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A NOTE ON MEISTERS AND OLECH’S PROOF
OF THE GLOBAL ASYMPTOTIC STABILITY
JACOBIAN CONJECTURE

ARNO VAN DEN ESSEN

Let f: R" — R"” bea C!-vector field with f(0) =0. For p € R"
let Jf(p) denote its Jacobian matrix evaluated at p. Then it is
a well-known result, due to Lyapunov, that the origin is a locally
asymptotic rest point of the non-linear autonomous system of ordinary
differential equations x = f(x) if the origin is a locally asymptotic
rest point of the linearized system y = Jf(0)y (or equivalently if all
eigenvalues of the matrix Jf(0) have negative real parts).

In 1960 it was conjectured by Markus and Yamabe that the origin
is a globally asymptotic rest point x = f(x) if for each p € R”
the orgin is a locally asymptotic rest point of the linearized system
y = Jf(p)y. Until now this conjecture is still open. However in
1988 Meisters and Olech proved this conjecture for two-dimensional
polynomial vector fields f: R*> — R?. The proof is an immediate
consequence of earlier results of Olech, (1963) and the propesition
below. The main result of this paper (Theorem 1) generalizes the
proposition to polynomial maps F: k" — k" having the property
that det JF(x) # 0 for all x € k" (k is a field of characteristic
zero).

ProrosITION. If F: R? — R? is a polynomial map such that
det JF(x) # 0 for all x € R?, then there exists a positive integer
N such that the number of elements in each fiber F~'(x) (x € R?) is
bounded by N .

The proof of this proposition given by Meisters and Olech uses
topological methods. In this note we generalize this result to polyno-
mial maps F: k" — k" with the property that det JF(x) # 0 for
all x € k" (k is a field of characteristic zero). Our proof is purely
algebraic and uses some well-known techniques from the theory of
Z-modules. For the reader’s convenience we have included a section
reviewing some results concerning Z-modules.

1. The Main Theorem. Throughout this paper we have the following
notations: k is a field of characteristic zero and F: k" — k" is a
polynomial map (n > 1) i.e. F is given by coordinate functions F;
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which are elements of the polynomial ring k[X] := k[X, ..., X,].
The determinant of the Jacobian matrix JF := (0F;/0X;) we denote
by A. So A€ k[X]. For a € k[X], deg a denotes the (total) degree
of a. Finally deg F := max deg F;. Now we can formulate the main
result of this note:

THEOREM 1. If F: k" — k" is a polynomial map with the property
that det JF(x) # 0 for all x € k", then there exists a positive integer
N such that for each x € k" the number of elements in the fiber
F~Y(x) is bounded by N . .

The proof of this theorem uses some well-known techniques from
the theory of Z-modules (due to I. N. Bernstein, [1]). A review of
some of the results concerning A,-modules is given in §2.

1.1. The An-module structure on k[X][A~']. From now on F =

(Fy, ..., F,) is a polynomial map from k” to k” such that A(x) #
0 for all x € k". In particular we have A # 0 so the elements
F,, ..., F, are algebraically independent over k by [6], satz 61. So

k[F] := k[F, ..., F,] is a subring of k[X] isomorphic to k[X].
First we define derivations on the localization A[X][A~!], denoted by
9 /0 F;, which satisfy

(1.2) i(F—)=6,~, all 1<i,j<n.
OF: J J
l

Therefore set §/0F; = Y, a;x(0/0Xy), and we try to find elements
a;, € k[X][A~!] such that (1.2) is satisfied. In matrix notation (1.2)
is equivalent to

(1.3) (@) (JF)T = I.

Since det(JF)T = det JF = A # 0 we can solve the a;; uniquely in
k[X][A~!]. In fact by Cramer’s rule we find

(1.4) Aa;; €k[X] and degAa; <(n—1)degF, alli,*k.

