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NONSPLIT RING SPECTRA AND PRODUCTS
OF ^-ELEMENTS IN THE STABLE HOMOTOPY

OF MOORE SPACES

JINKUN LIN

This paper proves trivialities and nontrivialities of some products
of higher order β^tp

n /s) elements in the stable homotopy of Moore
spaces. The proof is based mainly on properties of nonsplit ring spec-
tra Kr (the cofibre of r-iterated Adams map with r not divisible by
prime p > 5) which are given in the rest of the paper.

1. Introduction. Let S be the sphere spectrum and M the Moore

spectrum modulo a prime p > 5 given by the cofibration S -^ S Λ

M -^ ΣS. Consider the Brown-Peterson spectrum BP at p it is
known that there is a map a: ΣqM —• M such that the induced BP*
homomorphism α* = v\:BP*/{p) -• BP*/(p), q = 2(p - 1).

Let Kr be the cofibre of ar given by the cofibration

(1.1)

In [4] and [6], S. Oka showed that Kr is a ring spectrum for r > 1
if r = 0 (mod p) it is called a split ring spectrum since Kr Λ Kr

splits into four summands Kr, ΣKr, Σr«+ιKr, Σr«+2Kr. If r φ 0
(mod p), it is called a nonsplit ring spectrum since Krl\Kr splits only
into three summands Kr, ΣLΛKr, Σrq+2Kr, where L is the cofibre
of 0i = jarie πrq_χS.

In the nonsplit case, S. Oka showed in [4] that there is a direct
summand decomposition

(1.2) [Σ*Kr, # r ] = Mod 0 Der ® Mod J o

where Mod consists of right ^-module maps, Der consists of ele-
ments which behave as a derivation on the cohomology defined by
Kr and δo = i'rijj'r e [Σ~rq~2Kr, Kr]. Moreover, Mod is a commu-
tative subring, ker{(i'ri)*:[Σ*Kr, Kr] -> π*Kr} = Der Θ Mod δ0 and
{i'ri)*: Mod -> π*Kr is an isomorphism.

One of the most important properties which are shown in [4] is
δ'f-fδ' e Mod for any / e Mod, δf = ϊrj'r e [Σ~rq-χKr, Kr] and
the commutativity δ'fp = fpδ' for any / e Mod having even degree.
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This has been found very useful in the detection of higher order βtpηs

elements in π*S (cf. [8]).
From [8] and [9], there exist fs e Mod n [Σ*KS, Ks] for p > 5,

s < pn if p { ί > 2 or 5 < p " - 1 if ί = 1 such that the induced

BP* homomorphism (fs)* = vίf , β(tp

n/s) = Jsfsϊ's *s known to be a
/^-element in [Σ*M, M] such that

β'tpΊs e Ext1 *M - E x ψ ; ^ P ( 5 P * , 5P*M)

converges to β(tp
n/s)ΐ € π*M in the Adams-Novikov spectral sequence

* *
In this paper, we will prove the following trivialities and nontrivi-

alities of products of β(tp

nis) elements in [Σ*M, M].

THEOREM I. Let p > 5. The following relations on products of β-
elements in [Σ*M, M] hold:

(1) β{ktp»/s) β(tP»/s) = Qfors<pn ifp\t>2,s<pn-\ift=\
and kφ-\ (mod/?).

(2) β{ktPηs)δβ{tpηs) = 0fors< p»~l ifp\t>2is< p«~x - 1 if
ί = 1 and kφ-\ (modp), where δ = ij e [Σ~ιM, M].

(3) β(aP

m/s)δβ(tP

n/S) = -β(tP

n/s)δβ(aP

m/s) if 'one of the following con-
ditions holds

(i) s<min(pn-ι,pm-1) if p \t>2 and p \a>2.
(ii) s < m i n ^ " - 1 , p m ~ ι - 1) if p \t>2 and a= 1.

(iii) s <min{pn-1 - 1, p m ~ ι ) if t = 1 and p\a>2.
(iv) 5 < m i n ^ " - 1 - 1, p™"1 - 1) if t = a = 1.

