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HOMEOTOPY GROUPS OF
IRREDUCIBLE 3-MANIFOLDS
WHICH MAY CONTAIN
TWO-SIDED PROJECTIVE PLANES

JoHN KALLIONGIS AND DARRYL McCULLOUGH

A description is obtained for the homeotopy group (the group of iso-
topy classes of homeomorphisms) of a compact irreducible sufficiently
large 3-manifold (which may contain 2-sided projective planes). It is
finitely presented, and modulo finite groups is either free, GL(3, Z),
or is built up in a certain way by extensions starting from 2-manifold
homeotopy groups and finitely generated abelian groups.

0. Introduction. Manifolds containing 2-sided projective planes
have been a stumbling block in the study of mappings of 3-manifolds.
For orientable sufficiently large 3-manifolds with incompressible
boundary (now called Haken 3-manifolds), Waldhausen’s [W] sem-
inal work provides (except for I-bundles) an isomorphism from the
homeotopy group to the group of outer automorphisms of the fun-
damental group that preserve the peripheral structure. To establish
this isomorphism, he shows that every proper homotopy equivalence
is homotopic to a homeomorphism, and that (except for /-bundles)
homotopic homeomorphisms are isotopic. This program can be ex-
tended to nonorientable manifolds which do not contain 2-sided pro-
jective planes [H2], [L], but when there are 2-sided projective planes
present, the manifolds are no longer aspherical and the behavior of
homotopy equivalences becomes more complicated. For example, for
3-manifolds that are nontrivial connected sums and contain a 2-sided
projective plane, not every self-homotopy equivalence is homotopic to
a homeomorphism [H3], [H4].

Swarup [S3] surmounted some of these difficulties. He studied the
class of irreducible 3-manifolds containing 2-sided projective planes.
In [S3], such a manifold is said to be sufficiently large if it has a
hierarchy (a finite sequence of cuttings along 2-sided incompressible
surfaces) which ends with a collection of 3-balls and P2 x I’s. Swarup
shows that if there is an isomorphism of fundamental groups between
two sufficiently large irreducible boundary-irreducible 3-manifolds
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(that contain no fake P2 x I), then there is some homeomorphism
between the manifolds. In the process, he develops an obstruction to
realizability of a given isomorphism by a homeomorphism.

An irreducible 3-manifold containing 2-sided projective planes con-
tains a finite collection of disjoint 2-sided projective planes such that
every 2-sided projective plane is isotopic to one of them. A minimal
such collection is unique up to isotopy, and techniques of Laudenbach
and Hatcher show that isotopies between homeomorphisms which pre-
serve this collection are deformable to isotopies which preserve the
collection (see §4.1). Therefore the study of the homeotopy group
is effectively reduced to the study of irreducible 3-manifolds in which
every projective plane is parallel to the boundary. For such a manifold
N, the orientable double cover has boundary components which are 2-
spheres; filling them in with 3-balls, one obtains a Haken 3-manifold.
The covering transformation extends to an involution with isolated
fixed points. The quotient of this extended involution is the space N
obtained by coning off each projective plane boundary component of
N ; it is a 3-orbifold, irreducible in the sense of [B-S]. For irreducible
3-orbifolds, Bonahon and Siebenmann have extended the character-
istic submanifold theory of Jaco and Shalen and Johannson to the
orbifold setting—not only the existence of a characteristic S!-fibered
suborbifold, but also its structural classification and the deformation
of its homeomorphisms to fiber-preserving homeomorphisms so use-
ful in the study of Seifert 3-manifolds succeed beautifully. With this
in hand, it appears that a theory of homeotopy groups of Haken 3-
orbifolds could be developed by tediously replicating the known (and
already tedious) theory of homeotopy groups of Haken 3-manifolds.
In our case, however, a much simpler approach can be used to inves-
tigate the homeotopy group #(N).

Bonahon [B], in the Seifert-fibered case, and Boileau and Zimmer-
mann [B-Z] studied equivariant deformations of involutions of Haken
manifolds (this is generalized to orientation-preserving finite actions
on Haken manifolds in [Z2]). Using the observation that the proof of
one of their theorems can be adapted to orientation-reversing involu-
tions, together with a major result of Tollefson, we can give a quick
proof in §3.1 that #Z(N) is isomorphic, up to finite kernel and finite
index in the range, to the centralizer in # (M) of the homeotopy
class of the involution. The homeotopy group in the Haken case is
sufficiently well-understood to allow a reasonably precise description
of these centralizers, given in §3.2 and §3.3. Coupled with the projec-
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tive plane splitting, this leads to our structure theorem for homeotopy
groups:

THEOREM 4.2.3. Let N be a sufficiently large irreducible 3-manifold
with incompressible boundary. Then # (N) is isomorphic mod finite
groups to a direct product of finitely many groups Z;, each of which
satisfies (at least) one of the following conditions.

(1) Zz; is finite.

(2) Z; contains a finitely generated free group of finite index.

(3) Z; is isomorphic mod finite groups to GL(3, Z).

(4) There is an exact sequence 1 — A — Z; — Q — 1, where
A is a finitely generated abelian group (possibly trivial) with torsion
subgroup of order at most 2, and Q is isomorphic mod finite groups
to a 2-manifold homeotopy group.

(5) There is an exact sequence | — D — Z; - R — 1, where D
is a finitely generated abelian group (possibly trivial) and R has finite
index in a direct product of finitely many groups which are extensions
of the form described in (4).

In particular, this implies that #(N) is finitely-presented.

Using the Boileau-Zimmermann technique, it is possible to extend
the Waldhausen-Heil isomorphism to the case of sufficiently large irre-
ducible boundary-incompressible 3-manifolds in which every 2-sided
projective plane is boundary-parallel [K], but we emphasize that The-
orem 4.2.3 gives a great deal of qualitative information about #(N).

After collecting some algebraic concepts and lemmas in §1, we de-
velop some technical results about 2-manifolds (stated for convenience
in the language of 2-orbifolds) in §2. The main technical work is car-
ried out in §3, as described above. In §4, we first develop the charac-
teristic collection < of 2-sided projective planes in N . In particular,
we use methods of Hatcher to prove that the natural homomorphism
Z(N,P)— #Z(N), induced by inclusion of spaces of mappings, is
an isomorphism. This implies that #(N) is isomorphic mod finite
groups to the direct product of the homeotopy groups of the manifolds
obtained by splitting N along the projective planes in % . Then, The-
orem 4.2.3 can be deduced from the results in §3.

1. Some algebraic lemmas. To avoid interruptions in the geometric
arguments in later sections, we will present various algebraic concepts
and results in this section.

1.1. Isomorphism mod finite groups. Following the approach used
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by Serre for classes of abelian groups (see pp. 504-506 of [S2]) we say
that G is isomorphic to H mod finite groups, and write G =, H , if
there is a group K for which there are homomorphisms ¢;: K — G
and ¢,: K — H having finite kernels and images of finite index.
The argument given in Lemma 9.6.9 of [S2] shows that this is an
equivalence relation. We note the following easily verified facts:

1. G=, {1} if and only if G is finite.

2. G=; F, where F is a finitely generated free group, if and only
if G contains a finitely generated free group as a subgroup of finite
index.

3. If G, ngl and G, =r H,, then G| x G, E’f H, x H,.
Because a group is finitely generated (respectively, finitely presented) if
and only if any finite index subgroup is finitely generated (respectively,
finitely presented) (see §2.3 of [M-K-S]), we have also

4. If G =, H, then G is finitely generated (respectively, finitely
presented) if and only if H is finitely generated (finitely presented).

1.2. Centralizers of involutions in exact sequences. If o is an auto-
morphism of a group H, define fix(a) to be the subgroup of elements
fixed by o. In our applications, the automorphism will be conjuga-
tion by an element of order 2, sometimes in a supergroup of H, in
which case the fixed subgroup consists of the subgroup of elements of
H that commute with the element.

LEMMA 1.2.1. Let 1 - A — G — Q — 1 be an exact sequence of
groups with A abelian. Suppose t is an automorphism of G of order 1
or 2 with t©(A) = A, and that the subgroup Z_ = {a € A|t(a) = a~ !}
is finitely generated. Let T be the induced automorphism on Q. Then
the image of the projection homomorphism fix(t) — fix(7) has finite
index.

Proof. Consider the endomorphism of 4 which sends a to t(a)a~!.
Its image is a subgroup of .Z_ ; define A, to be the quotient of Z_
by this image. Since the image contains 2.Z_ , and -Z_ is assumed
to be finitely generated, A4, is finite. Conjugation induces an action
of fix(T) on Ay. Define y: fix(T) — Ay as follows. For g € fix(7),
choose any g € G that projects to g. Since g € fix(7), we have
7(g) = ag for some a € A. Also, g = 1%(g) = t(a)ag, so a € Z_.
Define x(g) = [a]. Since 7(a;g) = 7(a;)ag = ar(al)al‘lalg, X is
well-defined. If t(g;) = a;g; for i=1, 2, then 1(g1 &) = ala2g1 212,
hence y is a crossed homomorphism. Since A, is finite, the kernel
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of x has finite index. If g is in the kernel, then 7(g) = t(a)a~!g
for some a€ 4, and t(a'g) =1(ar(a)a~'g =a'g, hence g is
in the image of fix(t) — fix(7). This proves Lemma 1.2.1.