Now we claim that the k-derivations d/8F; commute pairwise on
k[X][A~!]. Therefore let 7 :=[0/0F;, 8/0F;] be the commutator of
d/0F; and 8/0F;. Then t is a k-derivation on k[X][A~!] and it is
zero on k[F] (since 7(Fp) =0 for all p). Consequently, the unique
extension of 7 to the completion k[[F]] is also zero. However by the
local inversion theorem ([7], §4, no. 5. Proposition 5) k[[F]] = k[[X]]
(for this last statement we assumed that F(0) = 0, which is a harmless
assumption since 9/0F; = 0/0(F; + A) for all A € k). So 7 is
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zero on k[[X]] and hence on the subring k[X][A!] (A(0) # 0, so
A~! € k[[X]]), which proves the claim.

The results above enable us to endow k[X][A~!] with a left 4, =
k[Yy,...,Y,,8,..., 0,]-module structure, as follows: Define

Y,-g:=Fg, 8,~g=% forall 1 <i<n, all gek[X][A™].
1

The left 4,-module associated to F in this way we denote by M(F).

LEMMA 1.5. M(F) possesses an (n, e(F))-filtration, where e(F) =
2"(2ndeg F + 1)".

Proof. Put d :=deg F. For each v € Z, v > 0 we define
Ty := {gA~% e k[X][A"']|deg g < 2v(2nd + 1)}.
By definition dim; I', is the dimension of the k-vector space of all
polynomials in k[X] of degree < 2v(2nd + 1), which implies

2"(2nd + 1)"
n!

dim; T, < v+ ("),

So it suffices to prove that {I',} is a filtration on M(F). We first
show that 9,I', C I',;; (the inclusion x;I"y, C I',,; is proved in a
similar way). So let g = gA~?" € T',. Then

aq ,_ _oy—1 OA
dig = 57%A W4 g(-20)A™® 1577;'

By (1.4) we know

o} 1 0
‘a—F—,i = Z Zk:Aa,-k ‘———6Xk and
Aaj, € k[X] with deg Aa;, < (n—1)d.
So

0 OA \ ,_
0ig = (AZAaikgqu: + (_ZU)qZAaikﬁ_k) A-20+1)
k k

Using deg A < nd and deg Aa;; < (n—1)d we conclude that 9;g €
I,1 . Finally we show that T, = M(F). So let gA~" € k[X][A~!]
with degg=s and r > 0. Let v > max(r, s). Then
gA~ = q(AZv—r)A—Zv and
deg gA*™ " < s+ (2u —r)nd < s+ 2vnd < 2v(2nd + 1)
since v > 5. So gA~" €I’y , which completes the proof. O
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Proof of Theorem 1. (i) Let x € k" . Then the number of elements
in the fiber F~1(x) is equal to the number of zeros of the ideal (F; —
Xi, ..., Fy —x,). Therefore we consider the polynomial map F — x
and form its left A,-module M(x) := M(F — x). (Observe that
det J(F — x) = det JF = A has no zeros in k".) By Lemma 1.5
M(x) possesses an (n, e(x))-filtration, where

e(x) =2"(2ndeg(F — x) + 1)" = 2"(2ndeg F + 1)".
So by Corollary 2.4 M(x)/ Y ;(Fi — x;)M(x) is a finite dimensional

k-vector space with dimension bounded by N, :=2"(2ndeg F + 1)",
which is independent of x! So

dim, k[X][A~!] / S (F - x)k[X)A' < Np  for all x € K.

Consequently the residue classes of 1, X;, X 12, X IN ° must be lin-
early dependent over k. So there exists a non-zero polynomial g(X;)
€ k[X;] of degree < Ny and a positive integer p such that A”g(X;)
€ > K[X1(Fi — xi).

(ii) Now let p = (p1,...,pn) € k" such that F(p) = x; i.e.
Fi(p) = x; forall i. Then A(p)’g(p;) =0. Since A has no zeros on
k™ it follows that g(p;) = 0. So there are at most N, possibilities
for the first coordinate of p (since deg g < Ny). Arguing in a similar
way for the other coordinates of p we conclude that the number of
p € k" with F(p) = x is bounded by N := Ny . O

Comment. It was kindly pointed out to me by Professor J. Bochnak
that for some special fields £ such as R, C, real closed or algebraically
closed fields, Theorem 1 is a consequence of the following result.