(4) Suppose that s <pn if p\t>2 or s <pn - 1 // ί = 1, r < i? m

/ / p f fl > 2 or r < pm - 1 ifa=l; then

β(aP

m/r) ' β(tP

n/s) Φ ° 5 β(aP

m/r)<>β(tp

n/s) Φ °

if r + s >pn + pn~ι and one of the following conditions holds:

(i) m = n, a + t = 0 (modp).
(ii) m = n - 1, α ^ 1 (mod p) .

(iii) m < n- I, aψ-\ (mod p ) .

Theorem I is proved by using some results on nonsplit ring spectra
Kr given in S. Oka [4] and some results on Extlj*Λ/ given in Miller
and Wilson [1]. The proof also needs some further properties of Kr

which are not in [4], mainly the following fact on commutativity of
some elements in [Σ*Kr, Kr].
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THEOREM II. // r =έ 0 (mod p) and g, / e Modn [Σ*Kr, Kr], then

gp(Sofp ~ fpSo) = (-l)W \'\(δof> - fpδ0)gp

and δϋf
pl = fp2δo if f has even degree, where δQ = i'rijj'r is the

unique generator in [Σ~r<ι-2Kr ,Kr]. Ifr = 0 (mod p), δofP - fpδ0

belongs to the commutative subring Ψ* of [Σ*Kr, Kr] and the above
two equalities also hold.

The proof of Theorem I will be given in §2. In §3, we first recall
some results on Kr given in [4], then develop some further technical
results on Kr and prove Theorem II.

2. Proof of Theorem I. From [8] and [9], there exists / €
[Σtp"(P+V«Ks, Ks] for s < pn if p \ t > 2 or s < pn - 1 if t = 1
such that the induced BP* homomorphism /* = v'2

p :BP*/(p, vf) -»•
BP*l(p, υ\). We may assume / € Mod (or / e % in case 5 = 0
(mod p)) since the components of / in Der and Mod <5o induce
the zero homomorphism. Then j'sfi's = β(tp"/s) € [Σ>*M, M] and

β(ktpn/s)β(tpn/s) = fsfki'sJ'sfi's
Recall that δ' = i'sfs e [Σ~si-ιKs, Ks] and δ'f-fδ' e Mod.

From commutativity of Mod, we have f(δ'f - fδ') = (δ'f - fδ')f
or equivalents f2δ' - δ'f2 = 2{f2δ' - fδ'f). Composing / with the
above equation, inductively we have

ft' - δ'f = r{fδ' -fr~λδ'f), r>\,

and fkδ'f=Έ^ϊ(δ'fk+ι+kfk+ιδ') if we let r-\=kφ-\ (mod/?).
S o β(ktP"/s) • β{tpnls) = J'sfkδ'fi's = 0 t h i s p r o v e s T h e o r e m 1 ( 1 ) .

(2) From [8], there exists / € [Σtp"'ι(p+^KS, Ks] such that the

induced BP* homomorphism /* = v% and / G Mod. Hence

fi = vf and β(ktpΊs)δβ(tp«,s) = fsf
kpϊsijj'J

pϊs = j'sf
kpδofpi's.

From Theorem II, fp(δof
p - fpδ0) = (δof

p - fpδQ)fp or equiva-
lently f2pδQ - δ0f

2p = 2(f2pδ0 - fpδof
p). By induction we have

frpδ0 - δQfP = r(frpδ0 - βr-Vpδof
p) for r > 1. Thus

fkpδof
p = ^

for k ψ -1 (mod p) and so β{ktpΊs)δβ{tpΊs) = j'Jkpδof
pi's = 0.

(3) In all cases, there exists / e Mod n {pp"~xW)*Ks, Ks] and
g G Modn[Σ^m"'^+1)«ϋ: ί, Ks] such that /* = vf~* and g* = υf""'.
Then β(ap-ls)δβ(tpn,s) = j'sg

pϊsijj'J
pϊs = fsg

pδof
pi's.
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From Theorem II, gp(δof
p - fpδ0) = {δof

p - fpδ0)gp or equiva-

lently gpδof
p+ fpδog

p = δof
pgp + gpfpδ0. Hence β{apΊs)δβ(tp»/s) +

βwis)*β{vΓis) = fs(gpSofp + fpδog
pK = 0.

