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FREE BANACH-LIE ALGEBRAS,
COUNIVERSAL BANACH-LIE GROUPS, AND MORE

VLADIMIR G. PESTOV

The construction of free Banach-Lie algebra over a normed space
enables us to build a connected separable Banach-Lie group of which
any other connected separable Banach-Lie group is a quotient. New
proofs are given to the result on representability of any Banach-Lie
algebra as a quotient of an enlargable Banach-Lie algebra (due to
van Est and Swierczkowski) and to the result on representability of
any topological group as a quotient of a group with no small subgroups
(due to successive efforts of Morris and Thompson, the author, and
Sipacheva and Uspenskiϊ).

1. Introduction. Over the last 50 years a number of constructions of
"universal arrows" (see, e.g., [Go]) to the categories of topological al-
gebraic systems have been studied. Important contributions are those
by Markov [M], Graev [Gr], and Arhangel'skiϊ [A2] on free topologi-
cal groups, Mal'cev [Me] on free topological algebras, Arens and Eells
[AE], Raϊkov [R], and Uspenskiϊ [U] on free Banach spaces and free
locally convex spaces. By virtue of these constructions a first ever ex-
ample of a non-normal Hausdorff topological group was obtained [M],
and the representability of any topological group as a quotient group of
a zero-dimensional group was proved [Al]. Here we apply the concept
of a free complete normed Lie algebra to theory of topological and Lie
groups. Our construction is an extension of the well-known construc-
tion of Arens-Eells [AE] to the case of normed Lie algebras. Our main
result is that there exists a couniversal separable connected Banach-Lie
group, that is, such a separable connected Banach-Lie group that any
other such Banach-Lie group is its quotient Lie group. This follows
from observation that any free Banach-Lie algebra is enlargable, that
is, comes from an approriate Banach-Lie group. Also we give entirely
new and rather transparent proofs of two earlier known results.

Cohomological technique has enabled van Est and independently
Swierczkowski [S2] to prove that any Banach-Lie algebra is a quotient
algebra of an enlargable Banach-Lie algebra. Here we deduce the result
from enlargability of free Banach-Lie algebras.

In his book [Ka] Kaplansky asked whether a quotient group of a
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topological group with no small subgroups (NSS group) is again an
NSS group. Morris [Mo] answered in negative, and later he and
Thompson [MT] have presented the following

THEOREM A. Let X be a submetrizable Tychonoff topological space
{that is, a Tychonoff space admitting a continuous metric). Then the
Markov free topological group F(X) over X is an NSS group. D

It was asked in [MT] whether the following result is true.

THEOREM B. Each topological group is a quotient group of an NSS
group. D

The author [Pel, Pe2] has deduced Theorem B from Theorem A.
It was discovered, however, by Sipacheva and Uspenskiϊ [SU] that
both the original proof of Theorem A by Morris and Thompson [MT]
and the later proof proposed by Thompson [T] are not free of certain
deficiencies. In the same work [SU] a correct proof of Theorem A
was given. Thus, Theorem B—and its proof from [Pel, Pe2]—still
remain valid. The proof of Theorem A by Sipacheva and Uspenskiϊ is
"hard"—it relies on combinatorial technique of words in free groups.
The concept of free Banach-Lie algebra enables us to provide an en-
tirely different proof of Theorem A which is purely Lie-theoretic and
certainly "soft".

2. Free Banach-Lie algebras. A norm || || on an algebra A is called
submultiplicative if ||x*;y|| < ||x|| ||y|| whenever x,y e A, where
* stands for the binary algebra operation. By a normed algebra we
mean an algebra endowed with a submultiplicative norm. We will
loosely refer to complete normed algebras as merely Banach algebras.
A mapping / : X —• Y between two metric spaces is contracting, or
non-expanding, if pγ(fx, fy) < pχ{x, y) whenever x j e l . If
X and Y are normed spaces and / is linear, this is equivalent to the
condition ||/| | < 1.

THEOREM 2.1. Let E be a normed space. There exist a complete
normed Lie algebra &3f(E) and a contracting linear operator ΪE'.E -»
&&{E) with the following properties:

(1) IE{E) topologically generates ^S?(E), that is, the least Lie sufc
algebra containing IE{E) is dense in &2?(E).

(2) For an arbitrary complete normed Lie algebra Jϊ? and any con-
tracting linear operator f:E —• S?, there exists a contracting Lie
algebra homomorphism f: 3^2? {E) -> J ? such that foiE = f.
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The pair {&5?{E)> iβ) with the properties (1) and (2) is essentially
unique. The operator iβ is an isometrical embedding E c-> &S?(E).
If dim E > 2 then 9Sf{E) is centerless.

