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BORDISM AND REGULAR HOMOTOPY
OF LOW-DIMENSIONAL IMMERSIONS

JOHN FORBES HUGHES

In this paper we study the geometric characteristics of low-dimen-
sional immersions. Smale asked, in his paper on immersions of the
/c-sphere in Rn , what are explicit generators for the groups of regular
homotopy classes of immersions? We answer this for the 3-sphere in
R4 and R5. For S3 in R4 , the answer is:

THEOREM. The standard (Froissart-Morin) eversion of S2 in R3

has, as a track, an immersion of S2 x / in R4 whose ends are embed-
ded S2s. Each of these bounds a 3-ball in R4. Capping off the track
with these 3-balls yields an immersion K: S3 —• R4 . Performing the
eversion twice and capping off gives an immersion E: S3 —> R4 . The
immersions E and K generate the group of regular homotopy classes
of immersions of S3 in R4 .

We also relate the invariants of an immersion which hounds an
immersion of a manifold of one higher dimension to the characteristic
classes of that manifold.

1. Notation, definitions, and preliminary results. We begin by estab-
lishing our notation and definitions. All manifolds and maps in this
paper are smooth, unless otherwise noted.

DEFINITION. A k-frame in a vector space is an ordered /c-tuple of
linearly independent vectors vι, ... , vk . A /c-frame in a /c-dimen-
sional space may be considered an ordered basis of the space. Frames
are denoted by square brackets, and we implicitly extend any maximal
rank linear map between vector spaces V and W to also take frames
in V to frames in W, by defining

T[v\ ...,υk] = [Tvι, . . . , Tυk].

DEFINITION. Vn k denotes the Stiefel manifold of ^-frames in Rn .
If N is an n-plane bundle, J^(iV) denotes the associated bundle of
^-frames.

NOTATION. TM denotes the tangent bundle of the manifold M.
The bundle projection is denoted by π . For a typical point p of M ,
the fiber over p, π~ι (p), is denoted by TPM.
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A tangent vector at p is an element of TPM, and is typically written
with a subscript to indicate this: vp .

If p is a point of a parallelizable n-manifold and a parallelization
has been fixed, tangent vectors at p may be identified with the corre-
sponding vectors in Rn and written (υ p), where w is a vector in
Rn.

If p is a point of a manifold ΛP , then a frame at p is a frame in
the tangent space to M at p, i.e., an n-tuple of linearly independent
vectors [υp , . . . , vp]. In the event that the manifold is parallelizable
and a parallelization φ: M xRn -> TM: (p, v) —κf>(p 9 υ)p has been
fixed, the frame [φ(p, Ϊ ; 1 ) ^ , . . . , φ(p, vn)p], at /? may be written

where ΊJ1 , . . . , vn are vectors in Rn .
Matrices are written in terms of their columns, for example

A = [Aι,...9A
n]

indicates that A is a matrix with columns A1 through An . We will
often consider a matrix as a frame made of its columns, or a frame
as a matrix whose columns are the vectors of the frame.

Convention. In homotopy calculations, basepoints are often re-
quired. The basepoint for every matrix group is the identity matrix,
written In (for the n by n identity). The basepoint for Vnk is the
frame [eι, . . . , ek].

DEFINITION. If Mn is an oriented manifold with boundary, then
an outward normal is any vector v such that there is a curve γ in M
with

(a) γ(x)eM-dM for J C € [ O , 1),
(b) γ(l)edλί9

(c) v = γ\\) $ Ty(ι)(dM).

If p G dM, then Tn(dM) is a codimension 1 subspace of TPM.
Let [vp , . . . , v%] be an ordered basis of Tp(dM) and ^ be an out-
ward normal vector at p. Then [υp , . . . , v*] is a positively oriented
basis of Tp(dM) if and only if [^ , . . . , υ£] is a positively oriented
basis of TPM. This defines the orientation of dM induced by the
orientation of M.

DEFINITION. If ξ and μ are vector bundles over manifolds M and
TV respectively, then Hom(ξ, μ) is the fiber bundle over M whose
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fiber at p consists of all linear maps from ξp, the fiber of ζ at p,
to μ, where by a linear map we mean a linear map from ξp to some
fiber of μ.

If / : M —• N is a smooth map between manifolds, we denote its
derivative by Tf. The map Tf is a section of Hom(ΓM, TN), so
that for each point p, Γ/(p) is a linear map from TPM to Tf^N.
Henceforth, we will write 7}?/ instead of 3Γ/(p).

DEFINITION. If M and K are manifolds of dimensions m and A:,
respectively, then a map f:M—>K is an immersion if 7},/: TPM -+

has rank m (i.e., is injective) for every point p in M.

DEFINITION. An immersion / : Mn —• Kk is a generic immersion if
whenever y e J£ and f~ι(y) = {pi, ... , Pr}, there are the following
data (k>n):

(i) a (fc)-ball neighborhood i?(y) of y,
(ii) a diffeomorphism ω: B(y) —• i?^ , and

(iii) an ft-disk neighborhood D{pj) of /?7 such that

ωof\D{Pj):D(pj)-+Rk

has as its image the hyperplane of Rk which is orthogonal to

ei+U-\)(k-n) ej(k-n) jf ^ = ^ ^ a n i m m e r s i o n is called generic
if either dM = φ or f\dM is generic in the sense above.

REMARK. Since the differential has maximal rank, it induces a map
on frames, i.e., if / : Mm —• Kk is an immersion, then Tf induces a
map from Vm(TM) to Vm(TK) (see [Fra71]).

DEFINITION. If H: X x [0, 1] -• Y is a homotopy, the ίrac/c of 7/
is the map

ff:Ix[0, l ] - r x [ 0 , l]:(x9t)-

The word ίrαc^: is sometimes used to denote the image of Ή as well.

DEFINITION. If / and g are immersions of Mm into Kk, then /
and g are regularly homotopic if there is a homotopy

H: MxI^K

such that the track of H is an immersion of M x / in K x / . // is
called a regular homotopy of / to g .
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PROPOSITION 1.1. If f and g are regularly homotopic immersions
of Mm into Kk, then the tangent maps, Tf and Tg, are homo-
topic sections of Mono( TM, TK), the subbundle of Hom( TM, TK)
consisting of maps injective on each fiber.

Proof. Let H be the regular homotopy from / to g. Then the
derivative of H is the homotopy from Tf to Tg.