(4) From [4, p. 422], i'rj's\Ks -+ Σs^ιKr induces a cofibration

which realizes the short exact sequence

0 - BP*/(p, v[) - ^ BP+lip, v[+s) -^ BP*/(p, vf) — 0

such that ψ* = υf and then induces Ext exact sequence

• Extk^-sqKr - ^ Extk-'Kr+s -^ ExtktKs

where we briefly write Ext*'*ΛΓ = Ext^pBP(BP^, BP*X) and ( ι ^ ) *

as the boundary homomorphism. Moreover, we have (cf. [8] (3.23))

ψr, r+s i'r = ΐ'r+s ̂  > Pr+s, s i'r+s = ' j ? ^ PA + ^ , * = α O r + J

Note that the behavior of ψ*, /?*, (/^)* in the above Ext exact se-
quence is compatible with that of ψ, /?, z ^ in the cofibration, i.e.,
we also have ^*(/{.)* = (^ s)*v{, P*(i'r+S)* = (ZD* i n t h e E x t s t a S e '
where (/^)*:Extfc'*Af —• Ext '̂*ATr is the reduction in the following
exact sequence

• -+ Ext* '-Γ*Λf ^ Ext^'^M ^h ExtktKr ^

(A), r + s = pn + pn~ι. Let g e Mod n [Σ*^ r , Kr] and

€ Mod n [Σ*KS, i^5] such that g* = ^^pM and /* = vf". Consider

(ap>»,r)β(tp»/s) = 7^/yί/fί € [Σ*M, M ] .
Suppose that j'rgi'rj'sfϊs = 0; then gϊrj

f

sfi's = i'rk for some /: e
*M and the arguments below show that it yields a contradiction.
Since j ] / ^ / e π*Λf is detected by ^ Λ/J e E x t 1 ^ , then i'rj'sfi'si €

*Xr is detected by

From [1, p. 132 Theorem l.l(b)(iϋ)],

")) = 2tvf-p"\ E
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ιwhere C\(tpn) in [1] actually is β't n n+ n_ι_χ G ExtιM and h0 e

! is the t^-torsion free generator. Hence if

rfsfi'si G π*Kr is

detected by 2t{yx^r\(vtf~pn 'h0) e ExtιKr.

Since g e Mod n [Σ*Kr, Kr] and {gϊri)* = vaf G E x t % , then
gi!

rfsfi
!

si G π*Kr is detected by the product

fl-1

Mva

2

p +tp ~p ho)φθe ExtιKr

(if it is zero, then v^^"^"1 h0 = {i'xj
f

r-\)*{x) f ° r s ° m e x €

ExtO,(apm+tpn-pn-l)(p+l)q+rqKr_i ? b m ^ g r o u p v a n i s h e s for d e g r e e r e a .

sons, cf. [1, p. 140 Prop. 6.3]).

Hence i'rk G π*Kr and so k e π*M has BP filtration 1, i.e. k is de-

tected by some y e E x t 1 ^ and {ϊr)*{y) = 2t(ψι9r)*(υ$pm+tpΛ-pΛ~\
0 G E x t % . Thus (ί'r^Uy) = (Pr,r-lWr)*(y) = ° a n d ^ =

for some y G
From [1, p. 132 Theorem 1.1], Ex^M is generated by v\h§ (u > 0)

and υ»cι(bps) (0<u<ps +ps~ι - 1 if p\b> 2, 0<u<ps if b =
1) additively, where /z0 G E x t 1 ^ is the ^i -torsion free generator and
C\{bps) G ExtιM is the t^-torsion generator whose internal degree is

It is impossible for y = υ^ho since then (i'r)*(y) = (i'r)*(v[~ly) = 0
which yields a contradiction.

