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NONSPLIT RING SPECTRA AND PRODUCTS
OF B-ELEMENTS IN THE STABLE HOMOTOPY
OF MOORE SPACES

JINKUN LIN

This paper proves trivialities and nontrivialities of some products
of higher order S, Js) €lements in the stable homotopy of Moore
spaces. The proof is based mainly on properties of nonsplit ring spec-
tra K, (the cofibre of r-iterated Adams map with r not divisible by
prime p > 5) which are given in the rest of the paper.

1. Introduction. Let S be the sphere spectrum and M the Moore
spectrum modulo a prime p > 5 given by the cofibration S & § 5
M L IS. Consider the Brown-Peterson spectrum BP at p; it is
known that there is a map a:X9M — M such that the induced BP.
homomorphism a, =v;: BP./(p) - BP./(p), g=2(p—1).

Let K, be the cofibre of o’ given by the cofibration
(1.1) M 2 M K, 2 sty
In [4] and [6], S. Oka showed that K, is a ring spectrum for » > 1;
if r = 0 (mod p) it is called a split ring spectrum since K, A K,
splits into four summands K,, XK,, X9*!K,, X9t2K,. If r £ 0
(mod p), it is called a nonsplit ring spectrum since K, AK, splits only
into three summands K,, L A K,, X/9t2K,, where L is the cofibre
of ¢1 = jo"iemn,S.

In the nonsplit case, S. Oka showed in [4] that there is a direct
summand decomposition

(1.2) [£*K;, K,] = Mod & Der & Mod &,

where Mod consists of right K,-module maps, Der consists of ele-
ments which behave as a derivation on the cohomology defined by
K, and &y = ilijj. € [E"92K,, K,]. Moreover, Mod is a commu-
tative subring, ker{(ili)*:[Z*K,, K,] — 7.K,} = Der @ Mod J, and
(i%i)*: Mod — =.K, is an isomorphism.

One of the most important properties which are shown in [4] is
0'f — f6' € Mod for any f € Mod, ¢’ = ij. € [~ 'K,, K,] and
the commutativity J’ f? = fP¢’ for any f € Mod having even degree.
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This has been found very useful in the detection of higher order B,
elements in 7S (cf. [8]).

From [8] and [9], there exist f; € Mod N [X*K;, K] for p > 5,
s<ptif ptt>2o0rs<p"-1if t =1 such that the induced
BP, homomorphism (f;), = vépn s Biprjsy = JsJsis is known to be a
B-element in [X*M , M] such that

By s € Ext!*M = Ext};,?i zp(BP., BP,M)

converges to B, /\i € T M in the Adams-Novikov spectral sequence
Ext**M = n.M .

In this paper, we will prove the following trivialities and nontrivi-
alities of products of S,/ elementsin [Z*M, M].

THEOREM 1. Let p > 5. The following relations on products of f3-
elements in [X*M , M) hold:

(1) Bekip'ss)  Buprysy =0 for s<p" if ptt>2, s<p"-11ift=1
and k # -1 (mod p).

(2) ﬂ(ktp"/s)aﬂ(tp"/s) =0 for s < pn—l ifp 'rt >2,5< pn—l -1 lf
t=1and k# -1 (mod p), where 6 =ij€[Z"'M, M].

(3) Biap™15)0 B js) = —Bipr )0 Bapmys) if one of the following con-
ditions holds

(i) s <min(p" !, p" Y ifptt>2andpta>2.

(i) s <min(p™ !, pm 1 -1 ifptt>2anda=1.

(iii) s <min(p" ! —1,p"™ VYift=1andpta>2.

(iv) s<min(p" ! -1, p" ' -1 ift=a=1.

(4) Suppose that s <p" if ptt>2or s<p"—1ift=1, r<p™
ifpta>2orr<p™-—1ifa=1; then

Bapmir) - Baprss) 05 Biapmr 0 Biuprss) # 0

if r+5>p"+p" ! and one of the following conditions holds:
(1) m=n, a+t=0 (mod p).
(i) m=n-1, a#1 (mod p).
(i) m<n—-1, a# -1 (mod p).