DEFINITION. We will often need to refer to various points and re-
gions of the ^-sphere. The point (0, . . . , 1) is called the north pole;
the point (0, . . . , -1) is the south pole. The points (xo, ... , XjJ
with xk > 0 constitute the northern hemisphere, which is denoted
S+ those with xk < 0 are the southern hemisphere, denoted 5 * .
The arctic and antarctic regions are those parts of the sphere where
xk > 1/2 and xk < 1/2, respectively, and the temperate zone is the
region -1/2 < xk < 1/2.

DEFINITION. An immersion f:Sk->Rn is said to be a good im-
mersion if the / agrees with the standard embedding of Sk in Rn

on some neighborhood of the south pole. (The standard embedding
of Sk in Rn is given by the inclusion of Rk+ι into Rn by appending
n - (k + 1) zeroes to each point.)

REMARK. Any good immersion / that agrees with the standard one
on a neighborhood of the south pole (say on {(x0, . . . , Xk)\Xk < ~a) ?
where 0 < a < 1) is regularly homotopic to one that agrees with the
standard embedding on the entire southern hemisphere, which can be
seen by considering gt(x) = Ht(f(H^ι(x))), where

Ht:S
k -+Sk: (x0, . . . ,xk)^(x0, . . . , ** + α O / l l ( * o > ••• 9xk + at)\\.

Clearly Ho is the identity, and hence g0 = f. But g\ agrees with
the standard embedding on the entire southern hemisphere, and is
homotopic to / though the maps gt9 t e [0, 1].

The assumption that an immersion is good guarantees that its dif-
ferential takes the standard frame for the tangent plane to the south
pole to the standard k-frame in the tangent space to Rn at the im-
age of the south pole. This is needed for basepoints in homotopy
computations. It will turn out to be unimportant, since most of the
homotopy groups are of topological groups, hence abelian and base-
point independent. All codimension one immersions of spheres will
be assumed good unless otherwise noted. Even higher codimension
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immersions may be assumed good without loss of generality (see the
remark following Theorem 1.4).

DEFINITION. If / : Sk —• Rn is a good immersion, and [/] denotes
its regular homotopy class, then the immersion invariant / [ / ] , is de-
fined as follows:

First adjust / to be good on Sk. Since the northern hemisphere of
Sk, N, is a disk, we fix a section, σ, of the trivial bundle Vk{TN),
i.e., a framing of the tangent bundle over the northern hemisphere.
Pick σ so that σ (northpole) is the standard Λ -frame for the tangent
space to Rk at the north pole. Let us denote by

the standard inclusion.
Now,

Tfoσ:N-+ Vk(TN)-+ Vk(TRn)

and
Tioσ:N^ Vk(TN) -> Vk{TRn)

agree on the equator, dN. Let

j : Sk -> Sk : (*o > , xk) -+ (xo, , -Xk)

and let

e: Vk(TRn) -+ Vnχ. [V\ . . . ,Vk;p]-+ [V\ . . . , Vk\.

Define
e { τ f o σ { p ) h

e(Tioσ(j(p))), peSk-N.

Then /[/] is a map from Sk to Vn^k. /[/] maps the south

pole to the frame [eι, . . . , ek\\ hence /[/] represents an element

of πk(Vn,k)
To justify the name "immersion invariant," we need a theorem due

to Smale [Sma59]:

THEOREM 1.2 (Smale). I[f] is well-defined on regular homotopy
classes of good immersions, and the map I taking regular homotopy
classes of (good) immersions of Sk in Rn to elements of πk(Vn ik) is
an isomorphism of sets (i.e., it is 1-1 and onto) whenever k < n.
In fact the space of maps from the pair (Sk, Sk - N) to the pair
(Vnk, [eι, . . . , ek]) is weak homotopy equivalent to the space of good

= ί
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immersions of Sk in Rn, with the map I being the homotopy equiv-
alence in one direction.

In the case of an (n - l)-sphere immersed in Rn , the situation may
be slightly altered (and made a little simpler).

DEFINITION (of 7). Given a good immersion / : Sn~x —• Rn , the
normal bundle of / is a line bundle over Sn~x, and is orientable,
hence trivial. The tubular neighborhood theorem guarantees the exis-
tence of an extension of / to a map f\Sn~ιxRn which is also an
immersion.

Furthermore, since Sn~ι x / is standardly embedded as a subset of
Rn , it inherits an orientation from Rn . One can choose / so that it
is orientation preserving (if it is not, simply redefine it: /iew(-*, t) =
f(x, -t) for xeSn, tel).

The map Tpf pushes forward the frame [eι, . . . , en] to a frame
[Tpfe

l,...9Tpfe»].Tims

defines a map from Sn~ι to Vn(TRn), and sending [i;1, . . . , vn p]
to [υι, . . . , vn] yields a map

By applying the Gram-Schmidt process to elements of Vn^n we may
alter /(/) to a map / ( / ) : Sn~ι —• SO(n). Because / is good, we
know that /(/) (south pole) = In , the identity matrix. Thus /(/) G

REMARK. Ί(f) is, roughly, the map induced by the differential of
the "tangent-plus-normaΓ map of / evidently if / and g are regu-
larly homotopic (rel the south pole), then 7(f)=7(g) in ππ_i (SO(n)).

DEFINITION. If w1, . . . , un~ι are vectors in Rn, then the cross
product of uι, . . . , un~ι is the vector w such that w is orthogonal
to uι,... , un~ι and

and is written uι x u2 x - x un~ι.

REMARK. The map

Cl Vn9n^ - Vn9n: Ul , . . . , Un~l -> Ul , . . . , Un~l
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FIGURE 1.1

where K; = M1 x x M"" 1 , is a homotopy equivalence of Vn^n_\
with the component of [eι, . . . , en] in Vn^m . Composing with the
Gram-Schmidt process yields a homotopy equivalence from Vn ? „ to
SO(w), so that

LEMMA 1.3. Under this isomorphism, /[/] = / ( / ) .

Proof. Restating the lemma, we claim that Goc(I[f]) and /(/) are
homotopic maps from (Sn~ι, SP) to (SO(AZ) , / ) , where G denotes
the Gram-Schmidt process and SP denotes the south pole. We prove
this by altering each of these maps by a homotopy, and by making a
good choice for σ in the definition of / [ / ] . Assume that / has been
modified (as in the Remark following Proposition 1.1) to agree with
the standard embedding on the southern hemisphere.

Step 1. Construct an isotopy Ht: Rn -» Rn (ί e [0, 1]) such that

(1) A neighborhood of the south pole of Sn~ι remains fixed by
Ht for every t.

(2) Under H\, a neighborhood of the northern hemisphere of
Sn~ι is "flattened" onto a neighborhood of the unit disk of Rn~ι C
Rn, in such a way that the northern hemisphere is sent to the unit
disk.

