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TWO REMARKS ON POLYNOMIALS
IN TWO VARIABLES

SHULIM KALIMAN

Let X be a compactification of C2 such that a polynomial p can
be extended to a regular mapping p: X —> CP1 . If generic fibers of
p are irreducible, then we show that the number of reducible fibers is
less than the number of horizontal components of the curve X-C2. If
p is rational, then the restriction of p to every horizontal component
except one is a one-to-one mapping.

Introduction. Let p e C[x, y] be a polynomial in two complex vari-
ables. Recall that a polynomial fiber is a set

where c e C, i.e., every polynomial fiber is an affine algebraic curve.
There is a finite set S c C such that for every c, d e C - S the
fibers Γc and Γc' are homeomorphic. If c e C - S, then the fiber
is called generic (the definition of the generic fibers of a polynomial
is a little different, but we can use this one according to [LZ]). A
polynomial is called primitive if its generic fibers are connected. For
every non-primitive polynomial q(x, y) there exist a primitive poly-
nomial p(x, y) and a polynomial h(z) in one variable such that
q(x 9 y) — h(p(x, y)) [LZ], [F]. This fact reduces the study of polyno-
mials in two variables to the case of primitive polynomials. From now
on we shall restrict ourselves to primitive polynomials only. If a fiber
of p is not homeomorphic to a generic fiber, it is called a degenerate
fiber. A degenerate fiber can be reducible even when p is primitive, in
other words this fiber can consist of more than one irreducible com-
ponent. Let k be the degree of a primitive polynomial p. Then
the number r of reducible fibers is less than k - 1 [St]. V. Ya. Lin
knew, but never published a theorem from which a stronger statement
follows: if the polynomial p has type (g, m) (i.e., its generic fibers
are m-punctured Riemann surfaces of genus g), then the number of
reducible fibers is less than m — 1, and it is easy to check that m < k.
Our first aim is to improve these estimates.

Standard results of the theory of resolution of singularities guaran-
tee the existence of a smooth compactification X of C2 such that the
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mapping p: C2 —• C can be extended to a regular mapping p: ~X —•
C P 1 . Then 3! — X — C2 is an algebraic curve, every component of
which is isomorphic to C P 1 . A component E of 2$ is called hor-
izontal if the restriction of p to Is is not a constant mapping. Of
course, the number n of horizontal components is less then m. We
shall prove that r < n - 1. In the case when p is a rational poly-
nomial (i.e., its generic fibers are m-punctured Riemann spheres) we
have a more exact estimate (this case was considered also in [Sa]).
These results are contained in the first section. A component E of
the curve 3f = X — C2 is called a section if the restriction of p to E
is a one-to-one mapping.

In some cases every horizontal component of 3! is a section. It is
so, for instance, when the leading terms of the polynomial p form a
homogeneous polynomial without multiple roots. Another example is
the Abhyankar-Singh theorem [AS]. This theorem says that if a polyno-
mial fiber is a once-punctured Riemann surface and, therefore, there is
only one horizontal component, then this component is a section. This
fact plays a very important role in such classification theorems about
smooth polynomial embeddings of once-punctured Riemann surfaces
into C 2 as the Abhyankar-Moh-Suzuki theorem [AM] and Neumann's
theorem [N].

In the general case there exist polynomials with horizontal compo-
nents different from sections. Nevertheless for rational polynomials
there is a weaker analog of the Abhyankar-Singh theorem. The result
of the second section is the following assertion (Theorem 5), which
first was conjectured by Bogomolov.

If p is a rational polynomial, then at most one horizontal compo-
nent of the curve Q) = X — C2 is not a section.

Theorem 5 enables us to use the technique of [Z2] and [S] in the
study of rational polynomials. In particular we have obtained the
classification of rational polynomials with a C*-fiber [K] due to this
approach.

1. Reducible fibers. Let p: X —• CP1 be a regular extension of a
primitive polynomial p: C2 —> C and 31 — X - C2 . Using the blow-
up process, if necessary, one may suppose that X is smooth (note
that this blow-up process does not change the number of horizontal
components of 3ί). Let Fc — p~ι(c) for c e C P 1 . Suppose that
S c C is the set of degenerations of p, i.e., a fiber Γc = {(x, y) e
C2\p(x, y) = c} is degenerate iff c e S. Then one may suppose [Zl,

Proposition 3.6] that Fc is a degenerate fiber of p , iff c e 5 = f 5Όoo .
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THEOREM 1. Let F be a generic fiber of p, g be the genus of
F, ks = dimH\(F) - dimH\(FS) for s e S, r̂  be the number of
irreducible components of components of the fiber Γs (in other words
Γs consists of rs different algebraic curves), and n be the number of
horizontal components of 2 . Then

ses

Proof. Let m be the number of components of 3!. Note that the
Euler characteristics χ(X) of X is 2 + m . We shall denote the Euler
characteristics of F and Fs by χ(F) and χ{Fs) respectively. Then
the following formula holds [Sh]:

