~ι. By Theorem 3.8 we have that / is a
bilinear form on H. To show / is nondegenerate we need to show
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that H1 is the trivial group. If x e H1 then β(x, y) = β(y, x) for
all y eH, and thus x is a /?-special element of H. However C^(77]
is simple and therefore the identity is the only ^-special element of
H by Lemma 2.3. This implies H1 = 1 as needed. Clearly / is
alternating. It remains to show that / is preserved by NG(H) . Now
β is the restriction of α to //, and by Lemma 2.1(i) restrictions are
stable. Thus [β] is stable in G. Therefore for n e N G ( / 7 ) we have
[βn ] = [β]. Now according to Theorem 3.8 equivalent cocycles give
identical bilinear pairings and thus:

f(xn, yn) = β(xn, yn)β{yn, xn)~x = βn~ι(x, y)βn'\y, x)~ι

= β(x,y)β(y,x)-ι=f(x,y). π

We remark here that the preceding theorem puts somewhat surpris-
ing restrictions on some configurations. To see an example of this,
which will be used later, we make the following definition: Let H be
an elementary abelian subgroup of G of order pn. Now H can be
thought of as a vector space of dimension n over the field with p
elements. The automorphism group of H can now be identified with
GL(n 9p). Thus the action of every element γ of NG(H)/CG(H) on
H is the same as the action of the corresponding matrix linear trans-
formation on the vector space. If the latter matrix is in SL(n, p) we
say that γ acts with determinant one.

Now if the abelian subgroup H in the theorem is an elementary
abelian /?-group (of necessarily even rank by Theorem 3.7), then by
virtue of preserving a nondegenerate alternating bilinear form on H,
we have that NG(H)/CG(H) acts on H as a subgroup of Sp(/), the
symplectic group. This group in turn is a subgroup of the special linear
group SL(n, p), where n is the rank of H. (See p. 336 of [15] for
the definition and facts about Sρ(/).) Thus NG(H)/CG(H) must act
on H with determinant one. As an example, consider G = S3 x S3,
the normalizer mod centralizer of the Sylow 3-subgroup P does not
act on P with determinant one. Thus the curious fact follows that
there is no (Γ, TV) a central extension by G such that N is fully
ramified in P + . The following corollary records the part of the above
argument that we will need later.

(5.2) COROLLARY. Let (Γ, N) be a central extension by G, and
let H be an elementary abelian psubgroup of G. Assume that N is
fully ramified in H+. Then every element of NG(H)/CG(H) acts on
H with determinant one. D
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For the rest of this section we will be looking for a converse to the
following Corollary of 5.1:

(5.3) COROLLARY. Let G be a ctfg with an abelian Sylow p-sub-
group P. Then P admits a nondegenerate alternating bilinear form
that is preserved by

Proof. This is immediate from Proposition 5.1 and Proposition
4.2. D

We want to use Theorem 4.5 in the case where the Sylow subgroups
are abelian. First we need the following lemma on stability.

(5.4) LEMMA. Let P be an abelian Sylow p-subgroup of a group
G. Assume that a e H(P, C x ) is stable in NG{P). Then a is stable
in G.

Proof. Since P is abelian, it is contained in the CG(P). Further-
more N G ( P ) controls G-fusion of sets in CG(P) The result is im-
mediate from Lemma 4.6. D

(5.5) THEOREM. Let G be a group with abelian Sylow subgroups.
Assume that for every Sylow subgroup P of G there exists a e
Z(P, C x ) such that Ca[P] is simple and [a] is stable in N G (P) .
Then G is a ctfg.

Proof. This is immediate from Theorem 4.5 and Lemma 5.4. D

We can make the above theorem easier to use by substituting appro-
priate bilinear maps for cocycles. The following lemmas about abelian
groups allow us to do just that. Our main result in this direction, that
is, Theorem 5.9, is a generalization of a result of DeMeyer and Janusz
(Theorem 6 of [3]) where they consider the case where each abelian
Sylow subgroup is elementary abelian of rank two. We have included
Lemma 5.7 to point out a fact that was overlooked in that proof.

(5.6) LEMMA. Let P bean odd group. Assume that a: PxP —• C x

is a nondegenerate alternating bilinear form on P. Then Ca[P] is
simple.