Theorem I is proved by using some results on nonsplit ring spectra
K, given in S. Oka [4] and some results on Ext!:*M given in Miller
and Wilson [1]. The proof also needs some further properties of K,
which are not in [4], mainly the following fact on commutativity of
some elements in [X*K,, K,].
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THEOREM II. If r # 0 (mod p) and g, f € ModN[Z*K,, K,], then
8" (G0 f? — f780) = (~D)VVEGo f7 — f750)g”

and oy fl’2 = fl’zéo if f has even degree, where &y = i,ijj. is the

unique generator in [E~"972K,, K,]. If r = 0 (mod p), o fP — fPd

belongs to the commutative subring &, of [X*K,, K,] and the above
two equalities also hold.

The proof of Theorem I will be given in §2. In §3, we first recall
some results on K, given in [4], then develop some further technical
results on K, and prove Theorem II. ’

2. Proof of Theorem I. From [8] and [9], there exists f €
[ZP'e+DaK K] for s<p" if ptt>2o0r s<p'—1if t=1
such that the induced BP, homomorphism f, = vép":BP* /(p, vi) —
BP,/(p,v]). We may assume f € Mod (or f € %, incase s =0
(mod p)) since the components of f in Der and Mod Jp induce
the zero homomorphism. Then jifis = B,r/s) € [2*M, M] and
Bty /sy Buprss) = JsS* i Je S 1.

Recall that ¢’ = i)’ € [E%9"1K|, K] and d¢'f — f0' € Mod.
From commutativity of Mod, we have f(é'f — fé') = (¢'f — f0')f
or equivalently 26’ —4d'f? = 2(f%6' — f6'f). Composing f with the
above equation, inductively we have

f’é’—é’f’=r(f’5’—f"‘5’f), I’Zl,
and f%6'f = i (6 fFH1+k fA+18") if welet r—1 =k # —1 (mod p).
SO Bkspss) - Buprss) = JeSf¥6' fii, = 0 this proves Theorem I (1).

(2) From [8], there exists [ € [ ®+)4K,, K] such that the
induced BP., homomorphism f, = 'vépn_ and f € Mod. Hence
2= v? and By 0Bupysy = SSPUijIfPT = JiffPa0fPi.
From Theorem II, f?(5ofP — fPdg) = (dofP — fPdp)fP or equiva-
lently f226y — 6of% = 2(f%#Jy — fP6f?). By induction we have
fP8g — 6o f™ = r(fPdy — f=VPsy fP) for r > 1. Thus

FR250f? = g (Bof %+ 4 k2

for k# —1 (mod p) and 0 By /50 Bpr/s) = Js /P00 fPi5 = 0.

(3) In all cases, there exists f € Mod N [E?" @+DIK; K] and
g € Modn[Z#" 'P+1aK, | K,] such that f, = vé"n_l and g, = vgpm_l
Then Biapm 15y0 By s) = JL8P L1 L 1P 1L = jLgP 0 fP1,.
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From Theorem II, g?(JofP — fPdy) = (0o fP — fPdy)g? or equiva-
lently g7 f? + fPoog? = 607 g% + &P fPJ0 . Hence Bapm /)0 B1pr/s) +
Bitp" 150 Biapm sy = J5(8700SP + fP0g?)is = 0.

(4) From [4, p. 422], i’ji: Ks — qu“K, induces a cofibration

wsag, Yoy K, s K S sarig
which realizes the short exact sequence
0— BP./(p, v]) 2= BP./(p, v[**) 2= BP./(p, v{) = 0

such that y, = v{ and then induces Ext exact sequence

.o = Exttotsa g, Yo Extho (K, 2o Exto UK,
(’J) Extk+! B[] SR

where we briefly write Ext**X = ExtB P, > pp(BP., BP,X) and (i}j{)«

as the boundary homomorphism. Moreover we have (cf. [8] (3.23))

v s v v _ru
Wr,resly = Lps@ 5 Pros,slpps = by JsPres,s = @ Jppse

Note that the behavior of ., p., (i}j{)« in the above Ext exact se-
quence is compatible with that of y, p, i’j; in the cofibration, i.e.,