Figure 1.1 shows this for Sι in R2 . The hatch marks on the circle
denote the division between the southern and northern hemisphere,
i.e., the equator, and the dot denotes the south pole.

Step 2. Construct a map homotopic to /[/] (see Figure 1.2 on next
page). Let σ be a framing of the tangent bundle of Sn~x over the
northern hemisphere, as in the definition of / [ / ] , and let

(e(Tp(Htof)(σ(p))), peN,
t U i I e(Tp(Ht o i)(σ(j(p)))), P e Sn~{ - N.
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FIGURE 1.2

Clearly 70[/] = / [ / ] , and 7i[/] is homotopic to Io[f]. Further-
more, since Ht is the identity near the south pole (SP) of Sn~ι,
/*Lfl(SP) = [el

HtOm , . . . , en

H-o

ι

f{p)], and hence G o c(/,[/](SP)) = /j
thus It provides a homotopy respecting basepoints.

Step 3. Choose a particular framing, σ, of the upper hemisphere.
For each point p e N, H\{p) lies in the Rn~ι plane of i?n , and the
tangent space to Hχ(Sn~λ) at H\{p) is just Rn~ι a natural frame
there is [eι, ... , en~1]. We pull this frame back to SDn~ι by the
differential of H~ι, i.e., we let

The expression for I\ [/] is now

i ή f ] = {

f e(Tp{H, of)(THiip)H-ι)[eι

Hi{p), ..., *»;

e{Tp{Hx o i

p <= N,

peSn~ι-N.

Step 4. Construct a map isotopic to 7(/) . Recall that

= Goe(Tpf[el,...,en

p]).

If we let

= G o e(Tp(Ht o f)[THt{p)H-ι[e{

H{p), . . . , en

H{p)]])

(see Figure 1.3) then

(a) 7o(/) = / ( / ) , because /ίo is the identity on i? 4 .
(b) Ίt(f)(jp) = Ί(f)(p) = I for p near the south pole, because near

the south pole, Ht is the identity for all t.
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Hence 7\ (/) and /(/) represent the same element of

In particular, the lemma now reduces to showing that Goc(I\[f]) and
7i(/) represent the same element of πn-\(SO(n), / ) .

Step 5. Observe that Goc(I\[f]) and 7\(f) are identical, and thus
prove the lemma.

Writing out the formula for 7\ (/), we get

For p e N ,-we have

(Goc)(/,[/l(p))

= (jOCOi

These are evidently identical frames, at least for the first n -1 vectors.
But the last vectors must agree as well, since both frames are positively
oriented.

For p € Sn~ι - N, we have

1%

(Goc)(/,[/](p))

= ( G o c o e ) ( T p ( H ι o i ) [ T H ι { p ) h χ \.*Hi{p), •••

= ( G o c ) [ e \ . . . , e n - 1 ]
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whereas computing the same thing for Ί\, we get

Λ (/)(/>) = (Goe^Tp^oiXTH^H^le^

= {Goe){THχ{p){Hx o ioHΐι)[eι

HιU{p))

= L

Thus the two maps agree on both hemispheres, and the lemma is
proved.

We now define three sets of immersions, using the notions of bor-
dism and regular homotopy. Bordism and oriented bordism of im-
mersions are defined in [Wel66]. Essentially, two immersions of k-
manifolds in n-space are bordant if there is an immersion of a k+l
manifold-with-boundary in Rn x [0, 1] whose boundary consists of
the original immersions.

DEFINITION. I(n, k) is the set of bordism classes of immersions of
n-manifolds in Rn+h . SI(n, k) is the set of oriented bordism classes
of immersions of oriented n-manifolds in Rn+k .

DEFINITION. lmm(n, k) is the set of regular homotopy classes of
immersions of Sn in Rn+k .

REMARK. Both I(n,k) and SI(ΛI, A:) are groups under the opera-
tion of "disjoint union of immersions." The inverse of an immersion
in I(n, k) is gotten by reflecting through a hyperplane (see [Wel66]).
That this is not the inverse in SI(n, k) will become apparent (see
Lemma 2.5 and the discussion at the start of §4).

REMARK. Smale's theorem gives a correspondence of a set, namely
Imm(S*, Rn), with a group, πk(Vn k), thus putting a group structure
on the set. The following definition of connect-sum of immersions
gives a geometric operation on I m m ^ , Rn). The theorem follow-
ing it shows that this geometric operation corresponds to the group
operation in [ )

DEFINITION (oriented connect sum of immersions). Given two good
immersions f,g:Sk-^Rn, f is regularly homotopic to an immer-
sion / agreeing with the standard embedding on all except a disk^jri
the northern half of the eastern hemisphere, (i.e., x^+1 > 0, x^ > 0).
Similarly g is regularly homotopic to g which agrees with the stan-
dard embedding on all except the northern half of the western hemi-
sphere xk+x > 0, xk <0. (See Figure 1.4.)
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We now define the oriented-connect-sum (or just connect-sum) of
(the regular homotopy classes of) / and g, f#g, to be the immersion

( f(x), x G Northeast,

g(x), X G Northwest,

f(x) or g(x), x G South.
REMARK. The immersion f#g is not really well-defined, for it de-

pends on the choice of / and g. Its regular homotopy class is well-
defined however.

THEOREM 1.4. If f ' , g: Sk —• Rn are good immersions, then I(f#g)
in πk(VnΛ).

Proof. By pictures. Sk will be drawn as a cube with boundary
identified to a point, this point being the south pole. The northern
hemisphere is the interior of a concentric cube, and the southern hemi-
sphere the exterior of that cube.

Note that f = g on the southern hemisphere.
We surround / and g by the homotopy H used in the proof of

Lemma 1.3 to get new maps in Sk that send eι, . . . , ek to eι, . . . , ek

wherever they agree with the standard embedding on Sk . Let * de-
note the frame [eι, . . . , ek] in Rn. The map / ( / ) : Sk -+ VnΛ is
depicted schematically in Figure 1.5; the maps I(g) and I(f#g) are
shown in Figure 1.6.
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FIGURE 1.7

Note that the homotopy product of /(/) and I(g) is gotten by
adjoining the pictures for /(/) and I(g) along a face, and can thus
be shown as in Figure 1.7. This is evidently homotopic to I{f#g).