Proof. First of all note that P is abelian by Corollary 3.5. Also a is
alternating which implies that a(g, h) = α(/z, g)~ι for all elements
g and h of P (just look at 1 = a(gh, gh)). By Lemma 2.3 we will be
done as soon as we show that the identity is the only α-special element
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of P. Assume g e P is α-special. Since P is abelian this means that
for all x € P we have a(g, x) = α(x, g) = α(g, x)~ι. It follows that
o(a(g, x)) divides two for all X G P . However o(α(g, x)) is odd
since α( , x) : P -* C x is a homomorphism. Thus α(g, x) = 1 for
all x e P which implies that g is contained in P1. This completes
the proof since α is nondegenerate which means that g is the identity
element. α

The above certainly does not work for even groups.

(5.7) LEMMA. Let P be an even group. Assume that a is an alter-
nating bilinear form on P. Then Ca[P] cannot be simple.

Proof. Let x be an element of order two in P. For all g e P it
follows that α(x, g)2 = a(x2, g) = 1. Thus φ , g) = a(x, g)~ι =
a(g, x) for all ^ E P , where the last equality follows since a is
alternating. However this means that x is α-special which implies by
Lemma 2.3 that Ca[P] is not simple. D

However, we can remedy the situation at least for the Klein four
group.

(5.8) LEMMA. Let P be the Klein four group. Then there exists a
nondegenerate bilinear form α: PxP —> C x such that Ca[P] is simple,
and with the additional property that if P is a Sylow 2-subgroup of a
group G then [α] is preserved by

Proof. Let x and y be two generators of P. Define α as follows:

a(S 9 h) = —α(λ, g) for all nonidentity elements

g, heP with g φ h,

a(x,y)=l,

and extend linearly to other elements. Note that by the previous
lemma α could not have been alternating. The twisted group alge-
bra is simple since clearly α does not have any nonidentity α-special
elements. Now assume that P is a Sylow 2-subgroup of a group G.
Clearly α is preserved by the centralizer of P9 and NG(P)/CG(P)
will be isomorphic to a subgroup of a Sylow 3-subgroup of GL(2, 2).
It can easily be checked that the elements of order 3 in GL(2, 2)
preserve α. D
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Putting together Theorem 5.5 and Lemmas 5.6 and 5.8 we get The-
orem B:

(5.9) THEOREM. Assume G is a group such that 16 \ \G\. Then
G is a ctfg with abelian Sylow subgroups if and only if all odd Sylow
subgroups have a nondegenerate alternating bilinear form that is pre-
served by their normalize^ and the 2-Sylow subgroup is either trivial or
the Klein four group. •

6. Subnormal subgroups. The purpose of this section is to prove
that the nonabelian group of order pq, where p\q - 1 and p and q
are primes, cannot be a subnormal subgroup of a ctfg. This result is
interesting when contrasted to a result of Gagola's (Theorem 1.2 of
[4]) which says that any solvable group is a subgroup of some ctfg.

To start with we need some facts about subnormal subgroups, and
two results from character theory.

(6.1) PROPOSITION. Let A and B be two subnormal subgroups of
G. Then

(i) if AC H c G then A is subnormal in H,
(ii) if N is a normal subgroup of G then AN/N is subnormal in

G/N,
(iii) AOOB = BAOO

>

(iv) if A and B are π-groups then so is {A, B).

Proof, (i) and (ii) are straightforward. For (iii) see [16]. We give a
proof of (iv). Let H = (A, B). We will prove by induction on \H\
that AH, the normal closure of A in H, is a π-group. Let D = AH

then D is a proper subgroup of H since A is subnormal in H by
(i). By the inductive hypothesis AD is a π-group. Thus

ADC0π(D)chaτD<H.

However D is the smallest normal subgroup of H containing A.
It follows that Oπ(D) = D, and therefore D is a π-group. Now
H = DB must also be a π-group. D

(6.2) LEMMA. Let Z(Γ) c K<Γ. Assume that λ e Irr(Z(Γ)) is
fully ramified in Γ, and choose φ e Irr(AΓ|A). Then

= \K:Z(Γ)\,

where t = | Irr(i£|λ)| is the index of Iγ{φ) in Γ.
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Proof. The proof is straightforward and the result is a special case
of Corollary 2.5 of [14]. D

(6.3) LEMMA. Let A acton G and let N<G be A-invariant As-
sume that (\A\, \G/N\) = 1. Let θ e lτv(N) be A-invariant Then ΘG

has an A-invariant irreducible constituent χ. If CG/N{A) = 1, then χ
is unique.