we also have w.(i). = (z,+s)*v p«(irys)« = (i5)« in the Ext stage,
where (i'),: Ext**M — Ext**K, is the reduction in the following
exact sequence

o Bxthotmra g 0 Exebo g s mxkotg, Y5 pxektlatrapg

Case (A). r+s = p*+p"!. Let g € Modn [E*K,, K,] and
f € Modn[X*K;, K] such that g, = vf"m and f, = ’l)2 . Consider
ﬂ(ap /r)ﬂ(tp /s) — jrgirjsfi € [Z*M M]

Suppose that j,gi,j.fi, = 0; then gi,jifi; = i,k for some k €
.M and the arguments below show that it ylelds a contradiction.

Since j; fi}i € n.M is detected by € Ext! M, then i/j! fili €
n.K, is detected by

(B ss) = (ip)s (O] Biyrjris1)
= W1, )l (Bpyp 1 _1) € Ext'K,.
From [1, p. 132 Theorem 1.1(b)(iii)],

/
tp" /s

iL(cy(tp™)) = 200 " hy € Ext' K7,



STABLE HOMOTOPY OF MOORE SPACES 133
where c;(1p") in [1] actually is B, . .., € Ext'M and kg €
Ext'K, is the v,-torsion free generator. Hence i,j.fili € m.K, is
detected by 2¢(y; ,,)*(vépn‘pn_‘ho) € Ext'K, .

Since g € Mod N [Z*K,, K,] and (gi,i). = ngm € Ext’K,, then
gijifii € m, K, is detected by the product

v 21y ) (0F P o)

= 26(y1 ) (VP ) £ 0 € Ext'K,

m n n—1
(if it is zero, then vy " 77 hy = (i|ji_,)«(x) for some x €

Ext®: @ +10"-p")e+1a+ra g byt the group vanishes for degree rea-
sons, cf. [1, p. 140 Prop. 6.3]).

Hence i)k € n.K, and so k € n,M has BP filtration 1, i.e. k is de-
tected by some y € Ext' M and (i;)*(y)=2t(t//1,,)*(vgpm“""_pn lho)aé
0 € Ext'K,. Thus (£,_,)u(y) = (pr,r-1)+(ip)+(») = 0 and y = v}~'y
for some ¥ € Ext!>@"+" =" )(p+a+apr

From [1, p. 132 Theorem 1.1], Ext! M is generated by vithy (u>0)
and vic;(bp®) O<u<ps+p'-1ifptb>2,0<u<p’if b=
1) additively, where Ay € Ext! M is the v;-torsion free generator and
c1(bp®) € Ext! M is the v,-torsion generator whose internal degree is
(bpS —p N+ 1)g+q.

It is impossible for ¥ = vhg since then (i}).(y) = (i)«(v]~'y) =0
which yields a contradiction.

If ¥ = v¥e;(bp*) with u > 0, then y = v{~'y = v[z for z =
v;“lcl (bp®) and so (i}).(y) = 0 which yields a contradiction.

If ¥ = ¢1(bp*), then for degree reasons (bp — 1)pS~! = ap™ +tp" —
p" . If m=n,a+t=0 (modp),then b=a+t=0 (mod p)
which yields a contradiction. If m = n—-1 and a # 1 (mod p),
(bp—1)p*>~'=(a+tp—1)p"! andso bp—1=0 (modp) if s< n,
a=1if s>n and a =0 (mod p) if s = n all of which yields
contradictions. Similarly, there is a contradiction if m < n — 1 and
a # —1 (mod p). Thus we have B,m /) - Bpr)s) # 0 for r+s =
p" + p"~! and one of the conditions (i)-(iii) holds.

Case (B). r+s>p* +p™1.

