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CONGRUENCE PROPERTIES OF FUNCTIONS
RELATED TO THE PARTITION FUNCTION

ANTHONY D. FORBES

In this paper we describe a straightforward and almost entirely
elementary method for establishing congruence properties of certain
functions that are related to the partition function.

For integer k define pi(n) by

T -xmF = pe(mx".
m=1 n=0

In particular, p_;(n) is p(n), the partition function and pys(n — 1)
is Ramanujan’s t-function.
We are interested in congruences of the form

(1) pr(np+b)=0 (mod p) forall n > 1
for prime p, as typified by the partition congruences
(2) p(5n+4)=0 (mod)}$),

(3) p(Tn+5)=0 (mod 7)

and

(4) p(lln+6)=0 (mod 11)

discovered by Ramanujan and proved in [13] and [14]. Ramanujan
also conjectured that if 24b = 1 (mod ¢q) and g = 5*7%117 then
p(gn+b) =0 (mod gq). He was able to supply proofs for g = 25, 49
in [13] and g = 121 in an unpublished manuscript [15]. Ramanu-
jan’s conjecture was incorrect as stated for powers of 7 and Wat-
son [16] proved a modified version; if 246 = 1 (mod 57%#) then
p(5°7%n + b) =0 (mod 5278+1). Watson’s proofs have been simpli-
fied by Hirschhorn and Hunt [6] and Garvan [4]. Lehner [9] dealt with
g = 1331 and the proof of the conjecture was completed by Atkin [1].

Congruences modulo powers of 13 have been considered by Atkin
and O’Brien [2]. A general treatment of p;(n) modulo powers of
2,3,5,7 and 13 is given in Atkin [3], modulo powers of 11 in
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Gordon [5] and modulo powers of 17 in a forthcoming paper by
Hughes [7].

In everything that follows, p is a prime number > 5. The variable
x always satisfies |x| < 1 to ensure absolute convergence and we write
f(x) = g(x) (mod p) to mean that f(x)— g(x) is a power series in
x with integer coefficients that are all divisible by p.

Euler’s pentagonal number theorem,

[o 0] o0 2
H (1 _ xm) — Z (_l)nx(3n +n)/2,
m=1 n=-—00
and Jacobi’s identity,
(5) [I(t=x™3 =S (=1)"2n + D)xtr+m/2
m=1 n=0

completely determine p;(n) and p;3(n). Also it suffices to consider k
modulo p because, as is easily shown, if p,(n) satisfies a congruence
of the form (1) for some prime p then the same is true for pyy,(n).

With certain values of %k, other than 0, 1 and 3, it is possible
to establish congruences by well-known methods which are entirely
elementary. For instance, Ramanujan’s original proofs of (2) and (3)
in [13] are easily extended to show that (1) holds when

k=4, p=5 (modé6), 6b+1=0 (modp) and when
k=6, p=3 (mod4), 4b+1=0 (modp).

For an alternative proof of (2), the congruence
py(Sm+4)=0 (mod §),

follows from

n n-—r

po(n) =" pa(rps(s)ps(n —r —5s).
r=0 s=0
By (5), if n» = 4 (mod 5) and the r,s term of the double sum is
non-zero then

(N2 +p3(s)2+ps(n—r—52=8n+3=0 (mod>5),

which cannot be true unless at least one of the terms on the left-hand
side is divisible by 5. But then pg(n) will also be a multiple of 5.

In Table 1 we give an exhaustive list of congruences of the form (1)
for p<199 and 2<k<p-1,k#3,4,6.
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A theorem of Newman [10] established using modular function the-
ory states thatif k=4, 6, 8, 10, 14, 26, p is a prime > 3 such that
k(p+1) =0 (mod 24) and b = k(p?—1)/24 then p;(n) =0 (mod p)
for n = b (mod p). This theorem disposes of all the k = 8 cases in
Table 1 as well as kK = 10, 14 and 26 when p =11 (mod 12). An-
other of Newman’s results [11] is that for even k£, 4 < k < 24 and
prime p > 3 such that b = k(p — 1)/24 is an integer,

pi(np +b) = pr(n)pr(b)  (mod p).

Thus kK =19, p =12 and k = 22, p = 61 in Table 1 reduce to
single congruences. Newman’s method is described in Chapter 7 of
Knopp [8].

In [14], Ramanujan gives proofs of (4) by two different methods
one of which we extend in order to deal with any congruence of the
form (1) for which 245+ k =0 (mod p). In particular we can prove
all the entries in Table 1 (see next page).