Proof. This is Theorem 13.31 and Problem 13.10 of [10]. In this
section we only use this result with the additional hypothesis that G/N
is abelian. This simpler case is Lemma 2.5 of [9]. Its proof is a
straightforward application of Glauberman's Lemma. D

Now we are ready to prove Theorem C, the main result of this
section.

(6.4) THEOREM. Let p and q be primes such that p divides q-\.
Let S be the nonabelian group of order pq. Assume that S is a
subnormal subgroup of G. Then G is not a ctfg.

Proof. Assume that G is a ctfg. Then G is solvable by Theorem
2.8, and the Hall {p, #}-subgroup of G containing S is a ctfg by
Proposition 4.2. Thus it will be enough to assume that G is a {p, q}-
group.

Let A be the normal closure SG of S in G. By the definition of the
normal closure, A is normal in G and A = (S\, 5*2, . . . , Sm) where
each Si is isomorphic to S and subnormal in G. In the group Si, let
Qi and P, be the subgroups of order q and of order p, respectively.
In fact rearrange the ordering if necessary so that {Q\, Qi, . . . , Qk}
is the set of all distinct subgroups in {Q\, Qι, . . . , Qm}. Let K =

QiQi' -Qk

Claim 1. K is an elementary abelian g-group.

Proof. We have that Qi = Sf°, and thus it follows from Proposi-
tion 6.1 (iii) that QtQj is an elementary abelian group of order q2.
Therefore each Qi centralizes every other one, which implies that K
is an elementary abelian g-group.

Claim 2. K is normal in A.

Proof. To prove that K is normal in A, we show that every Sj
normalizes K. This completes the proof since the Sj's generate A.
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Now by Proposition 6.1(iii) we have QiSj = SjQt, and thus KSj =
SjK. It follows that KSj is a group with KnSj = Qj . Now we have
\KSj: K\ = \Sji KnSj\ = p . Since p is the smallest prime divisor of
\KSj\, it follows that K is normal in KSj and the proof of the claim
is complete.

Claim 3. if is a Sylow ^-subgroup of A, and thus K is normal
in G.

Proof. The factor group A/K is generated by {S(K/K\l < i < m} .
These are all p-groups and they are subnormal in A/K by Proposition
6.1 (ii). Now Proposition 6.1(iv) applies and we get that A/K is a p~
group.

Claim 4. Every Qι normalizes every Sj.

Proof. This is obvious if Qι is contained in Sj . So assume that it is
not. Let H = QtSj . Now H is a group of order pq2 by Proposition
6.1(iii). Applying Proposition 6.1 (i) we get that Sj is a subnormal
subgroup of index q in H. However q is a prime and thus H
normalizes Sj.

Claim 5. There exist elements of NQ(K)/CQ(K) that do not act on
K with determinant one.

Proof. We will show that PXCG(K)/CG(K) does not act on K with
determinant one. Let \K\ = qn. Think of K as a vector space of
dimension n over the field of q elements. Let {x\, Xi, . . . , xn} be a
basis for K. Without loss of generality we can assume that (xι) = Qt.
Let Pi = (a). Now P{ is isomorphic to PιCG(K)/CG(K) which is
isomorphically embedded in the automorphism group of K. This
gives a natural identification of a with a an element of GL(n, q),
the automorphism group of K. Now the claim will be proved if we
show that the determinant of ά is not one. The /th column of ά is the
coordinate vector of xf in terms of the basis of K. Clearly xf = x[,
where r φ 1 mod(<?) since X\ and α are both in S\. On the other
hand by Claim 4 every X[ normalizes S\, and thus [x/, a] = α^x^ for*
some integers w and ?;. This implies that xf = X[aux\ . However this
last element must be in K which means that au — 1. Therefore xf =
XiX\ . So ά is a triangular matrix with diagonal entries consisting of
r and n — 1 ones. It follows that det(α) = r ^ 1 mod(#), and the
proof of the claim is complete.
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Claim 6. Let P be a p-Sylow subgroup of A. Then C#(P) = 1.