Let u = (r +5) — (p" + p"!); then there are ¢ and d such that
u=c+d and c<r,d<s. From[6, p. 277 Lemma 2.4], d(i}) =0=
d(j;). Moreover, Mod C kerd, so B,/ = J1 81> Buprss) = JsS s
all belong to ker d which is a commutative subring of [Z*M, M].
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Since a? . fitd = j'_ ps.s—afisi] , there exists f € ModN[Z*K,_,,
K,_g4) such that p, ,_yfili=fi_,i and f,=v¥ ; then a?B 3

= adjifi0 = ji_yf 1 40 = Bupr/s—a) -
Suppose that B,/ - Bypr/s) = 0. Then

Biap™ r-c)Biep js-ay8 = Biap™ jr—)@° Bap 150
= _adﬂ(tp"/s)ﬁ(ap”’/r—c)5 = ac+dﬂ(apm/")ﬂ(t1’"/s)6 = 0.

By applying the derivation d to the above equation we have
Biap™ jr—c)Bup"/s—a) = O which contradicts case (A) when one of the
conditions (i)—(iii) holds.

Hence we have B,m /By # 0 for r+s5 > p" + pn! and
one of the conditions (i)-(iii) holds. B4y /r)Bypssy # 0 implies
Bapm 119 By /sy # O since by applying the derivation d to the equa-
tion By /10 Buprss) = 0 we will have Bypm/r) Biiprys) = 0- o

3. Structure of nonsplit ring spectra. In this section, we will develop
some technical results on nonsplit ring spectra K, and prove Theorem
II.

We first recall some facts on K, given in [4]. A spectrum X is called
a Z, spectrum if there are two maps my: M AX — X, my:ZX —
M A X such that

(3.1) mx(iAly) =1y, (UN1x)myx =1y,

mxymy =0, (iNlyymxy +mx(JAlx) = lyrx,

where M is the mod p Moore spectrum and my is called an M-
module action of X . For Z, spectra X, Y, Z , wedefine d:[2'X, Y]
— [Z*1X, Y] tobe d(f) = my(ly A /)My . If my is associative,
then d is a derivation, i.e.

(3.2) d*=0, d(fg)=(-1)d(f)g+fd(g)

for ge[Z*X, Y], f€[Z*Y,Z] and degg=1¢.

We briefly write K, , i, j. as K, i’, j'. Since pAlx =0:SAK —
S AK , then there is a homotopy equivalence M AK = KVXIK. From
[4, p. 432], there is an associative M-module action m: M ANK — K
and m:XK — M A K is an associated element such that

(3'3) m(l/\lK)= IK: (]/\IK)—"ﬁ= lg,

mm=0, (iANlgym+m(jAlg)=1yrk.
So (3.2) also holdsincase X =Y =Z =K.



STABLE HOMOTOPY OF MOORE SPACES 135

Let ¢ =a’ € [Z9M, M] and ¢; = jo'i € myy_1S, b= Al €
[Zr9-1K, K], then [4, p. 431 (5.14) and p. 432 Remark 5.7] showed
that

(3.4) o=ra o, o¢i'=1idp,
jla = —¢6j, » 550 = 5053

where 6 = ij € [Z°!M, M], & = i'ijj’ € [ 2K,K], @ =
Mad) € [E9K, K], o = A(dad) € [Z9-'K, K] and A:[Z'M, M] —
[Z+1K, K] is defined to be A(f) = m(f A lg)m. [4, p. 432 (6.2)]
also showed that

(3.5) SN lg =mopm.
Then there is a homotopy equivalence
(3.6) KAK=KVILAKVZIMK

where L is the cofibre of ¢; = j¢i given by the cofibration

(3.7) sra-1g b g 1 I srag
and there exist

wKAK K, ppKAK—-ILAK, us:KAK—Z9Y2K
v3:K >KAK, vpISLAK—>KAK, v:Z?K KAK

such that (cf. [4, p. 433])

(3.8) (A) wu(@Aig)=m, (j'Algv=m,
(B) wm(i'Alg)=("AN1g)(jAlk),
(J'Algva = (i N1g)(J" AN k),
(©) ("ANgua=m(j'Ag), w»n("Alg)=({ANlx)m,
(D) uvy =0, wuv=0, wpv=0, upr=I1.