If y = ^ci(Z>/?5) with w > 0, then y = v[~ιy = v[z for z =

^ " " ^ l ί ^ P 5 ) and so (/{.)*(y) = 0 which yields a contradiction.
If y = c\{bps), then for degree reasons (Zφ - I)/?5"1 = <z/?m + tpn -

pn~ι. I f r a = ft, a + t = 0 (mod p ) , then & = <z + t = 0 (mod p)
which yields a contradiction. If m = n - 1 and α ^ 1 (mod /?),
(bp -l)ps'1 = (a + tp-l)pn~l and so bp-1=0 (mod/?) if s < n,

a = 1 if j > n and α = 0 (mod p) if s = n all of which yields
contradictions. Similarly, there is a contradiction if m < n - 1 and
aφ -\ (mod /?). Thus we have β{ap

m/r) ' β(tP

n/s) Φ ° f o r r + s =
pn +pn-\ a n c j o n e of the conditions (i)-(iii) holds.

Case (B). r + s > pn +pn~ι.
Let u = (r + s) - (pn + pn~ι) then there are c and d such that

w = c+d and c < r, J < Λ . From [6, p. 277 Lemma 2.4], </(/£) = 0 =
d(j'r). Moreover, Mod c ker^f, so β{ap

m/r) = ?rgi'r> β(tP

n/s) = Jsfi's
all belong to ker d which is a commutative subring of [Σ*M, M].
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Since adfsfi'sδ = j^Ps^-d/i'sU >there e x i s t s / e ModΠ[Σ*Ks_d,

Ks_d] such that p^s-df^^l^s-d1 a n d 7* = vf > t h e n adβ(tP

n/s)δ

= adfsfi'sδ = j's_dfϊs_dδ = β{tpΊs.d)δ .
Suppose that β(ap

m/r)' fi(tP'/s) = ° τ h e n

β(apm/r-c)β{tpn/s-d)<> = β{apm/r-c)a β(tpn/s)δ

= -adβ{tpnls)β{apmlr-c)δ = « C + έ < β (apm / r) β (tpn /s)δ = °

By applying the derivation d to the above equation we have
β(apm/r-c)β(tpn/s-d) = 0 which contradicts case (A) when one of the
conditions (i)-(iii) holds.

Hence we have β(apm/r)β(tP

n/s) φ 0 ϊor r + s > pn + pn'1 and
one of the conditions (i)-(iii) holds. β(apm/r)β(tpn/s) Φ 0 implies
β(apm/r)δβ(tpn/S) Φ 0 since by applying the derivation d to the equa-
tion β{ap

m/r)δβ(tpn/s) = 0 we will have β(ap

m/r)β(tpn/s) = 0. •

3. Structure of nonsplit ring spectra. In this section, we will develop
some technical results on nonsplit ring spectra Kr and prove Theorem
II.

We first recall some facts on Kr given in [4]. A spectrum X is called
a Zp spectrum if there are two maps mχ\ M I\X —• X, πiχ\ ΣX —•
MAX such that

(3.1) mx(iΛlχ) = lx, (jMχ)niχ = lχ,

mxmχ = 0, (i Λ \χ)mx + mx{j Λ \x) = ίMAX,

where AT is the mod /? Moore spectrum and πiχ is called an M-
module action of X. For Zp spectra X, 7 , Z , we define rf: [Σ rX, 7]
-> [Σ r + 1 X 5 Y] to be rf(/) = m y ( l j i f Λ / ) % . If m j is associative,
then d is a derivation, i.e.

(3.2) J2 = o, rf(Λ) = (-i)W)n/^)

for g e [Σ*X, 7 ] , / e [Σ*y, Z] and deg# = ί.
We briefly write Kr, ẑ , fr as ̂ , z7, / . Since pΛlκ = 0:S/\K -^

SΛK , then there is a homotopy equivalence MΛK = KvΣK. From
[4, p. 432], there is an associative M-module action m\Ml\K -+ K
and m: ΣAΓ -* M /\K is an associated element such that

(3.3) m(i Λ 1*) = lκ, (y Λ

mm = 0, {iMκ)m + m(j MK) =

So (3.2) also holds in case X = Y = Z = AT.