It is known [D-S] that the fixed subgroup of an involution of a
finitely-generated free group is finitely generated. We will need the
following slight extension of this fact:

LEMMA 1.2.2. Let G be a finitely generated group which has a free
subgroup of finite index, and let 1 be an automorphism of G of order
1 or 2. Then fix(t) contains a finitely generated free group of finite
index.

Proof. Let F be a finitely generated free group of finite index in G ;
replacing F by F N t(F) we may assume that 7(F) = F . By [D-S],
the fixed subgroup of the restriction of 7 to F is finitely generated,
hence fix(7) has a finitely generated free subgroup of finite index.

1.3. Centralizers of involutions in GL(3, Z). The 3-torus will be
an exceptional case. For its homeotopy group, which is isomorphic to
GL(3, Z), we will need the following elementary observation.

LEMMA 1.3.1. The centralizer of any element of order 1 or 2 in
GL(3, Z) is finitely presented. More precisely, the centralizer of +I is
GL(3, Z), while the centralizer of any other involution is isomorphic
mod finite groups to GL(2, Z).

Proof. As in Lemma 3.1 of [T], elementary linear algebra shows that
if A4 1is a linear involution of a finitely generated free abelian group
G, there is a splitting G = H®Z for which A(H) = H ; applying this
twice in our case produces a basis for Z® Z @ Z for which the matrix

of A is of the form
+1 x vy
0 1 =z .
0 0 =1

10 0 10 0
Ad=]01 0}, 4=[(01 1].
00 —1 00 -1

We need only consider one involution in each conjugacy class, and
some conjugation by elementary matrices shows that every matrix
written as above is conjugate to one of +I, +A4y, or +A4; (first find

Let
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conditions on x, y, and z in order for the matrix to be of order 2).
The centralizer of +7 is all of GL(3, Z). Consider the centralizer of
A; . Multiplying on the left and on the right by

a b ¢
(d e f)
g h i

and equating the results shows that the centralizer consists precisely
of the matrices in GL(3, Z) of the form

a 2c c
(d 2f +i f).
0 0 i

Define a homomorphism from the centralizer to Z/2 by sending each
matrix to the entry i/ in the third row of the third column. Define a
homomorphism from the kernel of this homomorphism to GL(2, Z)
by the assignment

a 2c c a 2

d 2f+1 f ]~ ( ) .

0 0 1 d 2f+1
This is clearly injective, with image equal to the subgroup consisting of
all elements of the form (2 2¢). This subgroup has finite index, since
it is the preimage of the subgroup of all elements of the form (!9
in GL(2, Z/2) under the homomorphism GL(2, Z) — GL(2, Z/2)
induced by the reduction of the coefficients modulo 2. Thus the cen-
tralizer is isomorphic mod finite groups to GL(2, Z).

Since —I is central in GL(3, Z), the centralizer of —A4; is equal
to the centralizer of A4;. The case of A is similar: the centralizer is

all matrices of the form
a b 0
d e 0],
0 0 i

hence is isomorphic to GL(2, Z) x Z/2. This completes the proof.

2. Centralizers of involutions in homeotopy groups in dimension 2.

2.1. Equivariant isotopy in 2-fold coverings. The first result in this
section is needed to extend the Relative Baer Theorem to orientation-
reversing involutions (Corollary 2.1.2), but is also needed to prove
Proposition 2.2.1, which will be used heavily in §3.
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ProrosITION 2.1.1. Let F be a compact surface, not a projective
plane or 2-sphere, and let 9oF be a subcollection of the components
of OF . If F is a disc, assume that OoF = O0F . Let P be a finite,
possibly empty, collection of points in the interior of F. Let t© be an
involution of F such that 1(8yF) = 6oF and ©(P) = P. Suppose that
[ is a homeomorphism of F, which commutes with t, such that f is
isotopic to the identity, relative to 6oF UP. If P is empty, assume the
following:

(1) F is not the Mébius band or Klein bottle.

(2) If F is a torus, fix(t) = @, and t is orientation-reversing,
then the induced homeomorphism f of F |t induces the identity outer
automorphism on the fundamental group.

(3) If F is a torus or annulus and fix(t) # @, then f leaves some
component of fix(t) invariant, and if F is an annulus either F = @
or aoF =0F.

Then f is t-equivariantly isotopic to the identity, relative to 8yF UP .

Proof. Suppose first that F is a disc and P is empty or consists
of one point. The involutions of the disc are known to be linear (up
to equivalence). In coordinates for which the involution is linear,
the Alexander trick produces a t-equivariant isotopy from f to the
identity.

Next, suppose that F is a torus or annulus. If 7 is as in (2) above,
then F/1 is a Klein bottle, and by hypothesis f is isotopic to the
identity. The lift of such an isotopy furnishes the required isotopy
of f. If F is atorus, fix(t) = @, and 7 is orientation-preserving,
then F /7 is a torus, and f induces the identity automorphism on its
fundamental group (since f induces the identity on the fundamental
group of F). Again, f is isotopic to the identity. If F is an annulus,
fix(t) = @, and 7 is orientation-reversing, then F /7 is a Mobius band
so f is isotopic to the identity relative to 8yF . If F is an annulus,
fix(t) = @, and 7 is orientation-preserving, then F /7 is an annulus
and f does not interchange its boundary components: moreover, if
dF = 0F , then f must be isotopic to the identity relative to d(F /1)
since f is isotopic to the identity relative to dF . Again, f is isotopic
to the identity. So we may assume that fix(t) is nonempty. By (3),
f leaves some component of fix(z) invariant. By Lemma 5.1 of [T],
f is t-equivariantly isotopic to the identity. If F is an annulus and
OoF = OF, then since f is isotopic to the identity relative to 9 F ,
the 7-equivariant isotopy may be adjusted so that it is relative to 0 F .
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By deleting the interiors of disjoint t-invariant 2-cells, each con-
taining an element of P, it suffices to prove the result for the case
P = 2, and from hypothesis (1) and the previous argument, we may
now assume that y(F) < 0. We consider three cases.

Casel. Fix (1)=2.

In this case, ¢ : F — F/1 is a 2-sheeted covering. Since x(F) <
0, m;(F /1) is free of rank at least two, so the centralizer of gy(m;(F))
in 7w (F/7) is trivial. The result follows by the proof of Lemma 1.6
in [B-H]. ’

Case 11. dim(fix(7)) =0.

Let fix(t) = {x;, X3, ..., Xn}, and let f(x;) = y;. Since f com-
mutes with 7, each y; is contained in fix(r). For some isotopy
F : 1p ~ f, denote by «; the trace at the point x;. Using F, one
constructs an isotopy K : ftf~! ~ v whose trace at x; is a,—’c(ai_l).
Since ftf~! = 7, this trace must be central in #;(F, x;), hence is
a contractible loop. Let p: F — F be the universal covering. For
each x;, let X; be a point in the preimage of x;, and let 7 be the
lift of 7 to an involution of F that fixes %;. If y; is the endpoint
of the lift of «; starting at X;, then the contractibility of a,-'c(ai"l)
shows that %(y;) = 7;. But fix(%) is connected and 0-dimensional,
so X%; = J;. Therefore «; is a contractible loop at x;, and it may be
assumed that the isotopy F is relative to fix(7)UdyF . The result now
follows by applying Case I to the complement of a 7-invariant regular
neighborhood of fix(7).

Case 11I. dim(fix(7))=1. ;

Let J be a component of fix(r) and note that f(J) C fix(t). Sup-
pose first that J is a simple closed curve. Since f is isotopic to the
identity, it follows that if f(J)NJ = @, then J U f(J) bounds an
annulus 4. Furthermore, A N1(4) = A4, so F is a torus or Klein
bottle, contradicting the assumption that x(F) < 0. The case when J
is an arc and J N f(J) = @ is similar. So we may assume that f pre-
serves each component of fix(7). Since y(F) < 0, J is not isotopic
to its inverse. Therefore we may change f by 7-equivariant isotopy
so that its restriction to fix(7) is the identity, and so that the isotopy
from f to the identity is relative to fix(t)UdgF . For the components
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of fix(t) which are arcs, and therefore meet some boundary compo-
nents, we may assume that f is isotopic to the identity relative to
those boundary components as well. The conclusion now follows by
splitting F along each 1-dimensional component of fix(7) to obtain
a surface to which the previous cases apply. This completes the proof
of Proposition 2.1.1.

COROLLARY 2.1.2 (Relative Baer Theorem for involutions). Let F
be a compact connected orientable surface with nonempty boundary
and let F be its universal covering. Let t_be an involution on F and
let é’; be generated by all lifts of © to F, so that there is an exact
sequence

l—»nl(F)—ﬁﬁF—)Zzé l.