Proof. Denote by F the class of (classes of isomorphisms of) all
pairs (L, 7) where L is a complete normed Lie algebra and 7 : E —> L
is a contracting linear operator such that the image j(E) topologi-
cally generates L. F is a set. Let iβ stand for the diagonal product
Δ{7*: (L, 7) G F}, viewed as a mapping from £ to the /oo-type sum
L = /oo — 0 ( £ 7)€F -ί* Denote by &5?(E) the least closed Lie subalge-
bra of the Lie algebra L containing the image iβ(E) . The properties
(1) and (2) of the pair (<93f(E), iβ(E)) are checked immediately.

The proof of uniqueness is standard (cf. [Go, Gr, M, R]).
Since the pair (E, id#) is in F, where E is treated as a com-

mutative normed Lie algebra, then for any element x G E one has

\\X\\E > \\iE(x)\\s&(E) > \\&E(X)\\E = \\X\\E, that is, iE is an isomet-
rical embedding.

Now let x e ^f{E). One may assume that ||JC|| = 1. There
exists a Lie polynomial / of degree n e N such that for some ele-
ments X\, . . . , xm G E one has ||/(xi, . . . , xm) - x\\ < j . There is a
projection, π, from E to the subspace V spanned by X\, . . . , xm .
The free degree k, k > n nilpotent Lie algebra N^(F) over V is
finite-dimensional and therefore it is a normed space. By rescaling
a norm on N^(F), one can assume that it is submultiplicative. Let
C > 0 be the norm of π calculated with respect to a new norm on
V cNk(V); the operatorjC^π : E -* Nk(V) is contracting and it is

clear that the element C~ιπ{l(xχ,... , xm)) = l(C~ιx\,... , C~ιxm)
is non-zero in N^(F). If k has been chosen sufficiently large, then

[C~ιπ(x), y] Φ 0 for some y G N^(F) this means that [x, z] ^ 0

for an arbitrary z G ( C ^ π ) " 1 ^ ) . D

THEOREM 2.2. Let X = (X ,/>,*) &e tf pointed metric space. There
exist a complete normed Lie algebra $Ξ?χ and a contracting mapping
iχ\ X —• ^S^χ w/ίΛ the following properties'.

(1) zχW = 0 ^ χ .

(2) 77*e L/^ algebra &S?x is topologically generated by the set

iχ(X)
(3) For an arbitrary complete normed Lie algebra J ? and any con-

tracting mapping f: X —• 3* which sends * to 0^?, there exists a
contracting Lie algebra homomorphism / : SE&7χ —> ^ .
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The Lie algebra 92? x with the properties (1) and (2) is essentially
unique. For any metric space X the mapping iχ is an isometrical em-
bedding. Free Banach-Lίe algebras over the same metric space (X, p)
with different distinguished points are isometrically isomorphic.

Proof. It is known [R, Pe3] that for any pointed metric space X =
(X, p, *) there exists an essentially unique Banach space B(X ,*)
(called the free Banach space over X) containing X as a metric sub-
space in such a way that • is identified with the zero element of
B(X, *) and any contracting mapping / from X to a Banach space
E, taking * to zero, extends to a unique contracting linear operator
/ : B(X , * ) - > £ . Now it suffices to put 92?\ = 92?(B(X, •)) and
use the above theorem together with known facts about free Banach
spaces [Pe3]. D

Assertion 2.3. Let / : E —• F be an open linear mapping onto
between normed spaces. Then the normed Lie algebra morphism
/ : 92?(E) —• £5?(F) extending / is an open homomorphism onto.

Proof. Denote by A the Banach algebra quotient of 92? {E) by a
closed Lie ideal ker / . There is a natural continuous homomorphism
i: A —• 33? (F). On the other hand, since A contains F as a normed
subspace, there is a contracting homomorphism idj?: 92? {F) —> A. It
is easy to see that i and idjg are mutually inverse maps. This proves
that A and 33?(F) are isomorphic and / is a quotient homomor-
phism between Banach algebras, as desired. D

3. Couniversal Banach-Lie groups.

THEOREM 3.1. For any normed space E, the free Banach-Lie alge-
bra 92f{E) is enlargable.

Proof. If dim E = 1, it is trivial. Otherwise, use Theorem 2.1
and the following fact: any centerless Banach-Lie algebra is enlargable
[vEK]. D

COROLLARY 3.2. For any pointed metric space (X , / > , * ) , the free

Banach-Lie algebra 92fχ is enlargable. •

THEOREM 3.3 [S2]. Every Banach-Lie algebra is a quotient algebra
of an enlargable Banach-Lie algebra.

Proof. Denote by g+ the Banach space of an arbitrary Banach-Lie
algebra g. The identity mapping idg extends to a quotient Banach-



FREE BANACH-LIE ALGEBRAS 141

Lie algebra homomorphism from <ί^27(g+) onto g (Theorem 2.1 and
Assertion 2.3). Finally, ^5?7(g+) is enlargable. D

There exists still another proof of the above result, sketched in [Pe5];
it is based on nonstandard Lie theory [Pe4].