REMARK. The constraint that an immersion be good ensures that
the south pole is taken to a particular frame in Vnk, i.e., ensures
that basepoints are preserved so that the elements of the homotopy
groups all have the same basepoint. But if π\(X) acts trivially on
nn(X)9 then basepoints are irrelevant in πn(X). This happens in
particular for Vnjc when n>k+l (since π\ is then zero, see [Ste51,
§25.6]). Also, if n — k + 1, our computation yields an element not of
π/!-i(*Λ,Λ-i) but of πΛ_i(SO(n)). Now SO(w), being a topological
group, is n-simple (i.e., has trivial π\ action on πn) for every n
(see [Ste51, 25.6, 16.6]). Thus we may expand the definition of / to
take regular homotopy classes of (not necessarily good) immersions
to elements of homotopy groups of either Stieίfel manifolds or special
orthogonal groups.

Nonetheless, it is important to restrict our attention to good immer-
sions when we apply Smale's theorem to compute n\ of the space of
immersions of Sk in Rn. For example, when k = 2 and n = 1, a
generator for the fundamental group of the space of all immersions
is given by spinning the standard embedding of the sphere on its axis.
This is one of two generators. The second is also a generator of the
fundamental group of the space of good immersions, and is gotten by
everting the sphere twice (see [MB81]).

In the "free homotopy" setting (i.e., no goodness constraint) Figure
1.8 should make it clear that the oriented connect sum of immersions,
as just defined, is regularly homotopic to the immersion one gets by
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f#g

tube
FIGURE 1.8

"tubing together the images of / and g." It is important that the
tube be oriented properly.

DEFINITION (tube-connect-sum of immersions). If / and g are
immersions of Sk in Rn, the tube-connect-sum of / and g, f\\g,
is constructed as follows.

Let p be a point of Sk and U be a disk about p so small that
f\U, g\U are embeddings, and let γ: I —• Rn be a smooth curve
from f(p) to #(/?), such that γ'(Q) is in the normal bundle of f{U)
at f(p), and similarly for / ( I ) . Furthermore, if fc = n — 1, let /(0)
be the outward normal to f(U) at /(/?) and / ( I ) be the inward
normal to g(U) at #(/?).

The normal bundle to γ in f(U) and ^(C/) is a trivial fc-disk
bundle over the ends of γ. The normal bundle to γ in i?" is a
trivial (n - l)-disk bundle. The λ>disk bundle over the ends extends
to a /c-disk sub-bundle of the (n - l)-disk bundle (since τi\Gn^ = 0
unless k = n — 1, in which case the normality assumption ensures the
extension).

Let β: I xDk -+ Rn parameterize the image of this fc-disk bundle
in such a way that (considering / x Sk~ι as the temperate zone of

β(x) =foj~ι(χ) for x e darctic,

β(x) z=g o j~ι(x) for x G dantarctic,

where jj: Sk -U -^ Sk takes Sk - U diffeomorphically to the arctic
(/ = 1) or the antarctic (/ = 2).
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Now define

{ foj~ι(x), xe arctic,

β(x), x G temperate zone,
g o j ~ x (x), x G antarctic.

LEMMA 1.5. If f and g are immersions of a k-sphere in Rn , then
f#q and f\\q are regularly homotopic.

Proof. The proof is similar to that of Lemma 1.2, and consists of
adjusting the domains to make the two maps agree. We leave the
details to the reader.

Henceforth we will use f#g to denote either oriented- or tube-
connect-sum.

DEFINITION. If Mn is a smooth, closed, oriented manifold and
/ : Λf —• Rn+ι is an immersion, the normal degree off, v(f)9 is the
degree of the Gauss map of / . The Gauss map is defined by taking, at
each point p of M, an oriented frame [v*, . . . , v£], and considering

n{p) = dfpv
ι

p x x dfpυ» e TfmRn+ι

(the vectors vι

p need not vary continuously with p). After normal-
izing and forgetting basepoint, n{p) lies in Sn and varies smoothly
with p . The map n: M —• Sn is the Gauss map.

2. Regular homotopy classes of immersions of S3 in R4. This sec-
tion is devoted to developing tools with which to compute the immer-
sion numbers of a 3-sphere immersed in R4, and exhibiting a pair
of generators for this group (under the operation of oriented connect
sum).

Recall that π^ SO(4) = π3*S3 = Z ® Z, with generators σ and p
(see [Ste51, 22.7]). If / : S3 -> R4 is an immersion, then /[/] is in
π 3 SO(4), so /[/] = (/!(/), 72(/)) eZ@Z. Since /[/] G π3 SO(4),
we use /[/] to denote a map from S3 to SO(4) (i.e., a particular
representative of the homotopy class of /[/]) . In the same way, we
let I\ (/) denote a map from S3 to S3 .

LEMMA 2.1. The standard embedding of S3 in R4 has immersion
invariants (0, 0) e π3 SO(4).

Proof. The differential applied to the constant frame [eι, . . . , e4]
is the constant map S3 —• / G SO(4).
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LEMMA 2.2. The first immersion number, I\ (/), is related to the
normal degree, v(f), by

Proof. From the definitions,

where q is a point of S3, e\ is the vector ^ e i? 4 , considered as
an element of the tangent-plus-normal bundle of S3 at #, and ^
denotes the vector from 0 to q in R4, considered as an element of
the same fiber.

Let L(#) denote left multiplication by the quaternion q acting
on R4, or on any tangent plane to R4 . Then at each point q e S3,
L(q): TqR

4 -» TqR
4 takes ej to the normal vector to S 3 at q, namely

qq . Thus qq = L{q)e\ , so

The degree of TqF . L(^) is degree (Γ/) + degree(L) = 7^/) + 1 ?

and the lemma is proved.

THEOREM 2.3. The standard (Froissart-Morin) eversion of S2 in R3

has, as a track, an immersion of S2 xl in R4, whose ends are embed-
ded S2s. Each of these bounds a 3-ball in R4. Capping off the track
with these 3-balls gives an immersion K: S3 —> R4. Performing the
eversion twice and capping off gives an immersion E: S3 —> R4. The
immersion numbers of E and K are

= (0,1),

I[K] = (-1,0),

perhaps after reflections in the domain and range.

The proof of this theorem requires several preliminary results.

LEMMA 2.4. The composition of the standard embedding with reflec-
tion through the x-axis of R4, namely r(x, y, z, w) = x, -y, -z,
—ΊU , is an immersion with invariants (—2, 1). The same is true when
the embedding is composed with reflection through the y-z-w-plane,



170 JOHN FORBES HUGHES

r(x, y, z, w) = (—x, y, z, w), <2m/ hence for reflection through any
plane, since all such reflected embeddings are regularly homotopic.