Let u3=jj' Ak, v3=1iiAlg, (A) and (B) imply

(3.9) (A pv3=1g, wpv=I1g,
(B) mr;=0, uzn,=0,
(C) wvuz+vous +v3p = lgak.
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Recall that ¢’ = i'j' € [E"9"1K, K], dg = i'ijj' € [E"9 2K, K] and
0 =ij € [Z"M, M]; they satisfy (cf. [4, p. 434])

(3.10) d(d)=—1y, d(d)=0, d(d) =47

LEMMA 3.11 ([4, p. 434 Lemma 6.2]). There exist elements
Ae[Z'K,LAK], Ae[Z T 'LAK,K]

such that
(i) J"Alk)A=d", A" Ag) =46,
(i) A= (" A1g)i'8, jA=6(j" Ak),
(i) (12 AJ)A= =" Ap)o)", AL AP = —i'8(j" A 1as),
(iv) AA = 26,.

THEOREM 3.12 ([4, p. 438 Theorems 6.5 and 6.6]). There is a choice
of (u, Uy, v, v,) such that

ul =u, Tv=v,
ol = - +Au, Tvy=-v,+VA

and any such u is an associative multiplication of K, where T:K A
K — K AK is the switching map.

DEFINITION 3.13 ([4, p. 423 Def. 2.2)].

Mod = {f € [Z°K, K]|u(f A 1k) = fu},
Der = {f € [X*K, K]|fu = u(f AN k) + u(1x A )}

That is, Mod consists of right K-module maps and Der consists of
elements which behave as a derivation on the cohomology defined by
K.

THEOREM 3.14 ([4, p. 424 Remark 2.4 and p. 423 Lemma 2.3]).
There is a direct summand decomposition

[Z*K, K] = Mod @ Der & Mod J

and ker i, = Der®Mod dy, [Der, Mod] C Mod, where iy = i'i:S —
K is injection of the bottom cell and (f, g] denotes the graded com-
mutator fg— (—1)/glgf.

By using Theorem 3.12 and (3.8) (A) (B) (D), we can easily check
that hv =0, hvy =0, hv3 =0 for h = u(d' AMg)+u(lgAé')—d'u.
Hence it follows from (3.9)(C) that 6'u = u(d’Alg)+u(lx Ad’) and
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so o' € Der. From Theorem 3.14, [¢', f] € Mod for f € Mod and
in particular we have &' fP = P9’ for f € Mod having even degree.
Now we consider further properties of [2*K , K| which are not in [4].
Define
do:[Z°K , K] — [Z5+7912K |, K]

tobe do(f) =u(f Ng)v. dy has the following important properties.

ProPOsITION 3.15. (1) dy(dg) = 1x, do(gdy) = g for g € Mod.
(2) ker dy = Mod @ Der, imdy C Mod.

Proof. (1) From (3.9) (A)',
do(do) = u(do A 1x)v = u(l'i N 1k)(jj' AN g)v = 1k

and do(gdo) = u(gdo A 1x)v = gu(do A lg)v = g.
(2) It is easily seen that Mod C kerd, and for f € Der

do(f) = u(f Ai)v = fuv — u(lx A f)v
=—uT(lxk A flv = —u(f N lg)v = —do(f) = 0;
then Der C kerd,. On the other hand, if f € kerdy, let f = f; +
f» + f30 with f1, f3 € Mod and f, € Der, (cf. Thm. 3.14), then

0 =dy(f) = do(f300) = f3 and so f € Der® Mod. imdy C Mod is
immediate. =

ProrosITION 3.16. (1) If h € Mod, u € Der, then hu € Der; in
particular, Mod é' C Der.

(2) do(d'g) = (—1)"*'d(g) + d'do(g), do(gd') = —d(g), where
t =degg and g, is the component of g in Der in the decomposition
in Theorem 3.14.