(1)
ses

Let moo be the number of irreducible components of Foo = p~ι(oo)
(each of them is isomorphic to CP1), and let ms be the number of
irreducible components of Fs such that these components belong to
3f. Then χ(Foo)-χ(F) = l+moo-(2-2g), m = Σses

m^ + n > a n d

rs + ms is the number of irreducible components of Fs. Now we can
rewrite (1) in the following way

(x(Fs) - X(F)) + 1 + ™oc - (2 - 2g)
ses

= 2 + moo + Σ ms + n - 2(2 - 2g).
ses

Hence

(2)
ses

Since the fiber Fs is connected, we have

χ(Fs) - χ(F) = -1 + ks + rs + ms

Thus (2) implies

ses ses ses ses
And finally we have

k 2 \ Σ { r s - \ ) . D

ses ses
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We would like to emphasize that the formulation and the proof
of this theorem does not depend on whether or not the irreducible
components of the degenerate fibers are multiple.

COROLLARY 2. Under the assumptions of Theorem 1 the following
inequality holds n-\> ΣseS(rs - 1). If p is a rational polynomial,
then n-\ =

Proof. Since (X, Fs) is a polyhedral pair [L], Fs is a strong defor-
mation retract of its sufficiently small neighborhood U [Sp]. Choose
small closed discs Δ̂  c Δ5 around s G S so that for Ks = p~ι(As)
and K's = p~λ(Δ!s) we have Ks D U D K's. One may suppose that
As n S = s. Then Ks> is a strong deformation retract of Ks. Hence
one can easily check that Fs is a strong deformation retract of Ks as
well. The imbedding of a generic fiber F «-• Ks induces the mapping
ps: Hχ(F) -+ HX(KS) = Hι(Fs). Clearly, Hι(Fs) contains no element
of finite order. Thus ks = d i m k e r ^ = dimH\(F) - dimH\(FS). Let
X* = Ύ- Foo . Then p(X*) = C and Hι(X*) = 0, since C 2 is dense
in X*. Let V be a disjoint union of sets {Ks = p~ι(As)\s e S} so that
Fs is a strong deformation retract of Ks for each s e S. Let A be a,
closed connected simply connected subset of C such that the set AnAs

consists of one point for each s e S. Then A u [js€s Δs is a strong
deformation retract of C. Put W = p~ι(A). Obviously Wu V is
a strong deformation retract of X*, and i/i(K Π fΓ) = Θ^^^ H\(F),
Hλ{W) = HX(F)9 HX(V) = ®S€S ps(Hx(F)). It follows from the
Mayer-Vietoris sequences

ses ses
Thus j(ζ&seS Hx (F)) contains the subgroup G = Hx (F) Θ 0 Θ Θ 0.
Clearly j~ι(G) c @seSkerps. Since j is surjective, this implies
0 5 G S dimker/? 5 = ΣseSks > 2g. If g = 0, then @seS dim ker ps =
2g = 0. Now Theorem 1 implies the desired conclusion. D

REMARK. Let X be an acyclic surface (i.e., Hk(X) = 0 when-
ever k > 0 and X is connected), and let p: X -> C be a regular
mapping. Then again there exists a smooth compactification X of X
such that p extends to a regular mapping. We can define in the same
way primitive mappings, reducible fibers of p, the curve 2 = X-X,
its horizontal components and sections. Then it is easy to see that the
formulation and the proof of Theorem 1 and Corollary 2 can be car-
ried over completely to this case as well.
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2. Rational polynomials. First we recall some terminology. If G is
a connected graph and e is a vertex of G, then connected compo-
nents of the graph obtained by removing e from the vertices of G
and deleting the links at e are called branches of G at e. The vertex
e is a branch point, if the number of branches at e is at least three,
otherwise e is a linear point. If a connected graph has no branch
points we call it linear. Let 31 be a complete algebraic curve in a
compact algebraic surface X . As usual the weighted graph G{β)
corresponds to 31. Each vertex G{β) corresponds to an irreducible
component of 3! if an irreducible component meets another one,
then the corresponding vertices are connected by the edge, and the
weight of any vertex coincides with the intersection number of the
corresponding component of 31. We say that the curve 3! has sim-
ple normal points of selfintersection, if every point of selfintersection
of 31 belongs to two components of 3! only, and these components
meet normally at this point. It is well known that every smooth com-
pactification Ύ of C2 is an algebraic surface and X can be chosen
in such a way that the curve 3! — Ύ - C 2 has simple normal points
of selfintersection. Every component of 31 = X — C2 is isomorphic
to C P 1 . The Castelnuovo theorem [GH] implies that a component of
31 can be contracted if its selfintersection number is - 1 . We shall
need the following fact.