Proof, We have the coprime action of P on the abelian group K,
and thus by Fitting's Theorem: A = CK(P) x [P, K]P. Assume that
the centralizer of P in K is not trivial. Then A will have a nontrivial
homomorphic image of order power of q. However this is impossible.
To see this assume that such a homomorphism exists. The image of Si
under this homomorphism is trivial, since Si does not have a factor
group of order q. It follows that the image of A is trivial, for A is
generated by {*S/|1 < / < m}. The contradiction proves the claim.

We had assumed that G is a ctfg, so let (Γ, Z(Γ)) be a central
extension by G, with λ G Irr(Z(Γ)) fully ramified in Γ.

Claim 7. Every element of lrr(K+\λ) is P+ invariant.

Proof. Let φ e lvr(K+\λ) then, since K+ is normal in Γ, it follows
from Lemma 6.2 that tφ(l)2 = \K\. Thus ί is a ^-number. In
particular p does not divide / = |Γ: /r(<^)| > where Iγ{φ) denotes the
inertia group of φ in Γ. This implies that A+ is contained in the
inertia group of φ. This proves the claim since P + is a subgroup of
A+.

Claim 8. λ is fully ramified in K+.

Proof. The claim follows from Lemma 6.3. To apply the lemma
replace A by P + /Z(Γ), and G by # + . In addition let iV be Z(Γ),
and θ be λ. Now by the conclusion of the lemma there is a unique
P + invariant constituent of λG. However by Claim 7 all irreducible
characters of K+ lying over λ are P + invariant. This implies that λ
is fully ramified in K+ .

Claim 9. The final contradiction.

Proof. Corollary 5.2 readily applies to our situation and we get that
every element of NG(K)/CG(K) acts on K with determinant one.
However this is in direct contradiction with Claim 5. D

7. Normal subgroups. As was mentioned earlier any solvable group
can be a subgroup of a ctfg, and in the last section we saw some
restrictions on the subnormal subgroups of a ctfg. In this section we
want to explore some restrictions on the normal subgroups of a ctfg.
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The purpose is, of course, to be able to eliminate a specific group as
a possible ctfg by using these restrictions. The first such restrictions
on normal subgroups were found by Howlett and Isaacs [6]. They
showed that the index of a system normalizer of a normal subgroup
of a ctfg must be a square. In [13] it was shown that a generalized
quaternion group of order 2n (n > 2), a semidihedral group of order
2n (n > 3), or an extraspecial group of order p3 with exponent p2

(p > 2), cannot be normal subgroups of ctfgs. Here we will first look
at some general restrictions and then proceed to study some specific
classes of groups.

To prove our first result we need the following lemma:

(7.1) LEMMA {Gallagher). Let N<T, and let θ e Iτv(N) be ex-
tendible to Γ {that is there exists χ e Irr(Γ) with χN = θ). Then
the characters βχ for β e lττ(Γ/N) are irreducible, distinct for dis-
tinct β, and are all of the irreducible constituents of ΘΓ. In particular,
\lrv{Γ\θ)\ = \lrτ{Γ/N)\.

Proof. This is Corollary 6.17 of [10]. D

(7.2) PROPOSITION. Let Γ be a group of central type, and Z(Γ) c
S<T. Let λ E Irr(Z(Γ)) be fully ramified in Γ. Assume λ is extendible
to S. Then S/Z{Y) is abelian.

Proof. Let φ e lrr(S\λ). By Lemma 6.2 we have tφ{\)2 = \S: Z(Γ)|,
where / = |Irr(S|/l)|. Since λ is extendible to S, φ(l) = 1 and by
Lemma 7.1 t = | Irr(S/Z(Γ))|. Thus |Irr(5/Z(Γ))| = \S/Z(Γ)\. So
the number of conjugacy classes of S/Z{T) is equal to its order. It
follows that SyZ(Γ) is abelian. D

We now get our first restriction on normal subgroups of ctfgs. This
result will be used later.

(7.3) COROLLARY. Let K be a noncyclic group with trivial multi-
plier. Assume that K<G. Then G is not a ctfg.

Proof. Note that if K is abelian then, by Proposition 2.2(ii), it
can have trivial multiplier only if it is cyclic. Thus K is not abelian.
Now assume that G is a ctfg, and let (Γ, Z(Γ)) be an extension by
G where λ e Irr(Z(Γ)) is fully ramified in Γ. Now K+/Z{Γ) =
K is not abelian, and so, by Proposition 7.2, the character λ is not
extendible to K+ . Proposition 2.4 now produces a nontrivial element
of H{K, C x ) = M{K). This contradiction completes the proof. D
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(7.4) LEMMA. Let the p-group P act on K and let L<K admit
P with p \ \K : L\ and Cχ(P) <Ξ L. Assume that K is p-nilpotent.
Then Cκ/L(P) = l.