THEOREM 1.6. Let F: R" — RP be a polynomial map of degree
d such that F~1(x) is finite for each x € R?. Then the number of
elements in each fiber F~'(x) is bounded by d(2d — 1)*~1,

This theorem is a very special case of Theorem 11.5.2 (p. 243) of
[8]. To see that Theorem 1.6 implies Theorem 1 one only needs to
observe that the condition det JF(x) # 0 for all x € R” implies that
each fiber F~!(x) is discrete (by the implicit function theorem) and
that obviously F~!(x) is an algebraic subset of R” and hence has a
finite number of connected components. So F~1(x) is finite.

2. A review of some results concerning A,-modules. All results of
this section come from I. N. Bernstein’s work in [1] and can also be
found in Chapter I of [2].
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Let A, :=k[Yy,..., Yy, 0y, ..., Oy] be the nth Weyl-algebra, i.e.
the k-algebra with relations [Y;, Y;] =[0;, 0] =0 and [9;, Y;] = d;;
forall 1 < i, j <n. Itis a filtered ring with filtration {7, o0
where T, is the k-vector space generated by the monomials Y2978
with |a| + |8| < v (with the usual multi-index notation). Let M be
a left A,-module. A filtration I" on M is an increasing sequence
I'ncIycI; € -+ of finite dimensional k-subspaces of M such
that T, = M and T; Iy c T, forall k, v > 0. Such a filtration
is called good if there exist m;,..., m; € M and n;,...,n; € Z
such that I, = ) Ty—nm; for all v > 0 (by definition 7_, = 0 for
all v > 1). One readily verifies that an A4,-module possesses a good
filtration if and only if it is finitely generated. Furthermore we have

ProvrosiTION 2.1 ([2], Corollary 3.3, Chapter ). If T is a good fil-
tration on a finitely generated left A,-module M, then there exist an
integer d > 0 and rational numbers ay, ..., az such that

dim; Ty = azvé + az_v® '+ +ay, foralllargev.

Furthermore dlay is an integer > 1.

The crucial point is that the integers d and dl!a,; are independent
of the choice of the good filtration; they form two important invariants
of the A,-module M , called the dimension and the multiplicity of M ,
denoted d(M), resp. e(M). The fundamental Bernstein inequality
asserts that d(M) > n for every non-zero A,-module M of finite
type! The non-zero A,-modules of finite type having the minimal
dimension n are called holonomic A,-modules. They play a very
important role in the theory of Z-modules. A useful fact is that
a holonomic A,-module with multiplicity e(A) has a finite length,
bounded by e(M).

To decide if a given A4,-module is holonomic, there exists a very
powerful criterion. Before we describe it we introduce some terminol-
ogy. Let M be aleft 4,-module, not necessary of finite type. A filtra-
tion I' on M iscalled a (d, e)-filtration if dimy T, < v +&(vi1)
where d > 0 and e > 1 are integers. Observe that if M is holonomic
it possesses an (n, e)-filtration (namely take any good filtration on A
and apply Proposition 2.1). However the converse also holds i.e.

THEOREM 2.2 ([2], Theorem 5.4, Chapter 1). Let M be an arbitrary
Apn-module (so we don’t assume M to be of finite type). If M possesses
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an (n, e)-filtration for some integer e > 1, then M is holonomic (and
hence of finite type). Furthermore e(M) <e.

Now consider the multiplication Y,: M — M . Then
coker Y, := M/Y,M

can be given the structure of aleft 4, =k[Y;,...,Y,_181,...,0,-1])-
module by putting 9;(m + Y, M) := dm+ Y, M. If n =1 we put
AO =k.

THEOREM 2.3 ([2], Theorem 6.2, Chapter I). Let M be an A,-
module with an (n, e)-filtration. Then M/Y,M is an A,_,-module
with an (n — 1, e)-filtration. If n = 1 it means that M/Y,M is a
k-vector space of dimension <e.

By applying this result n-times we arrive at

COROLLARY 2.4. Let M be an A,-module with an (n, e)-filtration.
Then M/Y;Y;M is a finite dimensional k-vector space with dimen-
sion bounded by e .
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