THEOREM (Ramanujam-Morrow [R], [M]). Let X be an algebraic
nonsίngular complete surface. Let 2 be an algebraic curve in X with
simple normal points of selfintersection. Suppose that X-2# is isomor-
phic to C 2 . Then successively contracting components corresponding
to linear points of weight - 1 one can reduce the curve 2 to a curve,
whose weighted graph has one of the following representations where
U < -2, tj < - 2 , n > 0 .

1
i) o

0 /

2) O O

lm lx n 0 -n-\ t{ tk

FIGURE 1
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COROLLARY 3. Let X be a smooth compactification ofC2 such that
3! = ~X - C2 has simple normal points of selfintersection. Then the
weighted graph G{β) of 3! cannot have the following representation
where each subgraph G; is nonempty and the weights of vertices e and
f are - 1 .

FIGURE 2

Proof. By the Ramanujam-Morrow theorem successively contract-
ing components of 31 corresponding to linear points of weight - 1
on each step we can obtain a linear graph. Assume that we contract
all the components corresponding to the vertices of the subgraph GQ
before we can remove the branch points e and / . Then the weights
of these branch points become nonnegative, since we have to con-
tract components with selfintersection - 1 that meet the two curves
corresponding to these two branch points. Thus we cannot contract
these two curves further, for their selfintersection numbers can only
increase during the next blow-up processes. Hence in order to obtain
a linear graph we have to contract all components corresponding to
the vertices of either the subgraph G\ or the subgraph G2, and all
components corresponding to the vertices of either the subgraph G3
or the subgraph G4. Then the weights of the vertices e and / in
the new graph become positive, and this contradicts the Ramanujam-
Morrow theorem. Hence we cannot contract all the components of 3J
that correspond to the vertices of the subgraph GQ , before we shrink
one of the curves corresponding to e or / . In order to obtain a linear
graph we have to contract all components of 3! corresponding to the
vertices of one of the subgraphs G\, G2, G3, or G4 (say G\). Then
the weight of e in the new graph is nonnegative and the correspond-
ing curve cannot be shrinked during the following blow-up processes.
In the same way weight of / becomes nonnegative, and finally we ob-
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tain two vertices with nonnegative weights, which are not neighboring,
since the subgraph Go cannot be removed completely. This yields the
desired contradiction with the Ramanujam-Morrow theorem. D

LEMMA 4 {Zaίdenberg). Let p be a rational polynomial and X be
a compactificatίon of C2 such that the mapping p: C2 —> C can be
extended to a regular mapping p: X —> C P 1 . Let H{ and H2 be hor-
izontal components of the curve 2$ = X - C 2 . There is a commutative
diagram

where
(1) X is a compact surface and φ is a birational isomorphism-,
(2) if CP1 = C U o o , X* = p~\C)y and X* = p~ι(C), then

φ\x*: X* —• X* is a regular isomorphism
(3) the fiber p~x{oo) is irreducible;

(4) ίfHk is the closure of φ(HknX*) in X, then HιnH2nβ~ι(<x>)
= 0.

Proof. Since the generic fiber of p: X —• CP1 is C P 1 , then X is
a blow-up of a rational ruled surface Sn and there is a commutative
diagram [GH]

In particular all components of the fiber p ^oc) except one can be
contracted, and we obtain a new surface X\ and the commutative
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diagram

with irreducible fiber E\ = pχ

 ι(oό). Moreover ψ\ is a regular mor-
phism and the restriction of ψ\ to X* is a regular isomorphism be-
tween X* and pγι(C). Put H£ = ψ\{Hk). If H\nH\ Π Ex = 0
then the lemma is proved. Assume that H\ Γ\H\r\E\ Φ 0. Note that
the Ramanujam-Morrow theorem easily implies that the curve 3! is
simply connected. Thus H\ C\E\ consists of one point (say a). Blow
up the surface X\ at the point a and then blow down the proper
transform of E\ (it is possible, since the selfintersection number of
the fiber E\ is 0, and thus the selfintersection number of the proper
transform of E\ is -1). After this procedure we obtain a new surface
X2 such that there is a commutative diagram

satisfying
(1) φ2 is a birational isomorphism;
(2) (p2\x*: X* —• / ^ ( C ) is a regular isomorphism;
(3) E2 = P2l{oo) is irreducible.

Let Hi be the closure of φ2(Hk ΠX*) in X2 - If Hf Γ)H%nE2 = 0,
then the lemma is proved. Otherwise it is easy to see that the contact
order of the curves H\ and H\ at the point H\ C\H% ΠE2 is less
than the contact order of the curves H\ and H\ at the point a.
Repeating the above procedure, one can reduce this contact order and
finally obtain the desired commutative diagram. D

Let H\, H2, X be as in Lemma 4. Standard results of the theory of
resolution of singularities enable us to find such a blow-up h: X -* X
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that the curve 3ί = h~x{β) has simple normal points of selfinter-
section. Moreover we can do it in such a way that the curve 31 is
minimal in the following meaning: if we shrink a contractable com-
ponent of 3!, then the new curve contains selfintersection points that
are not simple normal.

