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BOUNDARY BEHAVIOR OF A CONFORMAL MAPPING

JOHN MARAFINO

Let D be a simply connected plane domain, not the whole plane.
Let R* denote those accessible boundary points of D such that D
twists violently about them; that is, if a G R* and w(a) denotes its
complex coordinate, then

lim inf arg(w - w(a)) = -oo and

lim suparg(w - w(a)) = +oo,
tυeS

where arg(w -w(a)) is defined and continuous in D. We show that
if a certain geometric condition holds at each point of a set W* c R*,
then W* is a Z)-conformal null set. Let Lv denote the ray with
terminal point w(a), a € R* , having inclination v, 0 < v < 2π.
Let m denote Lebesgue measure on Lv and set

u(v) = limsup

Let PΓ* = {a e R* : there exists LVχf9 i = 1, 2 , 3 , at w(a) such
that |i/, - i//1 = (2/3)π, 1 < / < > '< 3 , and M(I/, ) < 1 for / =
1 , 2 , 3 } .

THEOREM. W* is a D-conformal null set.

Introduction. Let D be a simply connected plane domain, not the
whole plane, and let w = f(z) be a one to one conformal map from
the open unit disk onto D. It is well-known that for almost every
θ, 0 < θ < 2π, f(z) has a finite radial limit f(eiθ) at e1"*. By
[4, pp. 311-312] we also have for almost every θ that the image of
the radius at eιθ is a rectifiable curve. Thus, for almost every θ,
0 < θ < 2π, the image of the radius at eιθ determines a (ideal) recti-
fiably accessible boundary point otβ of D whose complex coordinate
w(oίβ) = f(eiθ) is finite. The set of all such aβ is denoted by A*.
In fact, using Theorem 1 in [2, p. 37], Theorem 9.3 in [4, p. 268],
and Theorem 10.9 in [4, p. 316], it follows that A* is the set of all
rectifiably accessible boundary points of D. On D* = D u A* we de-
fine the arc-length distance lD* between two points as the infimum of
the euclidean lengths of arcs that lie in D and join these two points.
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It can be shown that lD* is a metric for D*. Any limits involving
accessible boundary points are taken in lD*.

A set N* c A* is said to be a D-conformal null set provided that
the set {θ:aQ e N*} has measure zero. We note that this definition
is independent of / . We shall let Γ* be those a e A* at which the
inner tangent to the boundary of D exists. Thus, if a e T* then
there exists a unique v(ά), 0 < i/(α) < 2π, such that for each ε > 0
(ε < π/2) there exists a δ > 0 such that

Δ = {w(a) + peiv\ 0 < p < δ, |i/ - i/(α)| < π/2 - ε} c D

and K; -> α as w; -^ w(α), w e Δ. We denote by R* the set of
rectifiably accessible boundary points of D such that

liminfarg(ΐ/; - W(OLQ)) = -oo and limsuparg(w — w{ae)) = +oo,

where &rg(w — w(otβ)) is defined and continuous in D.
In [3, p. 44] a diameter metric is used and it is shown that A* =

Γ* U R* U N*, where TV* is a Z>-conformal null set. Also, an example
is given [3, p. 65] of a domain D where 4̂* = i?* U N*. We note that
the same characterization of A* holds using lD* and that in the cited
example each point of A* is rectifiably accessible.

In this paper we shall restrict our attention to R* and show that if
a certain geometric condition holds at each point of a set W* c R*,
then W* is a JD-conformal null set. Let Lv denote the ray with
terminal point w(a)9 a € R*, having inclination v, 0 < z/ < 2π.
Let m denote Lebesgue measure on Lv and set

= l i m s u p

Let W* = {α G R*: there exists L^ ? i = 1, 2, 3, at tu(α) such that
|i/ί-i//| = (2/3)π, 1 < / < 7 < 3, and M(i/f) < 1 for ι = 1, 2, 3}.