Let f be a homeomorphism of f , commuting with the elements of
&%, such that the restriction of f to OF Iis the identity. Then there

exists an é’g-equivariant isotopy from f to the identity, which is con-
stant on 9F .

Proof. Let f be the homeomorphism of F induced by f. The re-
striction of f to AF is the identity and f commutes with 7. Since
its lift commutes with 7{(F), f induces the identity outer automor-
phism on 7;(F), so f is isotopic to the identity of F. Moreover,
since f is the identity on A F , this isotopy may be chosen to be rela-
tive to OF . Let J be a component of the fixed-point set of 7. Then
each component J of the preimage of J is the fixed-point set of some
lift # of 7, and since f commutes with %, it follows that f(J)=J
and hence f(J) = J. The result now follows from Proposition 2.1.1.

2.2. Homeotopy groups of 2-orbifolds. We begin by briefly recalling
some facts from the theory of orbifolds. References for orbifolds are
[T2], [S1], [D-M], and [B-S].

An n-orbifold is a space locally isotopic to a quotient D"/G where
G is a finite subgroup of the orthogonal group O(n) acting on D =
D" . An n-orbifold with boundary may also have boundary points,
which are locally the image of a point of D"~ ! = {(x;, ..., x,_1, 0)}
C D" in a quotient of D} = {(x;, ..., x,) € D"|x, > 0} by a finite
subgroup G which preserves D? (i.e. G € O(n — 1)). Thus the
boundary of an n-orbifold is an (n — 1)-orbifold. The local group at
x € D/G is defined to be the conjugacy class in O(n) of the stabilizer
of any point in the preimage of x under the quotient map D — D/G.
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The exceptional set is the set of points whose local group is not trivial.
An orbifold homeomorphism is a homeomorphism of the underlying
topological space which respects all the orbifold structure.

When n = 2, the finite subgroups of O(2) are either cyclic or dihe-
dral, and the underlying topological space of the 2-orbifold is always a
2-manifold. The exceptional set consists of the following three types
of points:

(1) cone points, whose local group is cyclic acting by rotation about
the origin in D?. These are isolated points in the interior of the
orbifold. :

(2) reflection points, also called silvered points, whose local group is
cyclic of order 2 acting by reflection across a line through the origin
of D?. A reflection point may be interior to the orbifold (although in
the topological boundary of the underlying 2-manifold), or it may lie
in the boundary, in which case it is a silvered endpoint of a 1-orbifold
component of the boundary of the 2-orbifold.

(3) corner reflectors, whose local group is dihedral generated by the
reflections through two distinct lines through the origin. These always
lie in the interior of the orbifold (although in the topological boundary
of the underlying 2-manifold), and are in the closure of two arcs of
reflection points.

PROPOSITION 2.2.1. Let B be a compact 2-orbifold, and let By be
a compact 1-orbifold contained in OB .

(a) Z (B, By) is finitely-presented.

(b) if T is an involution of B preserving By, then the centralizer in
# (B, By) of (T) is isomorphic mod finite groups to Z (B/T, By/7).

Proof. Let F = |B| denote the compact 2-manifold underlying the
orbifold B and let P be the set of cone points. Denote by yF
the components of O F that contain either a corner reflector, an arc
component of |By|, or a component of |§B| which is a silvered in-
terval. Let #(F relgyF U P) be the homeotopy group consisting of
classes whose restriction to gy F U P is the identity. Consider the sub-
group #{(F rel 9oF UP) consisting of those classes whose restriction to
O F = 0F —09yF is isotopic to the identity. If (g) € Z{(F rel o FUP),
then g is the identity on |Bj| and the exceptional set, and can there-
fore be viewed as an orbifold homeomorphism of B whose class
represents an element in # (B, By). This defines a homomorphism
Z(F relogF U P) — # (B, By).
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LEMMA 2.2.2. Z(FreldyF U P) — Z (B, By) is an injection onto
a subgroup of finite index.

Proof. Suppose (g) € #{(Frel9yF UP) is in the kernel. Then g is
isotopic to the identity by an isotopy which preserves |By|, |0B|, and
the exceptional set. Such an isotopy may be adjusted to be relative to
OoF U P. Therefore (g) is trivial in /#{(F rel9yF U P). This shows
that the homomorphism is injective. The elements of # (B, By) act
as a finite group of permutations on the components of the strata of
the exceptional set. The elements which act trivially are exactly the
image of #{(F rel9yF U P), which therefore has finite index. This
completes the proof of Lemma 2.2.2.

Using Lemma 2.2.2, we will regard # (F rel 8,F UP) as a subgroup
of # (B, By). Since Z(FreldpF U P) is known to be finitely pre-
sented [H], it follows that /Z (B, By) is finitely presented, proving
part (a) of Proposition 2.2.1.

In the proof of part (b), we will need the following lemma, which
1s a generalization of Theorem 6.1 of [T].

LeEMMA 2.2.3. Let F be a compact surface, which either has x(F) <
0, or is a disc, annulus, or M6bius band. Let dgF be a subcollection of
the components of OF , and if F is a disc, annulus, or Mobius band,
then assume that OoF = OF . Let h be an involution of F such that
h(0gF) = 8yF . Suppose that g is an involution of F, isotopic to h
relative to 0yF . Then there exists a homeomorphism k, isotopic to
the identity relative to 8yF , such that kgk=! =h.

Proof. The proof is very similar to the argument in Theorem 6.1
of [T]. We will simply indicate the necessary changes. For one, all
isotopies in the proof will be relative to 9yF instead of OF .

The orientability assumption for F is not needed to guarantee the
existence of an A-hierarchy, as can be seen by an argument analogous
to the proof of Theorem 3.6 of [T]. If F is nonorientable and J is
an element of the A-hierarchy, then J may be one-sided.

The proof of Theorem 6.1 of [T] is broken into three lemmas, called
Lemma 6.2, Lemma 6.3, and Lemma 6.4 there, and we now describe
the modifications to the proofs of these.

Call the complex obtained by identifying an arc xy x I in the an-
nulus S! x I to a point a pinched annulus. In the modified proof
of Lemma 6.2, the product regions between homotopic loops may
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now be discs, annuli, and, for one-sided loops, pinched annuli. One
again considers the cases of AgA~1(J) = J or AgA 1 (J)nJ = 2.
If J is one-sided, however, then if 4(J) = J it necessarily follows
that AgA—1(J) = J, since AgA~!(J) will then be homotopic to J
and cannot be disjoint from J. Thus in case (a), if A(J) = J and
Agi~l(J)NJ = @, then either J is a two-sided simple closed loop,
or, since 9gF need not equal 0 F, J may also be an arc. In the latter
case, there exists a disc D, containing J UAgA~!(J) in 8D, so that
0D—(JUAgi~!(J)) consists of two arcs contained in 0;F = 0 F—9yF .
The proof for this additional case is similar. For case (b), where
h(J)NJ = @ and AgA~!(J)NJ = @, the following additional sit-
uations may arise: (i) D is a disc containing A(J) U AgA~1(J) in
0D so that D — (h(J)UAgAi~1(J)) consists of two arcs contained in
OF, (ii) D is a pinched annulus with “boundary” A(J)Uigi~!(J),
and (ii1) D is a “triangle” with one vertex in dyF and having edges
h(J), AgA~1(J), and an arc in 8;F . The proofs for these additional
three cases are analogous to the one given in case (b) of Lemma 6.2.
Case (c) is unchanged, because as seen above, it cannot arise when J
is a one-sided loop.

Lemma 6.3 of [T] is the same except for replacing 0 F by 9pF and
requiring that the homotopy preserve the boundary.

For Lemma 6.4 of [T], consider first the case when J is an arc.
Since the homotopy preserves the boundary, we take xo € 9J and the
proof is complete. Suppose J is a loop. Then F is not the Mobius
band or annulus (because in those cases, the hierarchy is chosen to
begin with an arc). Therefore the center of z;(F) is trivial and we
can continue the proof as in [T]. In the case where A(J)NJ = @ and
J is one-sided, the neighborhood U of A(J) is a Mdbius band, but
the homeomorphism called A4 can be constructed in a similar fashion
to the cases in Lemma 6.4. The remainder of the proof is unchanged
from the proof of Theorem 6.1. This completes our discussion of
Lemma 2.2.3.

We can now prove part (b) of Proposition 2.2.1. Let F be the
compact 2-manifold underlying the orbifold B/7 and let P be the
cone points. Denote by 9yF the components of dF that contain
either a corner reflector, an arc component of |By|/T, or a silvered
interval component of 8(B/7). Define # (F reldyF U P) as above,
and again using Lemma 2.2.2 regard it as a finite-index subgroup of
# (B/T, By/T). Denote by #(FreldpF U P) the finite-index sub-
group of #(FreldyF UP) consisting of those elements that lift to
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(B, By) and have some lift in Z{(F reldpF U P). Let C; denote the
intersection #(F reldyF U P) with the centralizer in # (B, By) of
(7). Since C; has finite index in the centralizer of (7) in Z (B, By),
part (b) of Proposition 2.2.1 will follow once we show that
#Z,(F rel 5pF U P) is isomorphic mod finite groups to C;. By lifting
we obtain a homomorphism A : Z(F rel9gF U P) — C; or C/(7)
according as (7) is not or is contained in C; .