LEMMA 5. Let H^and H2 not be sections. Then the weighted graph

G{β) of the curve 2# looks like in Corollary 3.

Proof. Put E — p~ι(oo). Let HkΠE = ak. By Lemma 4 a\Φ a2.
Note that, since Hk is not a section, Hk does not meet E formally
at ak (indeed, p~ι{c) - Hk > 2 for every c e C P 1 , since Hk is not
a section, and, in particular, Hk-E>2). Thus in order to obtain X
we must make blow-ups of X at both the points a\ and a2, and at
infinitely near points. Note then 3r\E consists at least of two con-
nected components, since 3! is simply connected. Hence, if g is the
vertex of G{3f) that corresponds to the proper transform of E, then
the graph obtained by removing g from the vertices of G(3f) and
deleting the links at g contains at least two components C\ and C2 .
Each of these components Ck contains a vertex fk with the weight
- 1 (this vertex is the result of the last blow-up in this component).
Remark that vertex fk is not a linear point. Otherwise we can con-
tract the curve corresponding to fk and all points of selfintersection
remain simple normal. The vertices f\ and f2 are not neighbor-
ing, since there is at least the vertex g between them. The lemma is
proved. α

Corollary 3, Lemmas 4 and 5 immediately imply the following the-
orem.

THEOREM 5. Let p: C2 —• C be a rational polynomial and p: Ύ —>
C2 be the regular extension of p to a compactificatίon X ofC2. Then,
at most one horizontal component of the curve 3f = X - C2 is not a
section.

EXAMPLE. Rational polynomials with a horizontal component dif-
ferent from a section do exist, but they are not simple. They were
first found among polynomials with generic fiber isomorphic to C** =
C - {0, 1} (we shall refer to these polynomials as C** polynomi-
als). An algebraic curve is a C*-curve if it is isomorphic to C*.
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We say that a C**-polynomial is a Saito polynomial if its degener-
ate fibers contains at least one component different from a C*-curve.
One can find the list of these polynomials up to a polynomial auto-
morphism of C 2 in [S]. There is also a wrong assertion in [S] that
every C**-polynomial is a Saito polynomial. Recently M. G. Zaiden-
berg [Z2] found all C**-polynomials whose degenerate fibers consist of
C*-curves only. We shall call them Zaidenberg's polynomials. Every
Zaidenberg's polynomial has two degenerate fibers. One of them (say
ΓQ) is a C*-curve and another is the disjoint union of two C*-curves.
Since ΓQ is a twice-punctured Riemann surface, every Zaidenberg's
polynomial has at most two horizontal components (in fact it has ex-
actly two horizontal components, because every rational polynomial
with one horizontal component is equivalent to a linear polynomial
up to a polynomial automorphism of C 2 [S]). On the other hand one
of these horizontal components must be different from a section (oth-
erwise the generic fiber must be a C*-curve as well). For the sake
of completeness we shall present the simplest Zaidenberg polynomial
and repeat some arguments from [Z2]. Let σ(x, y) = xy + 1 then
p(x,y) = 4(σ2 + y){xσ + I) 2 + 1 is a Zaidenberg polynomial.

Put Tc = {(x, y)\p(x, y) = c}. It is easy to check that Γ\ consists
of two disjoint C*-curves. In order to prove that the generic fiber
of p is C**, consider p(x, y) = xσ + 1. Then p(x, y) Φ 0 when
(x, y) φ Γ i , and one can rewrite the equation for Γc with c Φ 1 in
the following form:

where d = (c - l)/4. Consider the mapping ρ\Γ : Γc —> C*. If
c Φ 0, 1, then for every s e C* the inverse image (p\rc)~ι(s) consists
of two points with x = (l/2cf)(—s2±Sy/cs(s - So)), where so = 1-1/c
is the only branch point in C*. Study of monodromy implies that
there are two punctures on Γc over s = oo and one puncture over
s = 0. It follows from the Riemann-Gurwith formula that Tc is
isomorphic to C**. The same argument shows that p\r : ΓQ —• C*
is an unramified covering and, therefore, Γo is a C*-curve. Every
Zaidenberg polynomial is isotrivial, i.e., its generic fibers are isomor-
phic. More complicated examples of nonisotrivial rational polynomi-
als with a C*-fiber (and, thus, with a horizontal component different
from a section) are presented in [K].

It is a pleasure to thank V. Lin and M. Zaidenberg for stimulating
discussions.
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