THEOREM. W* is a D-conformal null set

The proof of this theorem will be a consequence of the lemma stated
below. Given aeR* and positive numbers v, δ', <J", ε with J7 < (5r/

and ε < π/2, we define A(a, v,δ',δ", π/2 - ε) = {w(α) + /?^^:

LEMMA. Except for a D-conformal null set of R*, for each aeR*
there exists a i/(α), 0 < v{a) < 2π, and a sequence ofpairwise disjoint
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disks {On} with radii rn and center wn such that for each ε > 0,
ε < π/2, there exists sequences {δ'n}, {<%'} of positive real numbers
such that

(1) A(a, i/(α), δ'n, <%', π/2 - ε) c On c D for all sufficiently
large n.

(2) lD*(wn, α) —> 0 a s rc —• oo. Consequently, rn, δ'n, δ% —• 0 a s
n —> o c .

(3)

^ L = 2cos(π/2 - ε) αwrf lim
n>oo

Note that as we approach a e Γ* through the regions Δ, the mea-
sure of the angle at the vertex approaches π. Because of this property
our theorem is trivially true on T*. Our lemma on R* asserts that
the regions A(a, i/(α), δf

n , (%
7, π/2 - ε) are mimicking this property

of the Δ 's and as a consequence our theorem should hold on i?*.

Proof of Lemma, Our lemma follows from a result due to Gerasch
[1] which we shall indicate in our discussion below.

Let ηk and δ^, k = 1, 2, . . . , be sequences of positive numbers
decreasing to zero. For any sequence {wn} of points in D we define
Wit corresponding sequence of disks {On} as follows: On is the largest
disk centered at wn having radius rn that is contained in D. We will
say that a sequence {wn} c D is a boundary sequence provided that
the Euclidean distance from wn to the boundary of D approaches
zero as n -* oo. We let F£ be those points aeR* such that for all
boundary sequences {wnj the corresponding sequence of disks {On}
satisfy lD*(On, α) > ηkrn , rn<δp. Set Fj* = [jp F£p .

In [1, p. 204] Gerasch uses an extremal length argument to show
that a set, whose definition is similar to F?9 is D-conformal null.
The steps of his proof can be used here to show F£ is D-conformal
null. In the following three paragraphs we outline this procedure. For
more details we refer the reader to Gerasch's paper. We also note
that the extremal length argument used by Gerasch was also used by
McMillan in [3, pp. 58-61] to establish his characterization of A*.

Let E = {eiθ: aθ eF£ p}. It is well known that almost every point
of a set of positive measure is a point of outer density. If we show
that each point eiθ e E is not a point of outer density then it follows
that m(E) = 0. In order to do this we will first establish a relationship
between the extremal length of a family of curves in {\z\ < 1} and
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the density of E near eiθ e E. We use the following result which is
due to Gerasch [1, p. 202]; McMillan proves a similar result on the
upper half plane [3, p. 56]:

Let 0 < δ < π/2 and let A c (0, δ) with outer measure
m*(A). For each θ such that 0 < θ < δ, let γ$ denote
the arc of the circle orthogonal to \z\ = 1 at eιθ and
at e~iθ which is contained in the unit disk. Set Γ =
{γθ: θ e A}. Then the extremal length λ(Γ) of the
family of curves satisfies

λ(Γ)<π/logk,

where k = sin δ/ sin[<5 - m*(A)].

Fix eiθ* G E and let {zn} be a radial sequence approaching eιθo.
The sequence {wn}, wn = f(zn), satisfies lD*(wn, aθo) —• 0 because
/ has radial limit α ^ ? and so rn —• 0 as n —• oo. Thus {u?π} is
a boundary sequence whose corresponding sequence of disks {On}
satisfy

(1) F o r a l l 0 e £ , lD*(On, aθ) > ηkrn forrn<δp.