Proof. This is Lemma 3.4 of [6]. D

In the proof of the following some of the ideas of Theorem 6.1 of
[6] are used.

(7.5) THEOREM. Let Γ be a group of central type with λ e Irr(Z(Γ))
fully ramified in Γ. Let Z(Γ) c S<T. Assume that S is not nilpotent.
Then λ cannot be extended to ¥(S), the Fitting subgroup of S.

Proof. Let F = F(5) < S and let M/F be a chief factor of Γ
with M c S. Then M/F is a /?-group for some prime p and we let
P e Sylp(M). Let H = NΓ(P) and observe that P is not normal in
M since FP = M, and M is not nilpotent. Thus H < Γ. By the
Frattini argument MH = Γ. Of course Z(Γ) c H and p \ |Γ : H\.
Let KQ be the p-complement in F and write jfiΓ = K0Z(Γ).

Let 0 G lττ(K\λ). By Lemma 6.2 we have tθ{\)2 = \K: Z(Γ)| where
ί is the index of IΓ(Θ) in Γ. Now \K: Z(Γ)| = | ^ 0 : ̂ 0 Π Z ( Γ ) | is a
/?; number. Thus p \ t. This forces M C /r(θ) since /r(0) contains
Â  and |M : K\ is a power of p. Thus M fixes all lτr(K\λ). P is a
subgroup of Λf, and so all the characters in lττ(K\λ) are P-invariant.

Let L = HC\K then L = Z ( r ) ( L n ^ 0 ) . Now LΓ\K0 and P are both
normal in HπM and their intersection is trivial. So P c C(LΓu^o)
This implies that P c Cr(L). So Irr(L|A) are also P-invariant.

Now assume that λ is extendible to F . By Proposition 7.2, the
group F/Z(Γ) is abelian, and so L is normal in F . Let φ e Iττ(L\λ).
Since λ extends to F it must also extend to L and K, and so φ is
linear and φZ(Γ) = A. In addition φ is extendible to K and so by
Lemma 7.1 we have | Irr(L|p)| = I lττ(K/L)\ = \K/L\.

However, we can also apply the character correspondence in Lemma
6.3. We have that P acts on K and L < K is P-invariant. Also
(|P|, \K : L\) = 1, K/L is abelian, and φ e Irr(L) is P-invariant.
Furthermore C*(P) C NΓ(P) n ^ = L, and so CK/L(P) = 1 by
Lemma 7.4. Thus by Lemma 6.3, φκ has a unique P-invariant irre-
ducible constituent. But we saw that all lττ(K\λ) are P-invariant, and
so φκ must have a unique irreducible constituent. This contradicts
the fact that | Irr(L|^)| = \K : L\ > 1, and completes the proof. D
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Now, we are ready to prove Theorem D:

(7.6) COROLLARY. Assume that G is a ctfg, and S is a noncyclic
normal subgroup of G. Then the Schur Multiplier of the Fitting group
of S, M(F(S)), is not trivial.

Proof. Note that if we knew that F(S) is not cyclic, then this result
would be immediate from Corollary 7.3. Thus the additional content
of this corollary is that F(S) cannot be cyclic.

We can assume that S is not nilpotent, since if S is nilpotent then
F(S) = S, and we are done by Corollary 7.3. Let (Γ, Z(Γ)) be a
central extension by G with λ e Irr(Z(Γ)) fully ramified in Γ. Now
F(S+)/Z(Γ) = F(S). By Theorem 7.5, the character λ cannot be
extended to F ( 5 + ) , and thus by Proposition 2.4, the Schur multiplier
of F(S+)/Z(Γ) is not trivial. This completes the proof. D

Thus, for example, a generalized quaternion group or a group with
all cyclic Sylow subgroups cannot be the Fitting subgroup of a non-
cyclic normal subgroup of a ctfg. In particular if the dihedral group of
order 18 is a normal subgroup of G, then G is not a ctfg. Note that
the index of the system normalizer of D^ is 9, and thus D^ could
not be eliminated as a normal subgroup of a ctfg by the restriction on
normal subgroups found in [6].