STABLE HOMOTOPY OF MOORE SPACES 135

L e t φ = a r G \ΣrqM, M] a n d φ x = j a Ί e πrq-ιS, φ = ΦιΛlκ <E
[Σ'^K, K], then [4, p. 431 (5.14) and p. 432 Remark 5.7] showed
that

(3.4) φ = rάr-χa', φi' = i'δφ,

j'φ = -φδf, φδo = δoφ,

where δ = ij e [ΊrιM,M], δ0 = i'ijf e [L~r<*-2K, K], a =
λ(aδ) € [WK, K], a' = λ(δaδ) € [Σ^" 1 ^, K] and λ:[ΣrM, M] - .
[Σr+ιK, K] is denned to be λ(f) = m(/Λ lκ)m. [4, p. 432 (6.2)]
also showed that

(3.5)

Then there is a homotopy equivalence

(3.6) KΛK = KvΣLΛ

where L is the cofibre of φ\ = jφi given by the cofibration

(3.7) Σr«-'S-l5^L^Γ«S

and there exist

μ:KΛK->K, μ2:KΛK^ΣLΛK, μy.KΛK -> Σrq+2K

vy.K^KΛK, v2:ΣLΛK-^KΛK, u:Σr<!+2K -* KΛK

such that (cf. [4, p. 433])

(3.8) (A) μ(i' Λ iκ) = m, (/ Λ lκ)u = m,

(B) μ1{i'

(C) C/"Λ l/,)^ = m(jΆ\κ), ^ ( i "

(D)

=.//Λ 1A:, vit = i'ii\\κ, (A) and (B) imply

(3.9) (A)'

(B)'

(C)' 1/̂ 3 + ̂ 2/̂ 2 +
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Recall that δ' = i'f e [L'^^K, K], δQ = i'ijf e [Σ-r«-2K, K] and
δ = ij e [Σ~ιM, M] they satisfy (cf. [4, p. 434])

(3.10) d(δ) = -lM, d(δ') = 0, d(δo) = δ'.

LEMMA 3.11 ([4, p. 434 Lemma 6.2]). There exist elements

Δ e p - ' I . L Λ I ] , Ae[L~rq-lLAK,K]

such that

(i) {j"Mκ)λ = δ', A(i»_Alκ) = δ>,
(ii) Ai' = (i"Alκ)i'δ, jΆ = δf(j"Alκ),

(iii) (U Λ /)Δ = -(/" Λ \M)δj', Δ(1L Λ I') - -i'δ{j" A \M),
(iv) ΔΔ = 2<50

THEOREM 3.12 ([4, p. 438 Theorems 6.5 and 6.6]). There is a choice
of (μ, βi, v, vi) such that

μT-μ, Tv = v,

μ2T = -μ2 + Δμ, Tu2 = -v2 + vA

and any such μ is an associative multiplication of K, where T:K Λ
K —> K Λ K is the switching map.

DEFINITION 3.13 ([4, p. 423 Def. 2.2)].

Mod = {/€ [Σ*^, K)\μ(fΛ lκ) = fμ},

Der = {/ G [Σ*K, K]\fμ = μ(f Λ 1*) + μ(\κ Λ /)}.

That is, Mod consists of right AΓ-module maps and Der consists of
elements which behave as a derivation on the cohomology defined by
K.

THEOREM 3.14 ([4, p. 424 Remark 2.4 and p. 423 Lemma 2.3]).
There is a direct summand decomposition

[Σ*K, K] - Mod θ Der φ Mod δ0

and ker/Q = Der ©Mod δς,, [Der, Mod] c Mod, where ΪQ = i'i S —>•
K is injection of the bottom cell and [f, g] denotes the graded com-
mutator fg - (_ 1)1/1-1*1 g/.

By using Theorem 3.12 and (3.8) (A) (B) (D), we can easily check
thathv = O, hv2 = 0, hu^ = 0 for h = μ(δ'A \κ) +μ{\κAδ')-δ'μ.
Hence it follows from (3.9)(C)' that δ'μ = μ{δ'A\κ) + μ{\κ^') and
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so δ1 e Der. From Theorem 3.14, [δ', f] e Mod for f e Mod and
in particular we have δrfp = fpδr for f e Mod having even degree.