Proof. (1) If h € Mod and u € Der, then hu = u(h A 1) and
up = u(uAlg) +u(lg Au). Hence

hup = hu(uAlg) +hu(lxg Au)
=u(huANlg)+huT(1x Au), (uT = p from Thm. 3.12)
uhuAN1g)+ u(h ANg)T(1g Au)
uhu Ag)+ uT(1g A hu)
uthu A 1g) + u(lx A hu)

and so Au € Der. Since ¢’ € Der, then Modd’ C Der.
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(2) If g € Mod, then do(g19') = u(g10’' A 1kx)v = g1u(d’' A lg)v =
0. Since [d’, g1] € Mod, then dy(d'g,) = do(g16’) =0.
Let g =g1+ g+ g39p with g, g3 € Mod and g, € Der; then

do(0'g) = do(d'g2) + do(d'g300)
=dy(6'g2) +6'g3 — (—1)' g36".

Moreover,

do(0'g2) = u(1xk A" )wus(1x A &@)v + u(lg A" vaus(lg A g2)v
+u(lg A" Ywsu(lx A g)v,  (cf. (3.9)(C))
=pu(0' Ng)Trauy(1x A &)V,
(since 1st and 3rd terms are zero)
= —u(' ANl Ag)v, (Tv,=-vy+vA)
= —m(IiA1g)J" AN g)u(lg A g)v,

((J' AN gva = (ij" A 1))
=-m('Ng) Ik Ag)v, (("ANlg)p2=m(’ Alg))
= (-)"*"'m(Iy Ag)m, (m=('Alk)v)
= (-1)"*'d(g).

Hence

do(6'g) = (-1)""d(g,) + 6’83 — (—1)'g36’
= (-1)"*'d(g) + 8'(do(8);

note that d(g) = d(gy) + &30’ and dy(g) = &3
The proof of dy(gd’') = —d(g>) is similar. m]

ProrositioN 3.17. If g € Der, then gdé' € Moddy and d(g) €
Mod. Moreover, g € Mod ¢’ if d(g) =0.

Proof. Since g € Der, then gi'i =0 (cf. Thm. 3.14) and so gi’' =
nj for some n € 7. K. n can be extended to 77 € [Z*K, K] such that
n=mni'i and 7€ Mod. Then gdé’' =7i'ijj =1y € Mod J .

On the other hand, 77 = dy(77dy) = do(gd’) = —d(g), so d(g) €
Mod. Moreover, if d(g) =0, then gi' =7i'ij = —d(g)i'ij =0 and
so g =gJj' forsome g e[X*M, K]. Since gdy =0, then



STABLE HOMOTOPY OF MOORE SPACES 139

0=pu(lg A g)(lk Ado)v
= u(1x A g)vus(1x A do)v
+ u(1x A gvaua(lg Ado)v + u(1gx A g)vau(lg A do)v
= u(lx A g)vaua(1k Ado)v + &

(u(1x A g =0, u(1x Ado)v = k)
= p(lxk Ao T(do A lk)v + 8 (Tv=v)
= — u(1x A &)vattx(00 A k) + u(lx A &)vaBu(Bo A lk)v + g

(u2T = —pip + Ap)
=g+u(lgA&WA (ua(do Alk) = (I"j Nk)(ijj Alk) =0)
=g u(gAlg)nA (uT =, Tvy = —vy + VA)
=g—uEA1g)(J' ANg)rA (since g = Zj')
=g - u(@ A 1K)([I A Lg)(J" A 1g)A ((J' AN gy = (ij" A 1g))
= g — u(gi A lx)d’ (" A1K)A=6).
Thus g =ud’, where u = u(gi A lg) € Mod. m}

ProrosITION 3.18. ¢ € Mod and there exists ¢ € Der such that

d(e)=¢.

Proof. Recall (3.4), ¢ = ra’""'o/, where @ = A(ad) and o =
A(6ad) . Hence, it follows from im A c Mod that ¢ € Mod.

From Lemma 3.11(i) and (3.4), ¢A(i" A 1g) = ¢d' = i'd¢j' = 0;
then ¢A = u(j” Alg) for some u € [Z*K , K]. Hence it follows from
Lemma 3.11(iv) and (i) that

2660 = AA = u(j" A 1x)A = ud’

and so 2¢ = 2dy(¢dy) = do(ud') = —d(uz) (cf. Prop. 3.16(2)). Thus
p=d(e) if welet e=—1u,. O

ProrosiTION 3.19. (1) If g € Mod and gé' =0 (resp. 6’'g = 0),
then g = n¢ resp. g = ¢n) for some n € Mod.