Suppose that F is a projective plane, a disc, or a sphere, and that
x(F — P) > 0. The involutions of those surfaces are well-known, up
to equivalence, and upon consideration of the various cases one finds
that Z(Frel6yF U P) and Z#(F reldF U P) are both finite. Now
suppose that P is empty and that F is either a Klein bottle, a Mobius
band, or an annulus with §yF # O F . Again, the involutions of F in
these cases are known, up to equivalence, and Z{(F rel 9oF U P) and
Z(FrelOF U P) are finite. Therefore the result holds in all these
cases, and we exclude them in the remainder of the argument.

Let (f) € C;. Then fTf~! is isotopic to T, relative to pF U P.
Suppose that F is a torus and P = @. By Theorem 6.1(ii) of [T] there
exist involutions f;, f,, and 3 associated with 7, each imbedded
in actions of SO(2) commuting with 7, such that any involution ho-
motopic to 7 is strongly equivalent to some 78;. This implies that the
image of A has finite index in C; . In all remaining cases, by remov-
ing invariant discs about the points P, we may assume that P = &
and x(F) < 0. By Lemma 2.2.3, there exists a homeomorphism &k,
isotopic to the identity relative to 8pF , such that kfTf- k! = 7.
This implies that we may isotope f, relative to 9yF , to commute
with T, showing that A is a surjection.

Suppose now that (f) € Z(F reldoFUP) with A((f)) = (f) trivial.
Then f commutes with 7 and is isotopic to the identity relative to
0oF U P. By Proposition 2.1.1, f is t-equivariantly isotopic to the
identity, relative to 9yF U P, unless P = @ and either property (2)
or (3) of Proposition 2.1.1 is not satisfied. This implies that 4 is
injective except for these cases. If F is a torus and 7 is a fixed-
point-free orientation-reversing involution, then F is a Klein bottle
and #(F) is finite, implying that the kernel of A is finite. Now
assume that F is either a torus or annulus and fix(7) # @. Suppose
(7) and (g) are two elements in the kernel of A, with images (f')
and (g) respectively, such that f and g give the same permutation
on the components of fix(t). Then by Proposition 2.1.1, fg~! is 1-
equivariantly isotopic to the identity, relative to 8yF , which implies
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that (f) = (g). Since there are only finitely many permutations of
the components of fix(7), the kernel of A is finite. This completes
the proof of Proposition 2.2.1.

3. Centralizers of involutions in homeotopy groups in dimension 3. In
§3.1, we will prove that for an orbifold & of the form AM/t, where
M is Haken and 7 is an involution, the orbifold homeotopy group
# (@) is isomorphic mod finite groups to the centralizer of (7) in
Z (M) . This will be used in our main application, and motivates the
calculation of these centralizers. In §3.2, we treat the fibered cases—
I-bundles and Seifert-fibered 3-manifolds—where 7 is assumed to be
fiber-preserving. The general Haken case is handled in §3.3. Apart
from some special cases, one may assume that the involution preserves
the characteristic submanifold X (in the sense of Johannson), and is
fiber-preserving on X (it may permute the components nontrivially).
Then, after passing to a subgroup of finite index in # (M), the cen-
tralizer of (r) can be compared to the centralizers of its restrictions
to the components of X, and one obtains a qualitative description of
the centralizer, stated as Theorem 3.3.2.

3.1. Homeotopy groups and centralizers.

THEOREM 3.1.1. Let M be a Haken 3-manifold, and let © be an
involution of M such that M admits a t-equivariant hierarchy. For
the orbifold quotient @ = M|/t, the homeotopy group # (@) is iso-
morphic mod finite groups to the centralizer of the homeotopy class (1)
in Z(M).

Proof. Since n‘l"b (@) is finitely generated, it has only finitely many
subgroups of index two. Let #;(¢Z) denote the subgroup of finite
index in # (@) which preserves the image of 7,(M); these are the
homeotopy classes that lift to M . Let Cent({r)) denote the quotient
of Cent((7)) by the order 2 subgroup generated by (). Lifting (g)
to the coset of (g), where g is either lift of g to M, defines a
homomorphism ¥ from #(¢) to Cent({(r)). The rest of the proof,
showing that this lifting homomorphism is an isomorphism mod finite
groups, will be broken into a sequence of lemmas.

LEMMA 3.1.2. The image of ¥ has finite index in Cent((7)).

Proof. Recall that two involutions k; and k, of a space X are said
to be strongly equivalent if there is a homeomorphism k of X such
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that kk k! = k, and k is isotopic to the identity. By Theorem 7.1
of [T] (which only requires the M have a t-equivariant hierarchy—
see the remark on p. 340 of [T]), the homeotopy class of an involution
7 of M contains only finitely many strong equivalence classes of in-
volutions (in fact, at most two unless M is the 3-torus, in which case
there are at most eight). Observe that conjugation induces an action
of Cent((t)) on this set of strong equivalence classes; let Centy((7))
denote the stabilizer of the strong equivalence class of 7. The image
of Centy((r)) in Cent((r)) is a subgroup of finite index, and each
element in this subgroup contains a representative which commutes
with 7 and hence is in the image if W. This proves Lemma 3.1.2.

For the injectivity, we begin by observing that the proof of Theorem
4.3 of [B-Z] can be extended easily to the case when 7 is orientation-
reversing.

LEMMA 3.1.3. Let M be an orientable Haken 3-manifold and let
T be an involution such that M has a t-equivariant hierarchy. Let
f: M — M be a t-equivariant homeomorphism which is isotopic to
the identity. Then f is t-equivariantly isotopic to the identity if and
only if the induced homeomorphism f on the quotient M/t induces
the identity outer automorphism on nd™®(M/7).

Proof. The argument of [B-Z] can be adapted straightforwardly
to show that f is t-equivariantly isotopic to the identity. We will
summarize the additions needed. The reference [M-S] applies to the
orientation-reversing case; this is needed at several places in case 7 is
orientation-reversing. In case 7 is orientation-reversing, it is neces-
sary to use Heil’s [H2] extension of Waldhausen’s results in 4.6(b) and
4.7(b)(ii). The Baer Theorem, stated as 4.11 in [B-Z], is needed for
orientation-reversing involutions of orientable surfaces; this appears
in [Z1]. We omit more precise details of the adaptation.

LEMMA 3.1.4. The kernel of ¥ is finite.

Proof. If (g) is in the kernel, then there is a lift & of g which
is isotopic to the identity of M. By Lemma 3.1.3, g is isotopic to
the identity unless it does not induce an inner automorphism on the
orbifold fundamental group 7¢"™(&). Since g lifts to M, it induces
an automorphism of the extension

1 - (M) — nd™(@) - Z/2 — 1
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and after conjugation, the induced automorphism is the identity on
the subgroup n;(M).

SUBLEMMA. Let A be a normal subgroup of the group B. Let
Auty(B) denote the subgroup of Aut(B) consisting of automorphisms
taking A to A, inducing the identity on A, and inducing the identity
on the quotient B/A, and let Outy(B) denote the image of Auty(B) in
Out(B). Let Z denote the center of A. Then there is an isomorphism
from Outy(B) to a quotient of H'(B/A; Z).

Proof. This lemma appears often in the literature in the case when
A is abelian; for example, it is proved in [M1] under the assumptions
that A4 is abelian and B is a semidirect product (in which case the
quotient is H'(B/A; Z) itself), and as Theorem 8 in [C-R], under the
assumption that A4 is free abelian. Since we do not know a reference
for the version needed here, we sketch the argument. Let C denote
B/A. Notice that although the action of C on A4 is only defined up to
inner automorphisms of A4, the action on .Z is well-defined. For each
¢ € Auty(B), define a crossed homomorphism a4 by sending b € B
to b~1¢(b). This takes values in 4 since ¢ induces the identity on
C,and forall ae 4 and b € B we have

bab~! = $(bab™') = bay(b)aay(b)~'b",

$0 a4(b) € Z. On 4, o4 vanishes, so it may be regarded as a crossed
homomorphism from C to A. A crossed homomorphism « is the
image of the element of Auty(B) defined by sending b to ba(4b).
The principal crossed homomorphisms correspond to the elements
of Inny(B) = Inn(B) N Auty(B) that are conjugation by elements of
Z . Thus Inny(B) is carried to a subgroup of the group of crossed
homomorphisms from C to .Z°, which contains the principal crossed
homomorphisms, yielding the assertion in the Sublemma.

Now in our case, B/A = Z/2, so the cohomology H(Z/2; Z)
with action given by the induced automorphism of 7 is a quotient of
Z_ = {a € Z|t4(a) = a~'} by a subgroup which contains 2.Z_ (see
for example p. 122 of [M1]). Since .Z is (free) abelian of rank at
most 3, this is finite. Lemma 3.1.4 follows.

