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A NOTE ON MEISTERS AND OLECH'S PROOF
OF THE GLOBAL ASYMPTOTIC STABILITY

JACOBIAN CONJECTURE

A R N O V A N D E N E S S E N

Let / : Rn -> TBL" be a C1 -vector field with /(0) = 0 . For p e 1"
let Jf(p) denote its Jacobian matrix evaluated at p. Then it is
a well-known result, due to Lyapunov, that the origin is a locally
asymptotic rest point of the non-linear autonomous system of ordinary
differential equations x = f(x) if the origin is a locally asymptotic
rest point of the linearized system y = Jf(0)y (or equivalently if all
eigenvalues of the matrix Jf(0) have negative real parts).

In 1960 it was conjectured by Markus and Yamabe that the origin
is a globally asymptotic rest point x = f(x) if for each p e Rn

the orgin is a locally asymptotic rest point of the linearized system
y — Jf(p)y. Until now this conjecture is still open. However in
1988 Meisters and Olech proved this conjecture for two-dimensional
polynomial vector fields / : M2 —• M2. The proof is an immediate
consequence of earlier results of Olech, (1963) and the proposition
below. The main result of this paper (Theorem 1) generalizes the
proposition to polynomial maps F: kn —> kn having the property
that det JF(x) φ 0 for all x € kn (k is a field of characteristic
zero).

PROPOSITION. If F: M2 —• M2 is a polynomial map such that
det JF(x) Φ 0 for all x e R2, then there exists a positive integer
N such that the number of elements in each fiber F~ι(x) (x e R2) is
bounded by N.

The proof of this proposition given by Meisters and Olech uses
topological methods. In this note we generalize this result to polyno-
mial maps F: kn -> kn with the property that det JF(x) Φ 0 for
all x G kn (k is a field of characteristic zero). Our proof is purely
algebraic and uses some well-known techniques from the theory of
^-modules. For the reader's convenience we have included a section
reviewing some results concerning ^-modules.

1. The Main Theorem. Throughout this paper we have the following
notations: A: is a field of characteristic zero and F: kn —• kn is a
polynomial map (n > 1) i.e. F is given by coordinate functions F,
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which are elements of the polynomial ring k[X] := k[X\, . . . , Xn].
The determinant of the Jacobian matrix JF := (dFi/dXj) we denote
by Δ. So Δ e k[X]. For a e k[X], deg a denotes the (total) degree
of a. Finally deg F := max deg Fi. Now we can formulate the main
result of this note:

THEOREM 1. If F: kn —• kn is a polynomial map with the property
that det JF(x) φθ for all x e kn, then there exists a positive integer
N such that for each x e kn the number of elements in the fiber
F~ι(x) is bounded by N.

The proof of this theorem uses some well-known techniques from
the theory of ^-modules (due to I. N. Bernstein, [1]). A review of
some of the results concerning ^-modules is given in §2.

1.1. The An-module structure on k[X][Δr1]. From now on F =
(F\, . . . , Fn) is a polynomial map from kn to kn such that A(x) Φ
0 for all x e kn. In particular we have Δ Φ 0 so the elements
F\, . . . , Fn are algebraically independent over k by [6], satz 61. So
k[F] := k[Fχ, . . . , Fn] is a subring of k[X] isomorphic to k[X].
First we define derivations on the localization A:[X][Δ~!], denoted by

i, which satisfy

(1.2) J ^ ( f ) ) = s e j V f a n i < ί , y < π .

Therefore set d/dFi = ^2icaik(^/^^k) > a n c ^ w e trY t 0 find elements
&ik € M^ΊtΔ-1] such that (1.2) is satisfied. In matrix notation (1.2)
is equivalent to

(1.3) (aik)(JF)τ = In.

Since det(JF)T = det JF = Δ Φ 0 we can solve the a^ uniquely in
^ [ X ] ^ " 1 ] . In fact by Cramer's rule we find

(1.4) Aaik e k[X] and deg Aaik < (n - 1) deg F, all /, fc.