Proof. To compute this, we extend the reflection through the x-
axis, (x, y, z, w) —• (Λ: , -y , - z , — tu), to an orientation preserving
map of a neighborhood of S3 in i? 4 . Such a map is quaternionic
inversion, q —• <7/||tf||2, i.e.,

w S 3 x / -* i?4 _ + * + * + dk -> a~bi~ CJ ~ ^

The differential of this map is just (after restriction to S2):

-lab -lac -lad
-l+lb2 Ibc Ibd

q Ί τ Icb —\ + lc2 led
Idb Idc -l + ld2

The first column, A1, represents a map from S3 to S3, which
we write q —> ̂ ( t f ) ; i*s degree is evidently - 2 , since it is simply
the map q —> -q~2. To compute the second invariant, we must
compute L{Ax{q))-χ Tqw which is in SO(3) C SO(4). (Here L(q)
denotes the map from R4 to R4 given by left multiplication by the
quaternion q 9 or the matrix representation of this map with respect to
the standard basis. The superscript of - 1 indicates matrix inversion.)
The computation yields, after considerable simplification,

1 0 0 0
0 2Z?2 + 2 α 2 - l Ibc-lad Ibd + lac
0 lad + Ibc lc2 + la2-\ led - lab
0 Ibd - lac led + lab Id2 + la2-\

L(Ax(q)Y

This the generator for π3(SO(3)) (see [Ste51, 22.7]).
Finally, the result for reflection in the y-z-w -plane follows because

reflection through the x-axis and reflection in the y-z-w -plane are
isotopic.

REMARK. One way to check this theorem is with a bordism calcu-
lation. The / homomorphism, which takes regular homotopy classes
of immersions of Sn in i?w + 1 and considers them as bordism classes
of immersed n-manifolds in Rn+X, is the same as the classical ^?-
homomorphism from πnSO(n + 1) —> πs

n (R. Lee, communicated
through Carter). In the case of π^ SO(4) to πf, it factors through
π3 SO(5) by inclusion. Since the reflection of the standard sphere is
evidently null-bordant, /(—2, ή) = 0, whatever the right n may be.
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But in this dimension, J(x9y) = x + 2y mod 24. Since we know
n = ± 1 , the only possible conclusion is n = 1.

LEMMA 2.5. If f: S3 —• i?4 is an immersion and r: R4 —> i? 4 :
(x, y, z, tϋ) —• (x, —y, - z , —tu) w reflection, then

Proof. The extension, / , of / used to compute /(/) will not do
for computing /(/Or) (it is not an orientation preserving extension).
Nonetheless, if we let w: S3 x I —> S3 x I denote quaternionic inver-
sion, then fow is an orientation preserving extension of / o r , since
w = r on *S3, and both / and w are orientation preserving maps
from subsets of R4 to R4. To compute /(/or) we need therefore
only compute the homotopy class of T(fow) in π^ SO(4). Since

and point by point multiplication of matrices is the sum in π^ SO(4),
we get that 7(/o r) is the sum of the classes represented by (Tf) o
ttf and Γtϋ. Now (Tf)ow represents — 7(/), since reversing the
orientation of S 3 (which is what w does) changes the sign of an
element of π3SO(4), and Tw represents (-2, 1), by the proof of
Lemma 2.2.

The computation of the immersion invariant when a reflection is
made in the image rather than the domain is substantially more com-
plicated.

LEMMA 2.6. If / : S3 —• R4 is an immersion with invariants (s, p),
and r: R4 —• R denotes reflection in the x-axist then the immersion
invariants of TO f are given by

I(rof) = {-2-s, l+p+s).

Proof. Again the proof relies on choosing the proper extension for
rof given an extension, / , of / to *S3 x/. In this case, an orientation
preserving extension of r o f is given by

r o / = r o / o w ,

where u: R4 —• R4: q —• # / | | # | | 2 . In coordinates,

u(a, b, c , d) = ~ , , , , . , , . ( α , ό , c, d) .
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For convenience, let / denote the
1
0
0
0

0
- 1

0 -
0

matrix
0
0

-1
0

0
0
0

- 1

Note that J2 = 1, the identity matrix, and / = drx for every x.
Now the differential of r o / can be computed as follows:

= TR
ΐorxeS*TRx)r Tj Txu

= JTxfJTxw

where w: R4 —• R4: q —> #/||#||2 is quaternionic inversion, so that
u = r o w. To compute which homotopy class this represents in
π3 SO(4), we need only observe that Tw: S2 —• SO(4) represents the
class (-2, 1) by the proof of Lemma 2.4, and then we must compute
the class represented by / Tj / . Recall that the immersion invari-
ants of / are (s, p). Tf must be homotopic to a product of left and
right quaternion multiplications (since these generate π^ SO(4)—see
[Ste51, §22.7]). In particular, using the specific generators q -> L{q)
and q —• R(q), where R{q) denotes right multiplication by q, to
write the generators σ and p (σ is the class (1, 0), while p is
(0, 1)), we get

Tgf=L(qs)L(qP)R(q-η.
Observing that the matrices for L(q) and R(q) are

a -b -c -d
b a

d
-c

L(q) = -d
a
b

c
-b

a
and

R(q) =

-b
a

-d
c

-c
d
a

-b

-d
-c

b
a

we can see that / L(q) / = R(qY = R(q~ι). Applying this to the
formula for Tf, we get

J.TJ. = J.L(qs).L(qη . R ( q ~ η . J

= J L(qs) -J-J- L(qp) -J.J- R(q~p) /



LOW-DIMENSIONAL IMMERSIONS 173

Thus the total immersion invariant for rof is (s,p + s) added
to (—2, 1), which proves the lemma.

Given a homotopy, H, of maps from S?L to any space, X, we may,
provided H satisfies certain conditions, define η(H) as an element
of π$X in the following manner. First of all, H: Sϊ. x / —• X must
satisfy the condition H(p, 0) = H(p, 1) for all p e Si (i.e., H must
be a loop of maps), and secondly, H must satisfy H(p, t) = H(p, tr)
for all p e dS2 and all t, tf e l .

In this case, there is a map defined on the quotient of Si x / by
these identifications, which is homeomorphic to S3. This quotient
map is called η(H).

LEMMA 2.7. If two hornotopies, H, K: S?L x / —• X are homotopic
by a homotopy which respects the identifications used in defining η,
then η(H) = η(K).

LEMMA 2.8. The map i: F 3 j 2 -» V3y3: [υι, v2] -• [v 1 , ̂ 2 , t ' 1 x i ; 2 ]
induces an isomorphism on π$.