(2) If n € Mod, then né = 0 if and only if n = d(u) for some
u € Der.

Proof. (1) Since gdy(j” A 1g) = gi'dj'(j" A 1) = gi'j’/A = 0
(cf. Lemma 3.11(ii)), then g8y = %(jdi A 1x) = 3¢ for some 7 €
[Z*K, K]. Let 71 = n; + n2 + 1399 _with 7, 73 € Mod and n; €
Der. Then gdp = n1¢ + n2¢ + 1309 and g = do(gdo) = do(m29) +
do(n300¢) . However, do(n360¢) = do(n3ddo) = n3¢ (cf. (3.4)) and
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n¢—(—1)'¢n, € Mod, do(n2¢) = £do(¢én2) = 0 (note that ¢n, € Der
from Prop. 3.16(1)); then g = 93¢ with 53 € Mod.

If g € Mod and é’g = 0, then gd’ = gé' — (—1)8l§’g € Mod N
Mod ¢’ c ModNDer =0. So g = n¢ = +én for some 1 € Mod.

(2) duwypm=m(1y Auymem=m(1y Au)(¢Alg)=m($A-lg)-
(1g Au)=0. Then d(u)p =d(u)pm(i Alg)=0.

Conversely, if n¢ = 0 for n € Mod, then n¢i'i = 0 = ni'ijpi
and so ni'ij¢ = uj for some u € n,K. u can be extended to u €
[X*K, K] such that %i'i = u and % € Mod. Then 7i'ij¢ = ui'ij and
Uy = 0, U = do(udy) = 0. Hence ni'ij¢p = 0 and ni'ij = wi’ for
some w € [Z*K, K]. Thus ndy = wd’', n = do(ndy) = dp(wd’) =
—d(w,), where w, is the component of w in Der, see Proposition
3.16(2). 0

ProrosiTioN 3.20. If g € Mod, then dy(dog) = g and dyg — gdy €
Mod @ Der.

Proof.

do(d08) = u(do A 1k)(g A 1k)v
= (0o A1) Tvus(1x A g)v + u(do A1) Tvapa(lk A 8)v
+ 10 AN g)Trau(lg A g)v  (cf. (3.9)(C))
= (7' Nx)(1k A g — u(do A 1x)vapa(lk A &)V
+ (0o A 1g)vAur(1x A g)v
(since u(lxg A g)v =0, Tvy = —vy +VA)
=g+Au(1xg Ag)v (since u(dp A 1x)vy =0, cf. (3.8)).
Let h =dy(dog) — & = Aur(1x A g)v. Then h € Mod and
J'h=jAu(1g A8 =8j'(J" Ag)ua(lk A &)V
=0i'm(j' ANg)(Ixk Agv =3dj'm(ly Ag)m = j'd(g) = 0.

So 6’h = 0 and from Prop. 3.19(1) we have & = ¢g; for some
g1 € Mod, i.e. there is some g; € Mod such that

do(6og) — g =dg1 and j'ég =0.

Thus inductively we have g, g.1 € Mod (s > 0 with gy = g)
such that dy(dpgs) — & = ¢&+1 and j'ége,1 =0 (s >0). It is easily
seen for degree reasons that g;,; = 0 for s large and so dy(dpgs) = &5
for some fixed large s.
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Since j'¢g; = 0, then ¢dj’'gs = 0 (cf. (3.4)) and so Jj'g; = j'k
for some k € [Z*K, K]. Hence dpgx = 0’k and g; = dp(dpgs) =
do(0'k) = +d(k) + 0'dy(k) (cf. Prop. 3.16(2)). Thus ¢gs = O since
¢d(k)=0 and ¢d’=0 (cf. Prop. 3.19(2) and (3.4)). Hence dy(dogs—1)
— gs_1 = ¢gs = 0 and inductively we have dy(dpg) = & .