We now turn our attention to finding necessary and sufficient con-
ditions for a certain class of groups (which include Frobenius groups)
to be a normal subgroup of a ctfg. Some of the results of the previous
sections will be used, but first a lemma is needed:

(7.7) LEMMA. Let H act on N, let G = N x H, then there is no
G fusion of sets in H. In particular, if a e Z(H, C x ) , then [a] is
stable in G.

Proof. Let x and y be elements of H with xg = y. We can write
g = hn where h e H and n G N. Now u = xh is an element of
H. It follows that y = u[u, n]. Thus [u,n] e HnN = 1, which
implies y = u = xh . The generalization to sets is immediate, and the^
conclusion for cocycles follows from Lemma 4.6. D :

We now prove Theorem E:

(7.8) THEOREM. Let S be the semi-direct product Nx\H. Assume
(\N\, \H\) = 1, and Cχ(H) = 1. Then S is a normal subgroup of a
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ctfg if and only if
(a) N has a 2-cocycle a with Ca[N] simple (i.e. N is a ctfg).
(b) H is a normal subgroup of a ctfg GQ .
(c) Go acts on N with H acting as in S, and a admits Go.

Proof. Assume S < G, with G a ctfg. Let (Γ, Z(Γ)) be a central
extension by G where λ G Irr(Z(Γ)) is fully ramified in Γ. Now N
is a normal Hall subgroup of S and so it is normal in G.

Let φ G Irr(iV+|λ). By Lemma 6.2, we have tφ(\)2 = \N\ where
t = |Γ: Iγ{φ)\. Thus t divides |JV| and is relatively prime to \H\.
This implies that S+ c Iγ(φ), i.e. φ is invariant in S+. Thus all
irreducible characters of N+ lying over λ are //-invariant. How-
ever, we can apply Lemma 6.3, for the action of H on N+, and
conclude that λN+ has a unique //-invariant constituent. It follows
that I ίrr(N+\λ)\ = 1, and thus iV+ is fully ramified over Z(Γ). Thus
N is a ctfg.

Now we have to describe Go, a ctfg, which will be a subgroup of
Gλ = NG(H). First we claim that G\N = G and G{ n S = H.
Let g G G. By the Schur-Zassenhaus Theorem Jf/# = Hn for some
π G Λ .̂ This implies that gn~ι e G\, and thus GγN = G. To prove
Gx n S = //, let A: = Gi n S . Since both // and KnN are normal
in K, we have K^Hx(KnN). Thus #ΓΊiV C CAΓ(//) = 1, and so
K = H. Note that as a consequence G\ΠN = 1. Now let π be the set
of prime divisors of \H\. Let L/N G HaΆπ(G/N), and Go = Gx n L.

1
N

We claim that Go has the properties claimed in the statement of
the theorem. We know that λ is fully ramified in Γ, and we have
proved that λ is fully ramified in N+, and thus φ € lττ(N+\λ) is
fully ramified in Γ.

By Proposition 4.2, we conclude that φ is fully ramified in L+.
Now Go e Hallπ(L), and so again by Proposition 4.2, λ is fully
ramified in GQ . Thus Go is a ctfg with H <GQ. NOW Go, as a
subgroup of L, acts on N with H acting as in S. Since Z(Γ) is
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fully ramified in iV+, by Proposition 4.1, there exists β e Z(G, C x )
such that Ca[N] is simple, where a = β^. By Lemma 2.1(i), a is
stable in G, and thus it is invariant under the action of GQ .

To prove the converse, assume that S is as given. We need to
show that S < G with G Ά ctfg. Without loss of generality, we can
assume that (\N\, |<?o|) = 1, since otherwise we can replace Go with
an appropriate Hall subgroup. Let G = N x Go- To prove G is a
ctfg we use Theorem 4.5. For every Sylow p-subgroup P of G we
need a 2-cocycle β such that Cβ[P] is simple, and [β] is stable in
G. For primes p that divide \N\, let β = ap . Now Cβ[P] is simple
by Theorem 4.3, and β is stable in G, since a is. For primes p
that divide |C?o|, let β = Yp where γ is a cocycle of Go with C^GQ]
simple. Again C^[P] is simple by Theorem 4.3, and [β] is stable in
G by Lemma 7.7. Thus the proof is complete by Theorem 4.5. D

Let (Γ, Z(Γ)) be a central extension by G, with λ G Irr(Z(Γ))
fully ramified in Γ. Following Howlett and Isaacs [6], we say that G
is a reducible ctfg if λ is fully ramified in some N+ < Γ with Z(Γ) <
7V+ < Γ. Otherwise G is said to be irreducible. The following is an
immediate Corollary of Theorem 7.8.