Lemmas 3.1.2 and 3.1.4 immediately imply Theorem 3.1.1.

3.2. The case of fibered 3-manifolds. Fibered 3-manifolds (with 1-
dimensional fiber) are those which are I-bundles or which are Seifert
fibered. Let X be a fibered orientable 3-manifold. In 9% let F be
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a 2-dimensional submanifold which is a collection of tori and an-
nuli, each of which is a union of fibers. Define #/(Z, F) to be the
isotopy classes of fiber-preserving (i.e. taking each fiber to a possibly
different fiber) homeomorphisms that preserve F. Define (X, F)
(respectively, £/ (X, F)) to be the subgroup of # (X, F) (respec-
tively, #/(X, F)) consisting of the isotopy classes whose restriction
to F is isotopic to the identity map of F. Since F is assumed to
consist of tori and annuli (but not squares, as is permissible in the
general theory of boundary patterns in [J]), a fiber-preserving home-
omorphism of F which is isotopic to the identity will be isotopic
through fiber-preserving homeomorphism. Notice that £(X, F) is a
normal subgroup of Z (X, F).

Let B be a 2-orbifold, and By a 1-suborbifold of 9B . (It is not as-
sumed that By is a union of boundary components). Define £ (B, By)
to be the subgroup of # (B, By) consisting of the classes whose re-
striction to By is isotopic to the identity. Since |By| consists of arcs
and circles, £ (B, By) has finite index in # (B, By).

For any of the homeotopy groups discussed here, a “+” subscript,
as in ;Z’;f (£, F), indicates the subgroup of orientation-preserving
elements. When F is nonempty, &, (X, F) = £(X, F). In case
B is a nonorientable 2-orbifold, then by convention # (B, By) =
# (B, By).

Given a fibered 3-manifold (X, F), let B be the quotient orbifold
for X, and let By be the image of F in 8B . When X is an /-bundle,
B is a 2-manifold, which is orientable if and only if X is a prod-
uct I-bundle. When X is Seifert-fibered, B is an orbifold, possibly
nonorientable, whose only singularities are cone points correspond-
ing to the exceptional orbits. A fiber-preserving homeomorphism f
of X, preserving F, induces a homeomorphism f of B, preserving
By. We call f the projection of f. Sending (f) to (f) induces a
homomorphism #/(X, F) — #(B, By), and we also refer to this
(or its restrictions to subgroups of #/ (X, F)) as projection.

LEMMA 3.2.1. Suppose that X is an I-bundle over B. Then pro-
Jjection is an isomorphism from & f (£, F) to Z.(B, By) if F is non-
empty, and from ?f (Z) to Z(B) if F is empty.

Proof. Suppose first that X is a product /-bundle B x I. If F is
nonempty, then the restriction of each element of Z/(X, F) to F is
isotopic to the identity, so all elements preserve the orientation of the
fibers. In particular, they cannot interchange B x {0} and B x {1},
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so the projection ?f (X, F) — Z,.(B, By) is an isomorphism with
inverse defined by sending (g) to (g x 1;). If F is empty, then the
projection ?f (X) — Z(B) is an isomorphism with inverse defined by
sending (g) to (gx1j),if g is orientation-preserving, and to (g xr),
where r is reflection in the I-fibers, when g is orientation-reversing.

Now suppose that X is a twisted I-bundle over the nonorientable
surface B. For (g) € . (B, By) = Z(B, By), there is a unique
orientation-preserving lift & of g to a homeomorphism of the ori-
entable double cover B. The restriction of & to the preimage By is
isotopic to the identity. Since X is the mapping cylinder of the projec-
tion from B to B, and § commutes with the covering transforma-
tion, the homeomorphism g x 1; of B xI induces a homeomorphism
of ¥ whose restriction to F is isotopic to the identity. This defines
a homomorphism Z,(B, By) — ?f (X, F) which is an inverse to the
projection.

PROPOSITION 3.2.2. Suppose that X is an I-bundle over B and F
is a (possibly empty) 2-manifold in 8X which is a union of fibers.
Suppose t is a fiber-preserving involution of (X, F), and let T denote
the involution induced on B. Then the subgroup consisting of elements
of %_f (Z, F) that commute with (1) is isomorphic mod finite groups
to Z(B/T, By/7).

Proof. Suppose first that F is nonempty. By Lemma 3.2.1, the
projection provides an isomorphism from ?f (£, F) to Z.(B, By).
Since the projection of hth~! is ATh—1, the subgroup of ?f (Z, F)
consisting of the elements that commute with (7) corresponds un-
der projection to the subgroup of &, (B, By) consisting of the ele-
ments that commute with (7). Since Z,.(B, By) has finite index in
# (B, By), Proposition 2.2.1 shows that the latter subgroup is isomor-
phic mod finite groups to #(B/T, By/7).

We also need a technical result.

LeEMMA 3.2.3. Suppose that X is an I-bundle over B and F is the
preimage of OB in 8X. Then #/(X, F) — #(Z, F) is an isomor-
phism.

Proof. This is well-known, although we cannot find this precise state-
ment in the literature. The proof is similar to the analogous result for
Seifert-fibered manifolds (injectivity is sketched on p. 85 of [W], and



HOMEOTOPY GROUPS OF IRREDUCIBLE 3-MANIFOLDS 103

surjectivity is as in Theorem VI.19 of [J1]) but is easier. A more gen-
eral result in the context of boundary patterns may be found in [J]
(see especially Proposition 5.13 there).

The Seifert-fibered case is more complicated. It will be convenient
later on if we allow the homeotopy class to be the identity element.
Of course, its centralizer is the entire homeotopy group.

THEOREM 3.2.4. Let X be a Seifert-fibered 3-manifold and let F
be a (possibly empty) 2-manifold in 60X which is a collection of tori
and annuli, each of which is a union of fibers. Let t be the identity
homeomorphism or a fiber-preserving involution of T such that ©(F) =
F. Let C be the subgroup of elements in & (X, F) that commute
with the homeotopy class of T in Z (X, F). Then (at least) one of the
following is true:

(1) C is finite.

(2) C contains a finitely generated free group of finite index.

(3) C=GL3, 7).

(4) There is an exact sequence 1 - A — C — Q — 1, where A is
finitely generated abelian with torsion subgroup of order at most 2, and
Q is isomorphic mod finite groups to a 2-manifold homeotopy group.

The proof of this theorem will be given as a sequence of lem-
mas. First, we consider the “exceptional cases™: those Seifert-fibered
3-manifolds which admit homeomorphisms not isotopic to fiber-
preserving homeomorphisms. The first lemma mentions the Hantsche-
Wendt manifold, which is the closed flat 3-manifold given by the
Seifert invariants {—1; (ny, 1); (2, 1), (2, 1)} (see[O, pp. 133, 138],
[C-V, pp. 478-481], [W1], [H-W]) .

LeEMMA 3.2.5. If X is any of the following 3-manifolds, then the
centralizer C of the identity element or any involution in Z(X) is as
described below. Thus C is finite or contains a finitely generated free
group of finite index unless T is the 3-torus and the homeotopy class
induces +1 on mn((X), in which case C is isomorphic to GL(3, Z).

(WIfFX=S8'xS!'x1I, then C is finite or virtually finitely generated
free.

(2) If Z is the orientable twisted I-bundle over the Klein bottle, then
C is finite.

(3) Suppose T is an S'-bundle over the torus. If X is the 3-torus,
then C = GL(3, Z) if the homeotopy class induces +I on m(X),
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otherwise C contains a finitely generated free group of finite index. If
X is not the 3-torus, then C contains a finitely generated free group of
finite index.

(4) Suppose X is an orientable S'-bundle over the Klein bottle. If
the Euler class is zero, then C contains a finitely generated free group
of finite index. If the Euler class is nonzero, then C is finite.

(5) If T is a Seifert-fibered Haken 3-manifold which fibers over S?
with three exceptional orbits, then C is finite.

(6) If X is the Hantsche-Wendt manifold, then C is finite.

Proof. For (1) and (2), X is an I-bundle and Proposition 3.2.2 ap-
plies. In (1), the quotient surface is a torus, with homeotopy group
GL(2,Z). There are three conjugacy classes of involutions in
GL(2,Z): -1, ({ °%),and (}1)). The first is central, so its central-
izer GL(2, Z) contains a free group of finite index (see for example
pp. 100-101 of [M-K-S]). The other two involutions have finite cen-
tralizers. Statement (2) is immediate, since the homeotopy group of
the Klein bottle is finite. For (3), suppose first that the Euler class of
the bundle is 0. Then X is a 3-torus, with homeotopy group isomor-
phic to GL(3, Z), and Lemma 1.3.1 implies that the centralizers are
as specified. If the Euler class is nonzero, then by Proposition 3.4.3
of [M], #Z(X) is virtually finitely generated free, and Lemma 1.2.2
applies. For (4), suppose first that the Euler class of the bundle is
0. Then by Proposition 3.4.4 of [M], Z(X) is virtually finitely gen-
erated free, and Lemma 1.2.2 applies. If the Euler class is nonzero,
then by Proposition 3.4.4 of [M], Z (M) is finite. For (5) and (6),
the homeotopy groups are finite by Proposition 3.4.5 of [M] and by
[C-V], respectively. This completes the proof of Lemma 3.2.5.