Since dy(dog — gdy) = g — g = 0, then dyg — gdy € ker dy =
Mod @ Der. O

Now we are ready to prove Theorem II stated in §1.

Proof of Theorem 11. Let f, g € Mod N [X*K,, K,] and r # 0
(mod p). From Prop. 3.20 we may assume dyf? — fPdy = hy + hy
with #; € Mod and A, € Der. By applying the derivation d, d(h;) =
d(0of? — fPdy) = 0'fP — fP6' = 0 (cf. Thm. 3.14). Hence hy = ud’
for some u € Mod (cf. Prop. 3.17). Hence

g"(60f? — f70) = g%hy + gPus’ = (~ )1\ (hy + u6) g?
= (=DMl (807 — 1750)8”
since g7 commutes with ¢’ and A;,u € Mod.

Moreover, if f has even degree, f?(Jgf? — fPdg) = (0o f? — fP0)fP
and by induction we have %78y — 3, f*? = k(f*Psy— fk=Drg, f7) for
k > 1. In particular we have fp260 =y fI’2 .

If r =0 (mod p), [6] showed that there exists 6 € [Z~!K,, K]
such that éi, = ilij, ji6 = —ijj. and apart from the deriva-
tion d:[ZK,, K,] — [EZt!K,, K,] there is another derivation d’:
[Z°K,, K;] — [E+"9+1K, , K,] such that

d@)=-1g, d@)=0, d@)=-lg, d©)=0.
Moreover, there is a direct summand decomposition
[Z*K,, K)] = . © %0 © .0’ © ©.dd'

such that %, = kerd Nkerd’ is a commutative subring (cf. [6, p. 297
Thm. 5.5, 5.6]) and 87 = fP§, &' fP = fP§’ for f € %, having even
degree (cf. [6, p. 298 Cor. 5.7]).

Hence dy=00", d(8of?—fP0y)=0"fP—fP8'=0, d'(6ofP — fPdo) =
0fP — fP6 =0 and so 0y fP — fP0y € kerd Nkerd' =&, . O

Acknowledgments. I would like to thank the referee for pointing out
a gap in the original manuscript and making some grammatical and
stylistic suggestions. His comments are included in this revised ver-
sion. Also I would like to thank the Mathematical Sciences Research
Institute, Berkeley, for its hospitality during my stay in the fall 1989.



142

[1]
2]
[3]

4]

[3]
[6]
(7
(8]
9]

JINKUN LIN

REFERENCES

H. R. Miller and W. S. Wilson, On Novikov’s Ext' modulo an invariant prime
ideal, Topology, 15 (1976), 131-141.

H. R. Miller, D. C. Ravenel and W. S. Wilson, Periodic phenomena in the
Adams-Novikov spectral sequence, Ann. of Math., 106 (1977), 469-516.

S. Oka, A new family in the stable homotopy of spheres, Hiroshima Math. J., 5§
(1975), 87-114.

—, Multiplicative structure of finite ring spectra and stable homotopy of
spheres, Algebraic Topology, (Aarhus 1982) Lect. Notes in Math., 1051 p. 418-
441. Springer-Verlag 1984.

—, Realizing some cyclic BP. modules and applications to stable homotopy
of spheres, Hiroshima Math. J., 7 (1977), 427-447. ’
—, Small ring spectra and p-rank of the stable homotopy of spheres, Contemp.
Math., 19 (1983), 267-308.

D. C. Ravenel, The nonexistence of odd primary Arf invariant elements in stable
homotopy, Math. Proc. Phil. Soc., 83 (1978), 429-443.

Jinkun Lin, Split ring spectra and second periodicity families in stable homotopy
of spheres, Topology, 29 no. 4, (1990), 389-407.

—, Detection of second periodicity families in stable homotopy of spheres,
Amer. J. Math., 112 (1990), 595-610.

Received December 9, 1990 and in revised form July 15, 1991.

NANKAI UNIVERSITY
TIANJIN
PeoPLES REPUBLIC OF CHINA

AND

MSRI
BERKELEY, CA 94720