Now we consider further properties of [Σ*K, K] which are not in [4].
Define

d0: [ΣSK, K] -> [Σs+rq+2K, K]

to be do{f) = μ(f Λ lκ)v d0 has the following important properties.

PROPOSITION 3.15. (1) do(δo) = lκ, do(gδo) = g for g e Mod.
(2) ker d0 = ModΘDer, imd0 c Mod.

Proof. (1) From (3.9) (A)',

Λ lκ)v = μ{ifi Λ 1

and do(gδo) = μ(gδ0 Λ \κ)v = gμ(S0 Λ \κ)v = g .
(2) It is easily seen that Mod c kerd0 and for / e Der

= μ(f
= -μT(lκΛf)v = -μ(fΛ lκ)u = -do(f) = 0;

then Der c kerd0 On the other hand, if / e kerd0 > let / = f\ +
fi + /3^o with fuf3e Mod and f2 e Der, (cf. Thm. 3.14), then
0 = do(f) = do(fiδo) = h and so / € Der Θ Mod. imt/0 C Mod is
immediate. D

PROPOSITION 3.16. (1) If h e Mod, u e Der, then hu e Der; in
particular, Modi ' c Der.

(2) do(δ'g) = (-l)t+ιd(g) + δ'd0(g), do{gδ') = - r f ( β ) f w A ^
t = deg # α«tf? g2 is the component of g in Der in the decomposition
in Theorem 3.14.

Proof. (1) If h e Mod and u e Der, then hμ = μ(h Λ lĵ ) and
uμ = μ(uMκ)+ μ(\κ /\ύ). Hence

huμ = hμ(u Λ 1#) + hμ(lκ Λ M)

= μ{hu Λ 1A:) + hμT{\κ Λ «), (//Γ = μ from Thm. 3.12)

= μ(hu Λ 1*) + μ(h Λ U ) Γ ( 1 ^ Λ M)

= μ(hu Λ 1A:) + μT(lκ Λ

and so hue Der. Since J7 G Der, then Mod J ' c Der.
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(2) If g ι e Mod, then do(grf') = μigrf' Λ \κ)u = gxμ{δ' A \κ)v =
0. Since [δ', gι] € Mod, then do(δ'gι) = dQ{gxδ') = 0.

Let g - g\ + g2 + g3δo with g\, g^e Mod and g2 G Der then

Moreover,

do{δ'g2) = μ(lκΛ δ')uμ3(lκ A g2)v + μ{\κλ δ')u2μ2{\κ Λ g2)v

+ μ(lκAδ')u3μ(lκAg2)u, (cf. (3.

(since 1st and 3rd terms are zero)

= - μ(δ' Λ Iκ)v2β2(lκ Λ g2)v , (Tv2 = -v2 + uΆ)

= - m(i Λ \K)U" Λ \κ)μi{\κ Λ

= -m(f Λ lκ)(lκ Λ gi)v, ((/' Λ lκ)μ2 = m(f Λ

= (-l)ί+1m(lΛ/ Λ g2)m, (m = (/ Λ \κ)v)

= {-\)t+xd{g2).

Hence

note that rf(^) = d(g2) + g?>δf and
The proof of do(gδ') = -d(g2) is similar.

PROPOSITION 3.17. /f g e Der, ί/ze« ^J ' e Mod<J0 and d(g) e
Mod. Moreover, g e Mod δf if d(g) = 0.

Proof. Since # € Der, then gi'i = 0 (cf. Thm. 3.14) and so gif =
ηj for some η e π*AT. η can be extended to η G [Σ*AΓ, AT] such that
η = ηi'i and η G Mod. Then gδr = ηi'ijf = ϊ/<ίo € Mod ̂ o

On the other hand, η = do(ηδo) = do(gδ') = -d(g), so rf(^) €
Mod. Moreover, if rf(^) = 0, then gi' = ηi'ij = -d(g)i'ij = 0 and
so g = Ϊ Γ / for some ^ G [Σ*Af, K]. Since ^JQ = 0, then
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= μ(lκAg)(lκAδo)v