For each n the closure of On contains a point on the boundary of D.
Let bn be the radius connecting wn to this point and define b% by
requiring f(b%) = &Λ . Since / is normal it has no Koebe arcs [4, pp.
262-267]. Thus bz

n has an end point eiθn on {\z\ = 1}, eiθ» <£ E,
and it follows that the image of b* and the image of the radius at
eiθn under / determine the same accessible boundary point whose
complex coordinate we can now denote by f{eίθn). In addition, since
diam^fl —• 0 as n -^ oo, one has by Koebe's lemma [2, p. 31] that
eiθn —• eiθo as n —• oo. By choosing a subsequence and relabeling it
one can suppose without loss of generality that ΘQ < θn < ΘQ + π/2
for all n. Setting En = {eW*-Q eE: 0<ζ<θn-θ0}, we define Γn

to be those circular arcs contained in {\z\ < 1} which are orthogonal
to \z\ = 1 at eW*+Q and eW*~Q for some eW*'® eEn. It follows
from above that for all n,

(2) λ{Tn)<πl\o%kny

where kn = sin((9 - 0o)/sin[(0n - ΘQ) - m*(En)]. Using (2) and the
fact that sinx < x for 0 < x < π/2, we have

rt - ΘQ) < eπ^Γn\(θn - ΘQ) - m*(En)],
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and hence

(3) g ^ < 1 - e-*l^[sm{θn - θQ)/(θn - 0o)].

From (3) we will be able to conclude that eιθo is not a point of outer
density providing we establish the existence of a positive number c
satisfying λ(Γn) > c for all n such that rn<δp. We will use (1) and
the conformal invariance of λ to do just this.

Let Tφn) = {γ: γ is a curve in D which joins a point of bn to a
point f(eiθ)9 eiθ e E} and Γn = {/: / c {\z\ < 1} and / ( / ) €
Γ(bn)}. Then λ(Γ(bn)) = λ(Γf

n) and since every γ e Γn contains
some curve / e ΓJ, we have by the comparison principle for extremal
length that λ(Γ'n) < λ(Γn). Hence to show eiθo is not a point of outer
density it suffices to find a positive number c satisfying λ(Γ(bn)) > c
for all n such that rn < δp.

For each n such that rn < δp, let Fπ = {tί; e Z>: dist(tί; ,bn) <
tfkHPn)} > where dist(w, 6W) denotes the Euclidean distance form the
point w to bn and /( ) denotes the length of the curve. By (1) it
follows that for any γ e Γ(bn),

l(ynvn)>ηkrn.

Defining pn(w) = I if w e Vn and 0 elsewhere we have that pn

is a measurable function, J pn\dw\ > ^rn for all γ e Γ(bn) and
A(pn)—the area integral for Vn with respect to pn—satisfies A(pn) <

n + πrίtrn Hence for each n such that rn<δp,

- sup >
- sup ^ >

>
A(pn) - 2 + πηk'

Since //̂  is independent of n we choose this last value for c.
It follows that F£ and U^ F£ a r e J5-conformal null sets and we

can conclude that with the exception of a Z>-conformal null set, for
each a E R* and k9 k=l,2, ... , there exists a boundary sequence
iwk,n} i n ^ whose corresponding sequence of disks {O^ n} satisfies
^D*Φk,n 9 a) ^ ΆkVk.n f°Γ a ^ w Since r^ n —^0 as /7 -«• oo, one has
^D*iwk,n 9 a) "^ 0 as w —> oo. Using this fact and a relabeling of the
sequence we can assume without loss of generality that for each k,
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If we now consider the rectangular array of points [w^ n] and form
the sequence {w«,Λ} w e arrive at the following result: Except for a
D-conformal null set of R*, for each α e R* there exists a sequence
{wn} (wn,n = wn) along with its corresponding sequence of disks
{On} which satisfy the following:

(4) On is contained in D for each n,
(5) lD (wn, α ) - > 0 as Λ - > O O ,

(6) lD*{On , a) < ηnrn for all n.
Since a e R* we have that the Euclidean distance from On to

w(a), dist(0 r t, w(α)), is positive for all n. Using (5) there exists
a point of the sequence {wn}, which we denote by wHι such that
lD*(wnι, α) < dist((9i, w(ά))/2. It follows that dist(wWi, w(α)) <
dist(0i, w(a))/2 and rΛj < dist(#i, w(a))/2. Hence the disks OΆχ

and Oi are disjoint. Using the fact that dist((9Wi, w(ά)) is positive
we repeat the above argument to get a point wHl, n\ < nj from the
sequence {wn} whose corresponding disk OKi is disjoint from OΆχ

and O\. Inductively we are able to define a subsequence {wn/c} of
{wn} whose corresponding sequence of disks {Onk} satisfy (4), (5),
(6) in addition to being pairwise disjoint. By relabeling this sequence
one can assume without loss of generality that the On are pairwise
disjoint. Since the sequence