THEOREM 3.4. Let τ be a cardinal number. There exists a couniver-
sal Banach-Lie algebra g of density τ. In other terms, g contains a
dense subset of cardinality < τ and for every other Banach-Lie algebra
h with the same property, there exists a quotient Lie algebra homomor-
phism onto, g —• h. In particular, there exits a couniversal separable
Banach-Lie algebra.

Proof. The desired Banach-Lie algebra is &3?(l\{τ)). One should
take into account that a Banach space of density < τ is a quotient
space of the Banach space l\(τ) [LT] and use Theorems 2.1, 3.1 and
Assertion 2.3. D

THEOREM 3.5. Let τ be a cardinal number. Then there exists a
couniversal connected Banach-Lie group G of density τ. In other
terms, G contains a dense subset of cardinality < τ and any other
connected Banach-Lie group with the same property is a quotient Lie
group of G. In particular, there exists a couniversal separable Banach-
Lie group.

Proof. Take as G a connected simply connected Banach-Lie group
corresponding to the Banach-Lie algebra ^2f(l\(τ)) (use Theorem
3.1). Let H be an arbitrary connected Banach-Lie group of density
< τ . According to 3.4, the Lie algebra Lie(77) is a quotient Banach-
Lie algebra of &5?{l\{τ))\ let π denote the corresponding quotient
homomorphism. It follows from Th. 3.6.2.1, Prop. 3.6.4.10(i), and
Prop. 3.4.4.8 in [Bou] and the connectedness of H that there is a
quotient Banach-Lie group morphism from G onto H. D

In particular, every connected finite dimensional Lie group is a quo-
tient group of an arbitrary couniversal Banach-Lie group.

4. On a question of Kaplansky on NSS groups. The author considers
the following two results as a development of some ideas of Gelbaum
[Ge].

THEOREM 4.1. Let X = (X, p,*) be a pointed metric space of
diameter diam X < 1. Then the image exp^g* (ΛΓ\{*}) of the set



142 VLADIMIR G. PESTOV

X\{*} under the exponential mapping forms a free group basis for
a subgroup generated by that set in the simply connected Banach-Lie
group associated to

Proof The group SU(2) contains a free group with an infinite num-
ber of generators [DGD]. By virtue of a theorem of Mycielski [My], for
any non-trivial irreducible word w(x\, . . . , xn) the identity w = 0
holds over no neighbourhood of zero in SU(2) (otherwise the same
identity would be true over the whole of SU(2)).

Let Xγ, . . . , xn be an arbitrary collection of distinct points in
X\{*} and let ε be the minimum of distances p(Xi, Xj), i φ j \
and p{Xi, * ) . For any n and any irreducible word w{xχ, . . . , xn)
there are elements U\, . . . , un in the Lie algebra su(2) such that
w(exp(ux), . . . , exp(w«)) φ esυ{2) and \\tn\\ < e, where || || is a
fixed submultiplicative norm on su(2) (say, a doubled operator norm).
The composition, / , of the mapping x >-» (p(x, Xι), . . . , p(x, xn),
p(x,*)) and a linear mapping from R n + 1 to su(2) sending the images
of Xi to Ui and the image of p(x, *) to 0, is a contracting map from
X to su(2) 5 sending xt to u\ and • to 0. Therefore, it extends to a
Banach-Lie algebra morphism / : &S7χ —• su(2). Furthermore, there
exists a Lie group morphism /* from the simply connected Lie group
associated with &Sf x to SU(2) commuting with the corresponding
exponential mappings. Now it is clear that

, . . . , Un)] φ

COROLLARY 4.2. An arbitrary metrizable topological space X can
be homeomorphically embedded into a Banach-Lie group G as a free
group basis for a subgroup gpG(X) generated by X in G.

Proof. Follows from the preceding theorem after an appropriate
metrization of X. D

Now we will show that Theorem B (Introduction) admits a Lie-
theoretic proof.

COROLLARY 4.3. Let X be a submetrizable Tychonoff topological
space. Then the free topological group F(X) over X has no small
subgroups.

Proof. Pick a continuous one-to-one mapping / from X to a
metrizable topological space Y. Let iγ be a homeomorphic embed-
ding of Y into a Banach-Lie group G as a free group basis for a
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subgroup gp^(Γ) generated by iγ(Y) in G. The composition iγof
extends to a continuous homomorphism ίγof\ F(X) —• G by the
very definition of a free topological group [M? Gr, A2]. Since any
Banach-Lie group has no small subgroups ([Bou], corol. 1 de Th.
3.4.2.2), then there is a neighbourhood U of unity in G that con-
tains no small subgroups. This property is shared by a neighbourhood
of unity (iγofyι(U) in F(X). D

THEOREM 4.4. [Pel, Pe2, SU] Every topological group is a topolog-
ical quotient group of a group with no small subgroups.

Proof. Any topological space—in particular, G—is an image of
an appropriate submetrizable Tychonoff topological space X under
a quotient mapping π [J]. Extend π to an open homomorphism
π: F(X) -> G [A2] and apply Theorem 4.2. D
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