Now we claim that the /c-derivations d/dFi commute pairwise on
1 ] . Therefore let τ := [d/dFi, d/ΘFj] be the commutator of

i and d/dFj. Then τ is a ^-derivation on ^ [ ^ [ Δ - 1 ] and it is
zero on k[F] (since τ(Fp) = 0 for all /?). Consequently, the unique
extension of τ to the completion Λ:[[.F]] is also zero. However by the
local inversion theorem ([7], §4, no. 5. Proposition 5) ^[[i7]] = A:[[X]]
(for this last statement we assumed that F(0) = 0, which is a harmless
assumption since d/dFi = d/d(Fi + λ) for all λ e k). So τ is
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zero on k[[X]] and hence on the subring k[X][A~ι] (Δ(0) Φ 0, so
Δ" 1 E &[[ΛΓ|]), which proves the claim.

The results above enable us to endow k\X\A~x\ with a left An =
k[Y\9 ... ,Yn9d\, ... , d^-module structure, as follows: Define

Yrg:=Fig, drg = %ξr fora l l l < / < # ! , *Ά g e
Oti

The left ^-module associated to F in this way we denote by M(F).

LEMMA 1.5. M(F) possesses an (n, e(F))-filtration) where e(F) =

2n(2ndegF + l)n.

Proof. Put d := deg F. For each v eZ, v >0 we define

Γυ := {qA~2v e k[X][A~l]\ deg q < 2v(2nd + 1)}.

By definition dim^ Γ^ is the dimension of the /c-vector space of all
polynomials in k[X] of degree < 2υ(2nd + 1), which implies

So it suffices to prove that {Tn} is a filtration on M(F). We first
show that diTυ c Γ^+i (the inclusion xiΓυ c Γ^+i is proved in a
similar way). So let g = qA~2v e Γv . Then

By (1.4) we know

θ l o , d
and

dXk

with deg Aaik <(n— \)d.

So

Using deg Δ < nd and deg Aa^ <(n — \)d we conclude that dig €
Γ υ + 1 . Finally we show that \JTυ = Λf(F). So let qA~r e fcf^]^1]
with deg # = 5 and r > 0. Let v > max(r, s). Then

tfΔ-' = q{A2υ-r)A-lv and

deg ^Δ 2 υ - r < s + {2v - r)/iέ/ < 5 + 2υnd < 2v(2nd + 1)

since v > s. So qA~r e Γυ , which completes the proof. D
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Proof of Theorem 1. (i) Let x ekn . Then the number of elements
in the fiber F~ι (x) is equal to the number of zeros of the ideal (F\ -
X\, ... 9 Fn — xn). Therefore we consider the polynomial map F - x
and form its left ^-module M(x) := M(F - x). (Observe that
det J(F - x) = det JF = Δ has no zeros in kn.) By Lemma 1.5
M(x) possesses an (n, e(x))-filtration, where

e(x) = 2n(2«deg(F - x) + \)n = 2n(2ndeg F + \)n.

So by Corollary 2.4 M(x)/Σi(Fi ~ Xi)M(x) is a finite dimensional
Λ -vector space with dimension bounded by No := 2n(2n deg .F + ί)n

 y

which is independent of x! So
1] < No for all x e kn.

Consequently the residue classes of 1, X\, X\, ... , Xχ ° must be lin-
early dependent over k. So there exists a non-zero polynomial g(ΛΊ)

of degree < NQ and a positive integer p such that Apg(X\)

(ii) Now let p = (pi, . . . ,/?Λ) E kn such that i 7 ^ ) = x\ i.e.
/*/(/;) = x/ for all /. Then Δ(p)pg(p\) = 0. Since Δ has no zeros on
kn it follows that g(p\) = 0. So there are at most NQ possibilities
for the first coordinate of p (since deg g < No). Arguing in a similar
way for the other coordinates of p we conclude that the number of
p ekn with F(p) = x is bounded by N := Nζ . D

Comment It was kindly pointed out to me by Professor J. Bochnak
that for some special fields k such as R, C, real closed or algebraically
closed fields, Theorem 1 is a consequence of the following result.