LEMMA 3.2.6. Let X be an irreducible orientable Seifert fibered 3-
manifold with infinite fundamental group. Let F be a (possibly empty)
2-manifold in X which is a union of fibers. If X contains an incom-
pressible 2-manifold which is a union of fibers, then the natural homo-
morphisms &/ (2, F) —» Z.(2, F) and #/(Z, F) —» #.(, F) are
injective. If either

(a) F is nonempty, or

(b) T does not fiber over the 2-sphere with three exceptional orbits,
Y is not an S'-bundle over the annulus or Mébius band, T is not an
Sl-bundle over the torus or Klein bottle which admits a cross section,
and X is not the Hantsche-Wendt manifold,
then the natural homomorphism is surjective.
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Proof. The proof of injectivity is sketched in [W, p. 85]. Surjectivity
in case (a) is proved by the argument in [J1, Lemma VI.19], and in
case (b) it is proved in [W1] (see also [O, Theorem 8.7]).

The following result is essentially Lemma 25.2 and Proposition 25.3
of [J].

LEMMA 3.2.7. Let ¥ be an orientable Seifert-fibered 3-manifold,
and F a submanifold of 0X. Let (B, By) be the quotient orbifold of
(X, F). Then the projection homomorphism p: & +f (Z, F)-»# (B, By)
has finitely-generated abelian kernel (possibly trivial) with torsion sub-
group of order at most 2. If F is nonempty, then the image is
Z,.(B, By), and in any case the index of the image is finite.

Instead of giving a detailed proof, it seems more useful to ex-
plain what is going on geometrically in Lemma 3.2.7. The image
of £/(X, F) contains all Dehn twists about circles, since these ex-
tend to Dehn twists about vertical tori in X, and these Dehn twists
generate %, (B, By). When F is nonempty, the fiber direction must
be preserved, so the projected homeomorphism must be orientation-
preserving, and the image is precisely &, (B, By). The kernel of p
consists of the elements that can be represented by homeomorphism
that preserve each fiber—the “vertical” homeomorphisms. Suppose
first that the underlying manifold |B| is orientable. Let B; be a
submanifold of &B consisting of all boundary circles that are not
entirely contained in By. Choose a standard set of generators for
H\(|B|, |Bi|), consisting of a dual pair of simple closed curves for
each handle of F, together with a collection of d — 1 arcs in B — By
each running between two boundary components neither of which is
entirely contained in By (where d is the total number of such bound-
ary components). The preimages in X of this set of generators are a
collection of vertical tori and annuli, and similarly to pp. 191-193 of
[J], it can be proved that the Dehn twists about them generate the
kernel of p and the isotopy relations among them correspond to the
homological relations among the generators. Thus the kernel of p
is isomorphic to H;(|B|, |Bi|), so is finitely generated abelian. The
exceptional fibers have no effect here; a vertical Dehn twist about a
torus bounding a neighborhood of an exceptional fiber is isotopic, tak-
ing each fiber to itself, to the identity. If |B| is nonorientable, then
regard |B| as having crosscaps, and instead of a pair of dual curves
in the handles, choose the one-sided circles in these crosscaps as ho-
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mology generators. The preimage in X of each one-sided circle is
a one-sided Klein bottle K in M. Let N(K) be a fibered neigh-
borhood of K in M. In Lemma 25.1 of [J], Johannson constructs
a vertical homeomorphism supported in N(K); on K it is a Dehn
twist about the unique (up to isotopy) two-sided nonseparating sim-
ple closed curve in K (which is a fiber of the Seifert fibering), and
since the lift of this to the orientable double cover of K is isotopic
to the identity, this Dehn twist extends to a vertical homeomorphism
of N(K) which is the identity on the boundary torus, so extends to
M . Johannson’s analysis of this homeomorphism (Lemma 25.1 of
[J]) shows that its square is isotopic to a vertical Dehn twist about the
torus N (K), and thus the correspondence between isotopy of ver-
tical homeotopy classes and homological equivalence of the elements
of H(|B|, |B;|) extends to the case when |B| is nonorientable. This
completes our explanation of Lemma 3.2.7. A more detailed explana-
tion in a somewhat different context may be found in [M]; a detailed
proof can be obtained by modifying pp. 188-195 of [J].

We can now complete the proof of Theorem 3.2.4. Let 7 be a fiber-
preserving involution of X. The class (t) is an element of #/(Z, F).
Conjugation by (1) preserves the normal subgroup £/(Z, F), and
moreover it preserves the subgroup of vertical homeotopy classes. Let
u denote conjugation by (). By Lemma 3.2.7, there is an exact
sequence

1> A—-Z/(Z, F)— #(B, By) — 1,

where A is finitely generated abelian with torsion subgroup of order
at most 2, and #{(B, By) has finite index in #Z (B, By). The latter
is isomorphic mod finite groups to a 2-manifold homeotopy group, by
Lemma 2.2.2. By Lemma 1.2.1, there is a subsequence

1 — 4, — fix(u) — fix(z)

where & is the induced involution on #{(B, By) and the image of
fix(u) has finite index. By Proposition 2.2.1 and Lemma 2.2.2, fix(x)
is isomorphic mod finite groups to a 2-manifold homeotopy group.
Theorem 3.2.4 follows.

3.3. The case of Haken 3-manifolds. We now consider the general
case of M a Haken 3-manifold and 7 an involution of M. Let X
denote a characteristic submanifold for A/ in the sense of [J].

LemMMA 3.3.1. X can be chosen so that ©(X) =X.
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Proof. This follows from Theorem 14 of [B-S], after resolving the
minor technical differences between their characteristic toric splitting
and Johannson’s characteristic submanifold.

We can now give the main result of this section.

THEOREM 3.3.2. Let M be a Haken 3-manifold and let 1 be the
identity homeomorphism or an involution of M. Let C be the cen-
tralizer of (1) in #(M). Then (at least) one of the following is true:

(1) C is finite.

(2) C contains a finitely generated free group of finite index.

(3) M is the 3-torus and C = GL(3, Z).

(4) There is an exact sequence 1 - A— Z — Q — 1, where Z isa
subgroup of finite index in C, A is a finitely generated abelian group
(possibly trivial) with torsion subgroup of order at most 2, and Q is
isomorphic mod finite groups to a 2-manifold homeotopy group.

(5) There is an exact sequence 1 - D —Z — R— 1, where Z isa
subgroup of finite index in C, D is a finitely generated abelian group
(possibly trivial) and R has finite index in a direct product of finitely
many groups Z; which are extensions having the form described in (4).

Proof. Choose a characteristic submanifold X so that 7(Z) = X.
By [T1], for Seifert fibered spaces, and by [M-S], for I-bundles, we
may choose the fibered structure on the components of ¥ so that
the restriction of 7 to each t-invariant component is fiber-preserving.
For pairs of components that are interchanged, we can simply transfer
the fibered structure on one of the components to the other using 7,
to make 7 fiber-preserving. From now on, we will assume that the
fibered structure on X is t-invariant.

If M fibers over the circle with torus fiber and attaching homo-
morphism whose trace, as a matrix in GL(2, Z), has absolute value
at least 3 (i.e. if M admits a Sol structure) then by Proposition 4.1.2
of [M], Z (M) is finite, and Theorem 3.3.2 holds. Assume from now
on that M is not such a manifold; then, by Proposition 4.1.1 of [M],
the natural homomorphism # (M, X) — # (M) is an isomorphism.

LEMMA 3.3.3. Assume that M is not a torus bundle over S' which
admits a Sol structure. Then the image of the homomorphism # (M , X)
— Z (M - X, Fr(X)) induced by restriction is finite.

Proof. By the argument in [J, Corollary 27.6], the subgroup of
Z (M, X) generated by Dehn twists about admissible essential tori
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and annuli in X has finite index. Thus, there is a subgroup of finite
index in #Z (M, X) which can be represented by homeomorphisms
which are the identity on M — X. The lemma follows.

Notice in particular that when X is empty, the restriction in Lemma
3.3.3 is the identity, so /& (M) is finite and Theorem 3.3.2 is proved
for this case. When M is fibered (i.e. when M = X), Theorem 3.3.2
has been proved in §3.2. So for the remainder of §3.3, we will assume
that the characteristic submanifold X is not empty and is not equal
to M. In particular, the frontier F; of each component X; of X is
nonempty. ,

Define .7 (M , Z) to be the kernel of the homomorphism in Lemm
3.3.3. Recall the groups £/ (Z;, F;) defined at the beginning of §3.2.