Λ δo)u + μ(lκ A g)u^μ{\κ A δo)u

= μ(iκ A g)v2μ2{^κ A δo)u + g

κ A g)v = 0, μ{\κ AδQ)v =

(Tv = v)

= - μ{\κ A g)v2μ2{δo A lκ)v + μ(lκ A g)v2Aμ(δo A lκ)v + g

(μ2T = -μ2+Aμ)

= g + μ{lκA g)v2A (μ2(δ0 A lκ) = (i"j A lκ)(ijf A lκ) = 0)

= g-μ(gA 1Λ>2Δ (μT = μ, Tv2 = -v2 + vΈ)

= g - μ(g A lκ)(f A 1 Λ > 2 Δ (since g = gf)

= g-μ(gA lκ)(iAlκ)(j"Alκ)A (U'Alκ)v2 = (//Λ lκ))

= g-μ(giA \κ)δ' ((/'Λ \K)A = δ').

Thus g = uδ', where u = μ(gi A lκ) e Mod. D

PROPOSITION 3.18. ~φ e Mod and there exists ε e Der such that
d(ε) = φ.

Proof. Recall (3.4), φ = rar~ιa!, where a = λ(aδ) and a' =
λ(δaδ). Hence, it follows from i m l c Mod that φ e Mod.

Froin Lemma 3.11(i) and (3.4), φA(i" A lκ) = φδ' = i'δφf = 0;
then φA = u(j" A \κ) for some u € [Σ*K, K]. Hence it follows from
Lemma 3.11(iv) and (i) that

2φδ0 = ̂ ΔΔ = u{j" A \K)A = uδ'

and so 2φ = 2do(φδo) = do{uδ') = -d(u2) (cf. Prop. 3.16(2)). Thus
φ = d(ε) if we let ε = -5

PROPOSITION 3.19. (1) If g e Mod and gδ' = 0 (resp. δ'g = 0),
then g = ηφ resp. g = φη) for some η G Mod.

(2) If η e Mod, then ηφ = O if and only if η = d(u) for some
u GDer.

Proof (1) Since gδo(j" A lκ) = gi'δj'U" A ίκ)_ = gi'j'A = 0
(cf. Lemma 3.11(ii)), then gδo = η(jφi A lκ) = ηφ for some η G
[Σ*K, K]. Let η = ηx + η^ + ̂ 3^0_with ηx, η^ G Mod and rj2 e
Der. Then gδ0 = η{φ + η2φ +_mδ()φ and_ g = do{g_δo) = do(η2φ) +

However, do(η3δQφ) = do(mφδo) = η3φ (cf. (3.4)) and
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Mod, do(η2φ) =_±do(φη2) = 0 (note that φη2 G Der
from Prop. 3.16(1)); then g = η3φ with η3 e Mod.

If g e Mod and δ'g = 0, then gδ' =jδ' - (-l)Mδ'g € ModΠ
Mod δ' c Mod Π Der = 0. So g = ηφ = ±φη for some η e Mod.

(2) d(u)φm = m(lM Au)rnφm = m(ίM Au)(φ Λ ίκ) = m(φ Λ -1^) •
(1A: ΛM) = 0. τhen_d(u)φ = d(u)φm(iΛ lκ) = 0._

Conversely, if */</> = 0 for f/ G Mod, then ηφi'i = 0 = ηi'ijφi
and so ηi'ijφ = wj for some w G π*.SΓ. u can be extended to ΰ G
[Σ*A:, A:] such that ui'i = w and ΰ e Mod. Then i/z'/y^ = ΰi'ij and
ϊ7Jo = 0, ΰ = έ/o(w£o) = 0 Hence ι/z7z70 = 0 and 77/'// = it z7 for
some w G [Σ*AΓ, A"]. Thus ηδ0 = ^ ^ , // = do(ηδo) = do{wδf) =
-d(w2), where ^2 is the component of w in Der, see Proposition
3.16(2). D

PROPOSITION 3.20. Ifge Mod, then do(δog) = g and δ^g-gδ^ G

Mod Θ Der.