(7.9) COROLLARY. Let G be an irreducible ctfg. Let S<G. Then
S cannot be a Frobenius group. π

We can also get a variation on Theorem 7.8, by relaxing the assump-
tion that CN(H) = 1. However, we then need to assume that N is
abelian.

(7.10) THEOREM. Let R be the semi-direct product QxP. Assume
that Q is abelian, ( | β | , | P | ) = l , and that \Q\ is odd. R is a normal
subgroup of a ctfg G if and only if

(a) [P, Q] has a nondegenerate alternating bilinear form a: [P, Q]
x [ Λ Q ] - > C x , i.e. [P,Q] is a ctfg.

(b) P is a normal subgroup of a ctfg, H.
(c) H acts on [P, Q] with P acting as in R, and a is preserved

by H.

Proof. Without loss of generality we can assume that \H\ and |P |
have the same prime divisors.

By Fitting's Theorem, R = CQ{P) x [P, Q]P, and [P, Q]P is a
characteristic subgroup of R. This implies that S = [P, Q]P is a
normal subgroup of G. Let N = [P, Q]. Then S = N xi P with
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= 1. Now the conclusion follows from Theorem 7.8 and Corol-
lary 3.9.

For the converse, again as in Theorem 7.8, we get that S = [P, Q]P
is a normal subgroup of K = [P, Q] x H which is a ctfg. Now R will
be a normal subgroup of K x CQ{P) X CQ(P) which is a ctfg. D

8. Direct summands. We saw in §3 that any abelian group can be
a direct summand of a ctfg. This is true because H x H is a ctfg
for any abelian group H (Corollary 3.10). Of course, because of the
restrictions on the normal subgroups of a ctfg, not every solvable group
can be a direct summand of a ctfg. In this section we get some new
restrictions on direct summands of ctfgs.

We first need an easy lemma:

(8.1) LEMMA. Let λ e Irr(Z(Γ)) be fully ramified in Γ and suppose
that Z(Γ) c N <T. Let φ e Ivτ(N\λ). Then φ is fully ramified in

Proof. This is Lemma 4.6 of [6]. The proof is easy. D

(8.2) PROPOSITION. Let (Γ, Z(Γ)) be a central extension by G,
and assume λ e Irr(Z(Γ)) is fully ramified in Γ. Let A<G. As-
sume that there is a subgroup C of G such that AC = G, and
[A+, C + , C+] = 1. Then G/A is ctfg by abelian.

Proof Now [ C + , A+, C+] = [A+, C+, C+] = 1, and thus by the
three subgroups lemma we have that [ C + , C+, A+] is trivial. Let
E+ = C c + μ + ) . It follows that [ C + , C+] c E+, and so C+/£+
is abelian. Now both C+ and A+ normalize E+, and thus E+ is
normal in Γ. As a consequence ^ + £ + « Γ , and T/A+E+ is an abelian
group. If φ e Iτr(A+\λ)9 then A+E+ c IΓ(φ). Thus Γ/Iτ(φ) is
abelian, and Iγ(φ)/A+ is a ctfg by Lemma 8.1. D

Theorem F follows immediately:

(8.3) COROLLARY. Assume A is a direct summand of a ctfg. Then
A is ctfg by abelian. D

It follows that the only dihedral groups that can be direct summands
of ctfgs are the Klein four group, and the dihedral group of order eight.
One can easily build examples to show that these are direct summands
of ctfgs.

In conclusion, we mention some curious relations between system
normalizers and ctfgs. Howlett and Isaacs [6] used one such fact in
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the proof of solvability of groups of central type. With a little effort,
it follows from their work that if G is a ctfg (a normal subgroup of
a ctfg, a direct summand of a ctfg), then any system normalizer of
G is also a ctfg (a normal subgroup of a ctfg, a direct summand of
a ctfg). This together with the results of previous sections and those
of [13] puts severe restrictions on system normalizers of ctfgs (normal
subgroups of ctfgs, direct summands of ctfgs).
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