LEMMA 3.3.4. There is a surjective homomorphism
¢:Z(M,%) - [[8/E, F)

whose kernel is the finitely generated abelian subgroup Z'(M , X) gen-
erated by Dehn twists about the components of the frontier of X.

Proof. Since the frontier of each X; is nonempty, the argument of
[J1, Lemma VI.19] shows that each element of Z' (M, X) is repre-
sentable by a homeomorphism whose restriction to each (;, F;) is
fiber-preserving. Using Lemmas 3.2.3 and 3.2.6, this fiber-preserving
homeomorphism is unique up to fiber-preserving isotopy (preserving
F) . Therefore the restriction homomorphism ¢ is well-defined. Since
the elements of £/(Z;, F;) have representatives which are the iden-
tity on the frontier of X;, ¢ is surjective. Any element of the kernel
of ¢ 1is isotopic to a homeomorphism which is the identity outside
a neighborhood of the components of the frontier of X, giving the
description of (M, Z).

We can now complete the proof of Theorem 3.3.2. Let S=M —X.
Consider the disjoint union (J[Z;) [[S. There is a restriction homo-
morphism p: Z (M, %) - Z(([I1Z)]]S). We have a commutative
diagram

| — P(M,3) — F(M, %) —— [/, F) — 1
1l — M ,3) — ZM,Z) 2~  im(p) —— 1
In this diagram, the homomorphism from % (M, X) to Z (M, X) is
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inclusion, and that from [[Z/(Z;, F;) to im(p) is induced by ex-
tending representatives by the identity on S . These are injective, and
since the image of Z' (M, X) has finite index, so does the image of
[1%/(Z;, F;). Notice that conjugation by (r) induces an automor-
phism of this entire diagram. We denote the automorphism induced
in [[&/(Z;, F;) by u.

Rename the componentsof £ as Uy, U, ..., U, Vi, Vo, ..., Vs,
Wi, Wa, ..., Ws, where t(U;) = V; and ©(W;) = W;. Put p; = (t|y)
and g = <T|Wj ) . Suppose that

(i oes oo 81sees & has s hs) € (TIE7 (U, Fr(U))
< (17 . Exv) = (T1&7 w5, Ex(%))) -

Observe that this element is fixed by u if and only if g; = p; f; p,.~1 and
hj = ajhjo;! . Thus the subgroup of fixed elements in [[& 1(Zi, F)
is isomorphic to

(H g1, Fr(U»))

i=1

X (H Centaw k) ((9;) NEL (W, Ff(Wj))> :

j=1

If U; isan I-bundle, then Proposition 3.2.2 shows that £/ (U; , Fr(Uy;))
is isomorphic mod finite groups to a 2-manifold homeotopy group,
while if U; is Seifert fibered, Lemma 3.2.7 shows it is of the form
specified in part (4) of Theorem 3.3.2. If W, is an I-bundle, then
Proposition 2.2.1 and Lemma 2.2.2 show that Cent;f(Wj JFr(W, p{a;))n
Zf(W;, Fr(W;)) is isomorphic mod finite groups to a 2-manifold
homeotopy group, while if W is Seifert-fibered then Theorem 3.2.4
shows it has one of the forms listed in Theorem 3.3.2. Applying
Lemma 1.2.1 to the top row of the diagram, we obtain an exact se-
quence

1—-D —*%(M, Z) ﬂCent,y(M’z)((‘c)) — Q —1

where D is abelian and Q has finite index in the subgroup of elements
of [[¢/(Z;, F;) fixed by u. This completes the proof of Theorem
3.3.2.
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4. Homeotopy groups of 3-manifolds.

4.1. The characteristic P? splitting. A loop in SO(3, R) C Diff($?),
based at the identity and regarded as a diffeomorphism of S% x I,
induces a diffeomorphism of P2 x I which represents an element of
# (P2 x Itel P2 x 8I). Such an element is called a rotation about P2 x
{0} . It is known that 7;(SO(3, R), 1gr) = Z/2, generated by the loop
that rotates once about a fixed axis (in fact, SO(3, R) is diffeomorphic
to IP3), so the square of a rotation is trivial, and any two rotations
defined using a noncontractible loop in SO(3, R) are isotopic. In
Lemma 4.1.1 below we will calculate that # (P2 x I'tel P2 x91) = Z/2
generated by a nontrivial rotation. If P is a 2-sided projective plane in
a 3-manifold N, contained in or disjoint from AN, then a rotation
about P defined on a collar of P extends using the identity to a
diffeomorphism of N, again called a rotation about P.

LEMMA 4.1.1. The relative homeotopy group # (P? x I relP? x 81)
is of order 2, generated by a rotation about P* x {0}.

Proof. First we show that Z (P2 x IrelP? x dI) is generated by a
rotation. Let £ be a homeomorphism of P2 x I which is the identity
on P2 xdI. Let C be a 1-sided simple closed curve in P2, and let
A be the annulus C x I. Fix a rotation r that leaves C invariant in
each P2x {s}. Let p be apointon C, and let a be the arc pxI. We
may deform A(reld1) so that in a neighborhood of P2x 81, h(A)NA
is contained in a. Now deform #, fixing a neighborhood of P2 x 41,
so that A(C x (0, 1)) is transverse to 4. The intersections will be
a single arc and a collection of simple closed curves. By irreducibil-
ity, these simple closed curves may be eliminated by isotopy. Now
h(4) N A winds some number of times around A4, compared to a;
changing # by some r we may assume that A(a) = a and in fact
that A restricts to the identity on a. Deform 4 to preserve a tubu-
lar neighborhood W = D% x I of a. It twists the D?-factor of this
neighborhood some number of times. Let r; be a nontrivial rotation
which preserves a; since 7n;(SO(3, R)) = Z/2, r; is isotopic to r.
Changing 4 by r{ , for some /, we may assume that /4 is the identity
on this neighborhood. The complement of (PZ x 8I) U W is a solid
Klein bottle K. Deform 4 to be the identity on a meridional 2-disc
of K, then use the Alexander trick to complete the isotopy from #
(changed by (rk*!)) to the identity. Since r2 is isotopic to the iden-
tity relative to P2 x 81, we can obtain an isotopy from # to either r
or the identity. By [H4], r is nontrivial, proving Lemma 4.1.1.
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Let N be a compact irreducible 3-manifold. Consider a subspace
P =JL P where {Py, ..., P,} is a collection of disjoint imbedded
nonparallel non-boundary-parallel 2-sided projective planes in N. By
the Haken-Kneser Finiteness Theorem (see Theorem I11.24 of [J1]
for a general version) there is an upper bound for the size of such a
collection.

ProrosITION 4.1.2. Let N be a compact irreducible 3-manifold
which contains no fake P* x I. Let P = JI_, P; where {Py, ..., P;}
is a maximal collection of disjoint nonparallel non-boundary-parallel
2-sided projective planes imbedded in the interior of N. Then the in-
clusion Diff(N , ) — Diff(N) induces an isomorphism # (N , P) =
#Z(N).

Proof. Using Theorem 1 of [N], the collection £ is unique up to
ambient isotopy. Consequently, the image of % under any diffeomor-
phism of N is isotopic to &, and therefore Diff(N, %) — Diff(N)
is surjective on path components.

To prove injectivity, we will use the following consequence of
Hatcher’s method from [H1].

LEMMA 4.1.3. Let P>xI be imbedded in the interior of an irreducible
3-manifold N, and let iy denote the inclusion of P* to P2 x {0}. Let
P be a copy of P2, and let Imby(P, N) denote the space of smooth
imbeddings of P into N which are isotopic to iy. Let Imby(P, N) de-
note the subspace of Imbo(P, N) consisting of the imbeddings f with
the property that f(P) is disjoint from some P? x {s} for some s (de-
pending on f). Then the inclusion map Imby(P, N) — Imbg(P, N)
is a homotopy equivalence.

Proof. The argument is exactly as in [H1], but is easier since for
each of the isotopies there is only one 3-ball to push across, so one
can ignore the steps involving the basepoints called p; in [H1].

We must be a bit careful in applying Hatcher’s lemma, though, since
to our knowledge, results analogous to statements (a) and (b) on the
last page of [H1] have not been proved for P2.

SUBLEMMA 4.1.4. Let P2 x I be imbedded in the interior of a 3-
manifold N, and let is denote the inclusion of P?> to P? x {s}. Let
P be a copy of P2, and let Imby(P x I, N x I) denote the space of
smooth imbeddings j of P x I into N x I which are level preserving
(i.e. the restriction j, of j to P x {t} has image in N x {t}), and
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such that jo = iy and j,(P) is disjoint from P? x {1} for all t. Then
Imb(P x I, N x I) is path connected. Moreover, if j(P) lies in
(P2 x I) x {1} and the trace of the isotopy is homotopic into P?* x I,
then there is a path from j to the constant imbedding H defined by
H; = iy, such that each imbedding on the path maps P x {1} into an
arbitrarily small neighborhood of (P2 x I) x {1}.