Proof, The fiber of this map is S°, so the result follows from the
homotopy sequence of a fibration.

Banchoff and Max prove that, if / : S i x / —• R3 is twice the
Froissart-Morin eversion (restricted to the southern hemisphere), and
we define dJ(p, t) = TpJt[Vp , υ2], where [Vp , v2] is the frame on the
southern hemisphere induced by stereographic projection of the stan-
dard frame on R2 then η{dJ) is a generator of n^V^^ (see [MB81]).

LEMMA 2.9. Let J denote an extension of J to an orientation pre-
serving immersion of a neighborhood of S}_ (for each t). If we define
dJ by

dJ{p, t) = TpJt{vι

p yυ
2

yv
ι

px v2),

then η{dJ) = iη(dJ).

Proof. Given any two oriented frames in i?3 with the same first
two vectors, say [a1, a2, a3] and [a1, a2, b3], there is a natural de-
formation from one to the other through oriented frames: [a1, a2,
s a2 + (1 - s) b3]. Applying this deformation pointwise to the frames
i(dJ) and d J proves the lemma, since / and η commute.
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We may therefore conclude that for the regular homotopy / , dJ
is a generator of π 3 V$ 9 3 .

We now alter the choice of the frame that is pushed forward. Since
any two (oriented) framings of the trivial 3-plane bundle over the
lower hemisphere (i.e., sections of the frame bundle of this bundle) are
homotopic (the lower hemisphere is contractible), we pick a homotopy
H from the framing [v£ , υ2 ,vj, x v2] to [e1, e2, e3] (the constant
frame consisting of the standard basis vectors). If we define U - s:
Si x / -• K3 ) 3: (p, t) -• TpJtH(s) then we see that dJ is just Uo.
Furthermore, η(Us) is independent of s (since each stage U — s re-
spects the identifications in the definitions of η). Hence η(U\) gen-
erates π3F 3 j 3. We restate this observation in the following lemma:

LEMMA 2.10. If J is F (the Froissart-Morin eversion) followed by
rF, and Jt is (for each stage of the homotopy) an extension of Jt to
an orientation preserving immersion of a neighborhood of Si in R3,
and

Q:S2_xI^V3y.(p,t)-+ TpJt[eι, e2, e3]

then η(Q) generates

We now use this observation to compute the immersion invariant
of the immersion of S3 in R4 gotten by capping off the track of the
doubled Froissart-Morin eversion. To do this, we identify S3 once
and for all as the union of three parts: a lower hemisphere, consisting
of those points of a unit sphere with center ( 0 , 0 , 0 , 0 ) whose fourth
coordinate is non-positive; a center cylinder, S2 x / , with radius 1
and the segment from ( 0 , 0 , 0 , 0 ) to ( 0 , 0 , 0 , 1) as its axis; and an
upper unit hemisphere, with center at (0, 0, 0, 1), and whose points
all have further coordinate greater than or equal to one (see Figure
2.1).

We immerse this sphere into R4 in three parts as well: the lower
hemisphere is immersed by the identity; the center cylinder is im-
mersed by the track of the regular homotopy / and the upper hemi-
sphere is immersed by the identity as well. This is the immersion we
call E.

To evaluate the immersion invariant, we extend this to an orienta-
tion preserving immersion of a neighborhood of S3. We then push
forward the standard frame at each point by the differential of this
extended immersion to get an element of n{V^^ = π$ SO(4), which
is the immersion invariant.
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Let us compute this invariant piece-by-piece as well. On both the
northern and southern hemispheres, the original immersion is the
identity, so that we may extend it to be the identity on a tubular
neighborhood of these sets. Once we have performed this extension,
the difFerential of the immersion is the identity on these regions, hence
the standard frame is pushed forward to the standard frame (the base-
point of V4i4).

Similarly, since the northern hemisphere of S2, S+ , is left fixed by
each stage of / , we see that S+ x / is also immersed by the identity
in the original immersion. By the same argument, we may therefore
extend it so that the standard frame is pushed forward to the standard
frame.

Finally on the southern hemisphere of S2, we have computed the
value of the differential of / on the standard frame of R2 . The new
(extended) immersion can be defined on ^ x / by

where / is the orientation preserving extension of / used above.
The difFerential of this extended immersion is therefore the direct

product of the difFerential of / and the 1-by-l identity.
Hence the immersion invariant for the immersed S3 is just aη(dJ),

where a: ^33 —• V4i4: [vι, υ2, v3] -> [υι , v2, υ3, e4] and the vιs
on the right hand side are the inclusions of the corresponding vectors
from the left into R4.

This is nearly the generator ±p of ^ 3 ^ 4 , except it is in the wrong
corner; we correct this with the following:

LEMMA 2.11. Ifq->P(q) is a map of S3 to SO(3),.then q -» S{(gf.
and q —• S ί̂tf) are homotopic maps from S3 to SO(4), where S\(q)
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and S2{q) are defined by

1 0
0
0
0

'.Let

0

P(Q)

M{t)

0

be a

J

Jy.

= Sι{q)

t path in

0
1
0
0

0

SO(4)

0
0
1
0

0
0
0
1

0

with

- 1
0
0
0

0
0
0

0 1

M(0)

*

= S2(g).

Then M(0) 5Ί(ί) M(0)' = S{(q) and M(\) . 5Ί(ί) Λ/(l)' =
Thus i/(<?, s) = M(s) 5Ί(ί) M(sY provides the required

homotopy.

Thus the immersion invariants of E must be (0,1) or ( 0 , - 1 ) .
If the invariant is (0, 1), we may alter E by a reflection in both the
domain and range. Lemmas 2.5 and 2.6 then let us compute

= - ( - 2 , - 0 , l + 0 + - l ) + (-2, l) = (0, 1).

Thus we have:

THEOREM 2.12. For the immersion E of S3 in R4, the invariants
are (0, 1) e π3SO(4) = Z ® Z. (Perhaps after reflections in both
domain and range).

THEOREM 2.13. For the immersion K of S3 in R4, the invariants
are ( - 1 , 0 ) . (Perhaps after a reflection in the domain.)