Proof.

do(δog) = μ{δo Λ lκ){g A \κ)v

Λ lκ)Tuμ3(lκ Λ g)v + μ{δ0 Λ lκ)Tv2μ2(lκ Λ ^)i/

Λ l^)Γι/3//(U Λ g)u (cf. (3.9)(C)/)

= 0*/ Λ lχ)(lκ Λ ̂ )z^ - μ(δ0 Λ \κ)^2μi{^κ Λ ^)z^

(since //(1/i: Λ g)ι/ = 0, Γ^2 = -^2 + ^Δ

)ι/ (since/ι(50Λ l^)ι/2 = 0, cf. (3.8)).

Let Λ = ̂ 0(^0^) - S = Δ//2(1A: Λ <§Γ)^ . Then h G Mod and

j'h = /Δ// 2 (U Λ g)i/ = (5/(/ Λ 1 ^ 2 ( 1 A : Λ g)v

/ Λ \κ){\κ Λ ί)i/ = ̂ / m ( l M Λ g)m = /rf(g) = 0.

So <J7λ = 0 and from Prop. 3.19(1) we have h = φg\ for some
g\ G Mod, i.e. there is some g\ G Mod such that

and fφgi = 0.

Thus inductively we have gs, gs+\ G Mod (s > 0 with go = g)
such that do(δogs) - gs = Φgs+\ and fφgs+\ = 0 ($ > 0). It is easily
seen for degree reasons that gs+\ = 0 for s large and so do(δogs) = gs

for some fixed large s.
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Since fφgs = 0, then φδj'gs = 0 (cf. (3.4)) and so δfgs = j'k
for some k e [Σ*i£, K], Hence δogx = δ'k and gs = do(δogs) =
do(δ'k) = ±d(k) + δfd0(k) (cf. Prop. 3.16(2)). Thus φgs = 0 since
φd(k) = 0jind φδr = O (cf. Prop. 3.19(2) and (3.4)). Hence do(δogs-ι)
- &-i = ΦSs = 0 and inductively we have do(δog) = g .

Since dQ(δog - £<J0) = g ~ £ = 0, then <50£ - <?<*o € ker rf0 =
Mod Θ Der. D

Now we are ready to prove Theorem II stated in §1.

Proof of Theorem II. Let / , g e Mod n [Σ*Kr, Kr] and r ψ 0
(mod p). From Prop. 3.20 we may assume δof

p - fpδ0 = h\ + h2

with h\ e Mod and hi € Der. By applying the derivation d, d{hι) =
rf^o/P - /p<50) = δ'fP - /^(J; = 0 (cf. Thm. 3.14). Hence h2 = uδ1

for some u e Mod (cf. Prop. 3.17). Hence

gp(Sof
p - fpδQ) = gphx + gpuδf = ( -

since gp commutes with δ1 and h\,ue Mod.
Moreover, if / has even degree, fp(δof

p-fpδo) = (δof
p-fpδo)fp

and by induction we have fkpδo-δof
kp = k(fkpδo-βk-^pδof

p) for
A: > 1. In particular we have /? ̂ o = <>ofp .

If r = 0 (mod /?), t 6] showed that there exists δ € [L~lKr, Kr]
such that δi'r = /{./y, ^ 5 = -ijj'r and apart from the deriva-
tion d:[ΣsKr,Kr] -+ [Σs+ιKr, Kr] there is another derivation dι:
[ΣsKr, Kr] -> [ Σ 5 + ^ + 1 ^ r , ΛΓr] such that

d'(δ') = -lKr, d'(δ) = 0, d{δ) = -lKr, d(δ') = 0.

Moreover, there is a direct summand decomposition

[Σ*Kr, Kr\ = % Θ ̂ J Θ ̂  Θ K ί ί ;

such that ^ = kerrf Πkerrf' is a commutative subring (cf. [6, p. 297
Thm. 5.5, 5.6]) and δfp = fpδ, δffp = fpδ' for / e % having even
degree (cf. [6, j>. 298 Cor. 5.7]).

b = W/, d(δQfp-fpδQ) = δffp-fpδr = O, άr(δof
p - fp'<%) =

= 0 and so δof
p - fpδ0 e kerd n kerrf' = ̂ . π
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