Proof. Let J be the constant imbedding J; = i;. Given j €
Imb,(PxI, NxI),regard jUJ asa one-parameter family of imbed-
dings of the subspace P? x {0} UP? x {1} into N. By parameterized
isotopy extension, there is an isotopy K; of N, with K, equal to the
identity of N, which extends jUJ . Let L; be the restriction of K;
to P2 x {s},sothat Ly=j and L; = J. Let ks be a one-parameter
family of diffcomorphisms of N with Ay equal to the identity and
hs(x,s) = (x,0) for (x,s) € P2 x {s} C P2 x I, and such that
hs is the identity outside an arbitrarily small given neighborhood of
P2 x I. Then hso L is a path in Imb; (P xI, N xI) from j to H.
The trace condition in the last sentence of the Sublemma implies that
L((P?2 x I) x {1}) C (P2 x I) x {1}, so the last sentence follows.

We can now complete the proof of Proposition 4.1.2. Suppose % is
a homeomorphism of N, preserving % , which is isotopic to the iden-
tity. Since the projective planes in . are pairwise nonisotopic, this
implies that / takes each projective plane in & to itself. Changing 4
by isotopy in a neighborhood of the boundary of N, we may assume
that the isotopy A4; from A = hy to the identity fixes the boundary.
By induction, it suffices to consider a single projective plane P; with
h(P;) = P, and to show that 4 is isotopic to the identity by an iso-
topy which fixes the boundary and takes P; to P; at each level. We
may assume that 4 fixes a basepoint in P;. If A4 reverses the local
orientation at that basepoint, we may change it by an isotopy that
moves the basepoint around an orientation-reversing loop in P; ; thus
we may assume that 4 preserves the local orientation.

We will show that the isotopy may be chosen so that its trace at a
point in P; is homotopic into P, . Since & preserves the local orien-
tation at the basepoint, the trace of the isotopy lifts to the orientable
double cover. The orientable double covering of N is a connected
sum of aspherical 2-manifolds and S2 x S!’s, so it has torsion-free
fundamental group. Therefore if the trace is nontrivial, it has infinite
order. Since A(P,) = Py, the trace of the isotopy lies in the central-
izer of m((P;) in 7y (N). Applying Corollary 4.2 of [S4] shows that N
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must be a homotopy P2 x.S!. Since we are assuming that N contains
no fake P2 x I, this implies that N = P2 x S!. In this case there is
an isotopy from the identity to the identity, which moves P? around
the S! factor. Changing our isotopy by some multiple of this one, we
may assume the trace of the isotopy at a basepoint in P; is homotopic
into P;.

Let P2 x I be a collar neighborhood of P; =P2? x {1}. By Lemma
4.1.3, we may assume that each /;(P;) is disjoint from some P? x
{s:} . By compactness, there are finitely many intervals I, I, ..., I
which cover I, and corresponding s-values s;, §5, ..., S, such that
hi(P,) is disjoint from P2 x {s;} for all ¢ € I;. Proceeding inductively
using Sublemma 4.1.4, we may deform the isotopy to one which takes
Py = P2 x {}} to itself at all times, although this isotopy will no
longer end at the identity. By the last sentence of Sublemma 4.1.4,
we may choose the end level of the isotopy to be the identity outside
P2 x 1. Applying Lemma 4.1.1. shows that this end level is isotopic
preserving P; to either the identity or a rotation about P;. Suppose
the latter. Then that rotation is isotopic to the identity of N, fixing the
boundary. Its orientation-preserving lift to the orientable double cover
of N is a rotation about a 2-sphere S, which must also be isotopic
to the identity, fixing the boundary. By [H3], [H4], the fact that it is
homotopic to the identity implies that .S bounds a connected sum of
S2 x S!’s and (certain kinds of) 3-manifolds with finite fundamental
group. But this implies that one of the complementary components
of P; has no boundary, which is impossible since P; cannot be null-
cobordant. This completes the proof of Proposition 4.1.2.

COROLLARY 4.1.5. Let N be a compact, irreducible 3-manifold, and
let # =\J;_, P; be a maximal collection of disjoint nonparallel non-
boundary-parallel 2-sided projective planes in the interior of N. Let
Ni, Ny, ..., Ni be the components that result from cutting N along
P, and let ]_[ﬁ;l N; be their disjoint union. Then there is an exact
sequence

k
1> % - FN)—> X (UNj)
j=1
in which % is the finite subgroup generated by rotations about the P;,
and the image of #(N) in # (]_[ﬂ?=1 N;) has finite index.

Proof. By Proposition 4.1.2, the homomorphism #Z (N, #) —
# (N) induced by inclusion is an isomorphism. The restriction map
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(N, P)— ]'[ j=17Z (Nj) has kernel consisting of homeotopy classes
containing representatives which are the identity outside a small neigh-
borhood of #. Using Lemma 4.1.1, these homeomorphisms are iso-
topic to products of rotations about the P;. On the other hand, all such
rotations are in the kernel. The subgroup of Z (]_[5;1 N;) consisting
of the homeotopy classes that permute the N; and their projective
plane boundary components trivially has finite index, and since any
homeomorphism of P? is isotopic to the identity, this subgroup is in
the image of Z (N, &°). This completes the proof.

4.2. Sufficiently large irreducible 3-manifolds. Let M be an irre-
ducible 3-manifold which contains no fake P2 x I . Following [S3], de-
fine a hierarchy for M to be a sequence of pairs (M;, Fj), 1< j<n,
such that

1) Mi=M.

(2) Each F; is a 2-sided incompressible surface in M .

(3) Mj,, is the closure of the complement of a regular neighbor-
hood of F; in M;.

(4) Each component of M, is either a 3-cell or is homeomorphic to
P2 x I. If M has a hierarchy, then M is said to be sufficiently large.

By [W], [H2], and [S3], M is sufficiently large if it satisfies any of
the following conditions:

(a) M contains no 2-sided projective plane and M contains a 2-
sided incompressible surface F; # S2.

(b) M contains no 2-sided projective plane and M has nonempty
boundary.

(c) OM is incompressible, every projective plane in M is parallel
into M, and M contains a 2-sided incompressible surface F; #
S2 P2,

(d) OM is incompressible, every projective plane in M is parallel
into OM , and H (M ; Z) is infinite.

(e) OM is incompressible, every projective plane in M is parallel
into dM , and M contains at least 4 projective planes.

We also have

COROLLARY 4.2.1. Let N be a compact, irreducible 3-manifold, and
let # =\J._| Pi be a maximal collection of disjoint nonparallel non-
boundary-parallel 2-sided projective planes in the interior of N. Let
Ni, N,, ..., Ni be the components that result from cutting N along
P . Then N is sufficiently large if and only if each N; is sufficiently
large.
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Proof. If each N; has a hierarchy, then so does N. On the other
hand, suppose N does. Since each P; is 2-sided and incompressible
and N is irreducible, any incompressible surface in N is isotopic
into the complement of . So one may assume that F; lies in some
N; . Induction on the hierarchy length now shows that all the N, are
sufficiently large.

For a compact 3-manifold V', define V to be the 3-orbifold ob-
tained by coning off each projective plane boundary component.

PrOPOSITION 4.2.2. The homomorphism # (V) — # (17) induced
by coning is an isomorphism.

Proof. This is easy using the fact that any projective plane P in the
interior of P? x I is isotopic to P? x {3} (see Lemma 1.1. of [N]).

We can now state our main result.

THEOREM 4.2.3. Let N be a sufficiently large irreducible 3-manifold
with incompressible boundary. Then # (N) is isomorphic mod finite
groups to a direct product of finitely many groups Z;, each of which
satisfies (at least) one of the following conditions.

(1) Z; is finite.

(2) Z; contains a finitely generated free group of finite index.

(3) Z; is isomorphic mod finite groups to GL(3, Z).

(4) There is an exact sequence 1 — A — Z; — Q — 1, where
A is a finitely generated abelian group (possibly trivial) with torsion
subgroup of order at most 2, and Q is isomorphic mod finite groups
to a 2-manifold homeotopy group.

(5) There is an exact sequence 1 — D — Z; — R — 1, where D
is a finitely generated abelian group (possibly trivial) and R has finite
index in a direct product of finitely many groups which are extensions
having the form described in (4).

Proof. If N is orientable, then the theorem follows by taking 7 to
be the identity homeomorphism in Theorem 3.3.2. So we may assume
that N is nonorientable. If N contains any 2-sided projective planes,
then by Corollary 4.1.5, we may assume that they are parallel into the
boundary. By Propos1t10n 4.2.2, Z(N) is isomorphic to the orblfold
homeotopy group # (N ). There is a 2-fold covering of N by an
orientable manifold M . Since N is sufficiently large, M is Haken.
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By Theorem 3.1.1, # (]V ) is isomorphic mod finite groups to the
centralizer of the covering involution in #(M). Now apply Theorem
3.3.2.

COROLLARY 4.2.4. Let N be a sufficiently large irreducible 3-mani-
fold with incompressible boundary. Then 7 (N) is finitely presented.
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