Proof. The proof depends on the results proved in the beginning of
this section. It is evident that if r\ is reflection in the y-z-w -plane
of R4 and r2 is reflection in the x-y-w -plane of R4, then

E = (Kr2K).rx

(recall' # ' denotes oriented connect sum of immersions).
The computation of I(K) from this formula goes as follows. First

of all, the normal degree of K is zero, since the normal vector to K
never points in the e4 direction (it does point sometimes in the -e4

direction), so I(K) = ( - 1 , ή) for some n. Thus I(r2K) = ( - ! , « )
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as well, by Lemma 5.6. Finally, using the fact that /(/or) = (-2, 1) —

I if), w e ge t

= ( - 2 , 1 ) + (2,-2/1)

so that 1 = 1 - In, so « = 0.
In the event that I{E) = (0, -1) we get I{K) = ( - 1 , - 1 ) . But

then composing with a reflection in the domain gives Kf with I(K') =
( - 1 , 0 ) , by Lemma 2.5.

3. Immersions in R4 that bound: invariants and constructions. When

an immersed S 3 in R4 bounds an immersion of an orientable 4-
manifold in R4, the immersion invariants are related to the charac-
teristic classes of the 4-manifold. We compute this relationship in
Theorem 3.1.

THEOREM 3.1. If M is a closed, compact, oriented 4-manifold, U
is a A-ball in M, MQ = M - U, and f: Mo —> R4 is an orientation
preserving immersion, then f restricted to the boundary of Mo is an
immersion of S3, and

I(f\dM0) = (χ(M) - 2, -\px{M) - \χ{M) + 1),

where χ(M) is the Euler characteristic of M and P\(M) is the Pon-
triagin number of M.

Proof. The proof comes in three steps:

(1) To compute I(f\dMo), we compare a pushed-forward frame
from ΘMQ with the constant frame on R4 .

(2) To compute the clutching function for TM (hence compute
χ(M) and p\ (Af)), we compare a framing of MQ (we use the pullback
of the constant frame on R4) with the constant frame on U.

(3) We check orientations and some facts about conjugation in
homotopy to conclude that (1) and (2) are related.

Step 0. The Gram-Schmidt process, G: SL(4) -> SO(4) induces an
isomorphism in homotopy, so we work in SL(4) rather than SO(4)
when it is more convenient.

Step 1. Let [β1, . . . , ε4] be an oriented frame on U and [eι,
. . . , e4] be the standard frame on R4. Then for each p e dU,
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[Tpf(eι), . . . , Tpf(ε4)] is a frame at f(p). Denote this frame (or
element of SL(4)) by s(p). (One gets an element of SL(4) by writing
the vectors Tpf(εi) in terms of the standard basis.) Loosely (ignoring
the Gram-Schmidt process), [s] = /(/) e π 3 SL(4).

Step 2. Letting /*(/?) denote the inverse map to Tpf 9 we have a
frame [f*(p)eι, . . . , /*(/?)e4 p] of ΓPMO for each p eM0. Since
/ is orientation preserving, this frame gives the same orientation as
[ει, . . . , ε4] on d U. Hence there is, for each p e dU, an element of
SL(4) (we call it c{p)) such that

(All vectors are written with respect to the basis [ε1, . . . , ε4].)
This clutching function, c: dU —> SL(4) is related to the charac-

teristic classes / and p\. First, suppose that we have applied the
Gram-Schmidt process, so that c: dU —> SO(4).

Now let k: S3 —• d U be an orientation preserving diffeomorphism,
and let r: S3 —• S 3 be quaternionic inversion. Then /: o r : 5 3 —• d U
is orientation preserving and

c = cokor:S3 -> SO(4)

is related to the characteristic classes of M.
First of all, composing with projection of a frame to its first vector,

SO(4) -+S*:[A1,..., A4] -> A1, gives a map πx or. S3 -> S3, whose
degree is the Euler characteristic of Mo (since its degree is precisely
the obstruction to extending the vector field f*(p)eι over the last disk,
I/, of M).

Furthermore, composing with /: SO(4) —• SO(5), the map which
takes a 4-by-4 matrix and makes it 5-by-5 by adding 1 in the upper left-
hand corner, gives an element of π^ SO(5). This is just —\p\ (M) (see
[KM58]). Furthermore, i: π 3 SO(4) -^ π 3 SO(5): (a,b)-+(a + 2b),
where we are using, as generators of π3SO(4) and π 3SO(5), the
standard elements σ and /?, and iσ, respectively. (See [Ste51, §22.7,
23.6].)

Thus, if we write {a,b)eZ@Z = π3S
3 + π3 SO(3) = π3 SO(4) for

w ^ get

and

a = χ(M), so

-2b = χ(M) + ι

lPι(M), and

b= - \χ(M)-\px{M).
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Hence c represents the element (/(Af), -\χ(M) - \p\{M)) in
π 3 SO(4).

Step 3. Evidently s and c are related. Letting j(p) denote the ma-
trix of Tpf with respect to the bases [ε 1, . . . , ε4] and [eι, . . . , e4],
we have c(p) = j{p)~ι s(p) j(p). Letting s = s o /:, we get that

= — [c o k or o r]

= - [ί].

Thus [c] = -[5] is I{f\dU), and we wish to find I(f\dMQ). Since
this is just the oppositely oriented immersion, we use Lemma 2.5
to get I(f\dM0) = (-2, 1) - I(f\dU) = (-2, 1) + [c] = (-2, 1) +
(χ(M), — ̂ ( A ί ) - |pi(Af)), which proves the theorem.

REMARK. It is clear that this theorem works in more generality: the
immersion invariant of a codimension one immersion of Sn is re-
lated to the clutching function of the tangent bundle of an immersed
(n +1)-manifold which it bounds. If one chooses the usual orientation
convention, as we have done, the clutching function must be altered by
the immersion invariant of the reflected sphere ((2, -1) in this case)
to get the immersion invariant we desire. If the boundary immersion
is given the opposite orientation, then the clutching function and im-
mersion invariant are related directly. The only remaining step, for
the general case of the n-sphere in codimension one, is to identify the
relation of the clutching function of an almost parallelizable manifold
to the characteristic classes of the manifold.

4. Groups of low dimensional immersions. The lowest dimensional
immersion groups are 7(0, k) = SI(0, k) = Z/2Z (generated by a
map of a point to Rk), and Imm(0, k) = 0 (all k)\ 7(1, 1) =
SI(1, 1) = Z/2Z, Imm(l, 1) = Z , all generated by the Figure 8;
7 ( 1 , k) = S I ( 1 , k) = I m m ( l , k ) = 0 ( k > 2 ) .

The groups 7(2, 1) = Z/8Z and SI(2, 1) = Z/2Z have been
extensively studied (see [Bro70], [Car86], [HH85], [Ban74], [Ecc79],
[Ecc80]). Imm(2, 1) = 0, by Smale's theorem, with the remarkable
corollary that a sphere may be turned inside out.
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For 3-manifolds, the following groups are computed in [Wel66] and
[SteSl]:

7(3, 1) = Z/2Z , SI(3, 1) = Z/24Z ,

7(3, 2) = Z/2Z, SI(3, 2) = Z/2Z , Imm(3, 2) = Z/2Z.