{vn = aτg(wn - w(ά)) mod(2π), n = 1, 2, ...}

is bounded, it has a subsequence that converges to some UQ where
either 0 < VQ < 2π or v0 = mod (2π). Thus, we can further assume
without loss of generality that the sequence {wn} is such that

(7) arg(wrt - w(ά)) mod 2π —• u0 as n —> oo.

We shall set i/(α) = u0.
For any positive numbers δ and ε, ε < π/2, we know from (5) and

(7) that for n sufficiently large, On is contained in {\w - w(a)\ < δ}
and On intersects the sector Δ = {w(a) + peίφ: p < δ and \φ - VQ\ <
π / 2 - ε } . We show that one can choose n sufficiently large so that the
boundary of On intersects the boundary of Δ at four distinct points.
Let Ln denote the ray through wn having terminal point w(a). Let
7^5 Tn

f denote the two rays tangent to On having terminal point w(a)
and let εn denote the measure of the angle formed by Ln and Tn and
Ln and T'ή. See Figure 1. If dn denotes the Euclidean distance from
On to w(a), we have that

?n ?n 1

s in ε — >̂ - =
" rn + dn rn + lD- {On , a) 1 + lD (O» , a)/rn'
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FIGURE 1

Using (6) we see that as n —• oo, ήnεn

we choose n sufficiently large so that

εn> π/2-e/2 and

1 and so εn —> π/2. If

e/4

then our claim follows. Note that one pair of the four points lies on
the segment w(a) + pe^o+W2-*)); 0 < p < δ and the other pair lies
on the segment w(a) + ρe^uo-(π/2-ε)): 0 < p < δ. We choose the pair
whose Euclidean distance from one another is the smaller and denote
their distance from w(a) by δ'n and <%' where δ'n < δ%. Doing this
for each n, n sufficiently large, defines two sequences {δ'n}, {<%'}
such that

A(a,i/0,δ'n,δ;i,π/2-e)cOnCD for all n.

Letting τn = [arg(tί;w -w(a)) mod 2π - UQ] and referring to Figure
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FIGURE 2

2 we have that

βm Tn+ ( τ r / 2 - 0

[δ'n sin(τw + (π/2 - ε))]2 + [(rn + dn) - δ'n cos(τrt + (π/2 - ε))]2 = r 2 ,

[δf; sin(τw + (π/2 - ε))]2 + [(rΠ + dn) - ^ cos(τn + (π/2 - ε))]2 = r2.

Upon solving for δ'n and δ'ή we have that

and
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W + (π/2 - β))^ + rll{rn + dn)
2 - 1

rt + (π/2 - e)) + Vcos(τΠ + (π/2 - β)p + rlj{rn + dnf - 1'

Hence
δ" - δr δ" - δ'

lim £ Z L _ ^ = 2cos(π/2 - β), lim -^-^ = 1,

and the lemma is proven.

Proof of Theorem. Suppose to the contrary that W* is not D-
conformal null. By the lemma, with the exception of a Z>-conformal
null set of W* we know that for each a e W* there exists v(a),
0 < v(ά) < 2π9 such that for ε = π/12 there exist sequences {δf

n},
{δjl} such that

A(a, v(a),δ'n,δϊ, 5π/12) c D for all n

and
δ" - δr

lim ^pL = i.
n-+oo δ%

Also, from the definition of W*, for each a e W* there exists
a A:, A: = 1 , 2 , 3 , such that LVk passes through the regions
A(a9 v{a)> δ'n, δ^, 5π/12) and u(uk) < 1. However,

k ΠD)Π (w(a), w(a) + δ«e^)) δ»-δ'n
>

δ-δn

δ» > δ»
and this implies that u(vk) = 1. This is a contradiction. Thus FT*
must be a Z>-conformal null set.
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