THEOREM 1.6. Let F:Rn -+ Rp be a polynomial map of degree
d such that F~ι(x) is finite for each x e P . Then the number of
elements in each fiber F~ι(x) is bounded by d(2d - ί)n~ι.

This theorem is a very special case of Theorem 11.5.2 (p. 243) of
[8]. To see that Theorem 1.6 implies Theorem 1 one only needs to
observe that the condition det JF(x) Φ 0 for all x e Rn implies that
each fiber F~ι(x) is discrete (by the implicit function theorem) and
that obviously F~ι(x) is an algebraic subset of Rn and hence has a
finite number of connected components. So F~ι(x) is finite.

2. A review of some results concerning ^-modules. All results of
this section come from I. N. Bernstein's work in [1] and can also be
found in Chapter I of [2].
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Let An := k[Yχ, . . . , Yn, dx, . . . , dn] be the nth Weyl-algebra, i.e.
the fc-algebra with relations [ Y}, ϊ}] = [<9/, dj] = 0 and [<9Z, Yj] = δυ

for all 1 < i, j < n. It is a filtered ring with filtration {TV}^LQ

where Γv is the k-vector space generated by the monomials YadP
with |α| + \β\ < v (with the usual multi-index notation). Let M be
a left An-module. A filtration Γ on M is an increasing sequence
ΓQ C Γi C Γ2 C of finite dimensional /c-subspaces of M such
that [JTυ = M and TkTυ c Γv+k for all k,v>0. Such a filtration
is called good if there exist πt\, . . . , ms e M and « i , . . . , « 5 e Z
such that Γυ = ^2Tυ-nmi for all v > 0 (by definition T-υ = 0 for
all v > 1). One readily verifies that an An -module possesses a good
filtration if and only if it is finitely generated. Furthermore we have

PROPOSITION 2.1 ([2], Corollary 3.3, Chapter I). IfT is a good fil-
tration on a finitely generated left An-module M, then there exist an
integer d > 0 and rational numbers a$, . . . , a^ such that

Γυ = a^vd + ad-\Vd~x H h #o ? ./^ Λ

Furthermore d\a^ is an integer > 1.

The crucial point is that the integers d and d\a^ are independent
of the choice of the good filtration; they form two important invariants
of the v4π-module M, called the dimension and the multiplicity of M,
denoted d[M), resp. e(M). The fundamental Bernstein inequality
asserts that d(M) > n for every non-zero ^-module M of finite
type! The non-zero ^-modules of finite type having the minimal
dimension n are called holonomic An-modules. They play a very
important role in the theory of ^-modules. A useful fact is that
a holonomic An -module with multiplicity e(M) has a finite length,
bounded by e(M).

To decide if a given An-module is holonomic, there exists a very
powerful criterion. Before we describe it we introduce some terminol-
ogy. Let M be a left An -module, not necessary of finite type. A filtra-
tion Γ on M is called a (d, e)-filtration if dimkTn < jjvd+(?(vd-1)
where d > 0 and e > 1 are integers. Observe that if M is holonomic
it possesses an (n, e)-filtration (namely take any good filtration on M
and apply Proposition 2.1). However the converse also holds i.e.

THEOREM 2.2 ([2], Theorem 5.4, Chapter I). Let M be an arbitrary
An-module (so we don't assume M to be of finite type). If M possesses
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an (n, e)-filtration for some integer e > 1, then M is holonomic {and
hence of finite type). Furthermore e{M) < e.

Now consider the multiplication Yn: M —• M. Then

coker Yn:=M/YnM

can be given the structure of a left An- χ=k[Y\,... , Yn- \ d\,... , dn-1 ]-

module by putting dι(m + YnM) := dim + YnM. If n = 1 we put

THEOREM 2.3 ([2], Theorem 6.2, Chapter I).
module with an (n, e)-filtration. Then M/YnM is an An-χ-module
with an (n - 1, e)-filtration. If n = 1 /* me<2/w //z<zί M/YnM is a
k-vector space of dimension < e.

By applying this result «-times we arrive at

COROLLARY 2.4. Let M be an An-module with an (n, e)-filtration.
Then Mj Σi YiM is a finite dimensional k-vector space with dimen-
sion bounded by e.
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