In this section we give generators for each of these, and geomet-
ric invariants that help determine the class of an immersion in these
groups.

The map Imm(S 3 , R4) = Z Θ Z to SI(3,1) can be computed as
follows (see [Fre78]). The map factors as

τr3 SO(4) -> π 3 SO(5) -+ • π 3 S O -> πs

3(Sι)

where the last map is the classical /-homomorphism, which is a sur-
jection. Since π 3 SO(n) —• π 3 SO(Λ + 1) is an isomorphism for n > 5,
we need only compute the map

Z®Z = π3SO(4) -> π3SO(5) = Z.

According to [Ste51] this is just (a, b) —> a + 2b. Thus the image of
the immersion K (the capped eversion) will be J(K) = 1 (mod 24),
a generator.

Note that K has a single quadruple point. The number of quadru-
ple points of a generic immersion, taken mod 2, is a bordism invari-
ant, so even in 7(3, 1), K must represent a non-zero element. But
7(3, 1) = Z/2Z , so K is only non-zero class.

Similarly, if we include K into 7?5, we get a new immersion K':
S3 —• 7?5. The invariant of Kf can be computed from the invariant
of K, (1, 0), by working on the level of homotopy groups. For this
purpose we return to Smale's definition of the immersion invariant
and think of I(K) as lying in π 3 (p4 3 ) rather than π 3SO(4). The
inclusion of R4 induces a map from V^^ to F 5 ? 3 which appends a
zero as the last coordinate of each of the vectors in a frame. On the
level of the definitions, since

a n d v ^

the map is inclusion of SO(4) into SO(5) modulo the inclusion of
SO(1) into SO(2). For the sake of computing π 3 , F 5 3 is the same
as SO(5), since π^S1 = π2S

ι = 0. The map from π3SO(4) to
π 3 SO(4) (with respect to the generators in Chapter 20 of [Ste51]) is
just (a, b) —• a + 2b hence the invariant of K1 is just 1 + 2 0 = 1.
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Thus K1 generates Imm(3,2). We now exhibit an immersion
L: S3 —> R5 which generates 7(3, 2), hence conclude that the map
Imm(3, 2) —> 7(3, 21) is surjective. This then shows that K! also
generates 7(3, 2) and SI(3, 2).

The immersion L is defined by

2xy + w(x2 -y2)
xz - wy + x(x2 + y2)

-yz - wx + y(x2 + y2)
z
w

The enthusiastic reader may verify that this does, in fact, define an
immersion, with double point set given by

{dθ = (β cos 0, β sin 0, β2 cos(π - 20), β2 sin(π - 2(9)): 0 e [0, 2π]}

where

Note that L(dβ) = L(dβ+π). Thus the double point set, parameter-
ized by 0, is a single circle in the image, double covered by a single
circle in the domain. Therefore a neighborhood of the double curve
in the image must be a nontrivial D2 ΛD2 bundle over Sι. Theorem
4.1 below shows that L must therefore be a generator of 7(3, 2).

For a generic immersion of a 3-manifold in R5, define the twist of
a double curve as follows: a neighborhood of the double curve in the
image contains a portion of the image of the 3-manifold. This portion
is a D2 A D2 bundle over the S1. The twist is zero if the D2 Λ D2

bundle is a product bundle, and is one otherwise. The total twist of
the immersion is the sum of the twists along all double curves, taken
mod 2. (This definition applies only to generic immersions. To apply
it to a non-generic immersion, the immersion must first be perturbed
to be generic.)

THEOREM 4.1. Total twist is a bordism invariant for 3-manifolds in
i? 5 .

Proof. The only events that occur during a generic bordism of a
3-manifold in R5 are

(1) Addition of handles (by general position, we may assume the
attaching regions for 0-, 1-, and 2-handles all miss the double curves).
By turning upside down, we convert 3-handle additions to 0-handle
additions, which we may once again assume to miss the double curves.
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(2) Creation of new double curves (or extermination of old ones).
(3) Merger or splitting of double curves (including self-merging),

and
(4) Appearance of a triple point (transient).

The last three all occur during regular homotopies as well, and in
fact away from levels at which handles are added, a bordism is a
regular homotopy. It is known that twisting invariants like this are
regular homotopy invariants, but we will give a few details regardless.

It is evident that (1) and (4) have no effect on the triviality of the
D2/\D2 bundle over any double curve in (2), only trivial new bundles
are formed (which one sees by looking at a standard model of double-
curve creation), hence the total twist does not change. In case (3), we
describe the situation when two distinct curves merge, and leave the
remaining cases to the reader.

In a neighborhood of the double curve, the immersion must locally
resemble the intersection of 3-planes in R5. We call each 3-plane a
sheet, although this makes sense only locally.

A neighborhood of a merger must look like Figure 4.1 in the preim-
age of one sheet of the intersection. The arcs are the preimages of the
double curves, and the two parts of the figure show these preimages
before and after the merge.

If there is a section of the D2ΛD2 bundle over each sheet in Figure
4.1 (a), we may suppose that these sections are in our sheet, and hence
locally resemble Figure 4.2(a).

One can evidently convert this to a section of the bundle after the
merger, as in Figure 4.2(b).

FIGURE 4.1

FIGURE 4.2
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a b

FIGURE 4.3

In the event that both components of the double curve before the
merger have twist one, a similar procedure works. One simply takes a
section of the bundle, as shown in Figure 4.3(a), away from the merger
point. The dotted line indicates that the cross section is in this sheet
as it approaches the merger point from one side; the absence of the
dotted line in the lower half of the figure indicates that it is in the
other sheet there. After the merger has taken place, the section can be
made continuous, by joining the two dotted lines in Figure 4.3(a), and
joining the two dotted lines that appear in the corresponding view of
the situation in the other sheet. Thus after the merger the bundle is
trivial, and the total twist for these two components is unchanged.

Since there exists an immersion of S 3 in R5 with total twist one,
the twist map is onto Z/2Z . Hence we have proved

THEOREM 4.2. The total twisting along double curves, taken mod 2,
is a complete bordism invariant for oriented or unoriented ^-manifolds
in R5.

Total twist is inadequate as a measure of the regular homotopy class
of an immersed *S3 in R5, for there are examples of embedded S3s
in R5 that are not regularly homotopic to the standard embedding
(see [HM85]).
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