We illustrate the method with £k = 10, p = 19, b = 17 and for
convenience we use the same notation as Ramanujan. Let

(br,s(x) — Z Z m"nSxmn ,

m=1 n=1

P =1-24¢9,1(x),
Q = 1+240¢0,3(x)

and
R =1-504¢g s5(x).

It is well known from the theory of the Dedekind eta-function that

(6) 123x ﬁ(l—x”’)24=Q3—R2.

m=1

In fact, P, Q and R are the normalised Eisenstein series E,, Ej4
and Eg. They are related to the discriminant A and the invariants

&2(7) and g;3(7) by

1 A1) Q_Egz(‘f) and Rr= 278

T2 A(v) T4 gt 8 76’

where x = e27* for 7 in the upper half plane.
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TABLE 1
pr(np + b) = 0 (mod p)
k
p 8 10 12 14 18 22 26
11 6 - - — - -
17 11 15 - - -
19 17 9 - -
23 15 13 9 5 -
29 19 26
31 28
41 27 37
43 39
47 31 27 19 42
53 35 48
59 39 34 24 53
61 55
67 61
71 47 41 29 64
79 72
83 55 48 34 75
89 59 81
101 67 92
103 94
107 71 62 44 97
113 75 103
127 116
131 87 76 54 119
137 91 125
139 127
149 99 136
151 138
163 149
167 111 97 69 152
173 115 158
179 119 104 74 163
191 127 111 79 174
197 131 180
199 182

In [12], Ramanujan establishes in a direct and elementary manner
a number of identities involving P, Q and R, including

(7)
(8)
)
(10)
and

(11)

OR =1 — 264¢ o(x),
44103 + 250R? = 691 + 6552040 11(x),
P?-Q=120P,
PQ - R=136Q

PR — Q% =26R,

where ¢ is the differential operator xd/dx.
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Now to prove that Pyo(19n + 17) = 0 (mod 19) for all » > 0, it
suffices to show that the same is true for psg(19n + 17). By (6) this
is equivalent to showing that in

(o9}

(@°-R)? =73 c(n)x",
n=1
the coefficients c(19), c(38), ... are multiples of 19 and one way

of doing this is to find a power series f(x) with integer coefficients
satisfying

(Q*-R*»?=120f(x) (mod 19).
We succeed because of the identity

(12) 120(9P3Q* + 16P3QR? + 13P2Q3R + 7P?R3
+ 5PQ° + 13PQ*R? + 18Q*R + 14QR?)
= (Q* - R?)? +19(9P*Q* + 16P*QR* — 4P*Q°R + 4P*R’
—3P2Q?R?+ 6PQ*R + 10PQR?
—60°% —2903R? - 3R%)
which is easily verified using (9), (10) and (11).
To obtain an identity like (12) we consider the matrix Aj’” f Vy de-
fined by equating coefficients of PAQ#R in
> PlorRYApE] =120PPQ R”

A, u,v>0
A+2u+3v=6s

as a, B and y run through the non-negative integers satisfying o« +
2B+ 3y =6s— 1. Here s satisfies

24s =k (mod p).

Next we solve the linear congruences

a, B,y —
>, Allawp,=t,, (modp)
a,B,y>0
a+2p+3y=65—1

for a, g ,, where

tl’#’,,=0 forAi>1
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TABLE 2
120P*QFR? for o + 28 + 3y = 11

-
18| -16| -1

22 0| -8 0| -2
221 —-12|-20 0| -2
21 0f-18|—-12| -3
21 0| —6 o -3
20 0| —4 0
20| -12f—16 | —4
19 0|-8] -5
19| -6 0|5
18| —12] 12| -6

O~ ONN=WONAE—=WOWUVN L~ WOR

PO OCRARNTUN D BRWWR N ——O O O|x
<~ R OO~ O~ ON—ON—~ WO N — WO N &Y

17| 0| -4
17| -6 | =7
16| -8(-8

15{—-6|-9

14| -4
13| —11
11
0 0 1 1 2 2 3 3 4 5| S 6| 7| 8 9| 11
1 4 2 5 0 3 1 4 2 o 3 1f 21 0 1 0
3 1 2 0 3 1 2 0 1 21 0] 1] Oof 1] O 0

and, as before, A+ 2u + 3v = 6s. Then a, p , are the required
coefficients, for

120 > a,p,P°QR

a,B,y>0
a+2B+3y=6s—1
— AUy 42,8,
- Z Z P Q R Al,u,uaa»ﬂ:)’
a)ﬂ)y_>_0 2)/“)”20

a+2B+3y=65—1 A+2u+3v=6s

> 4,,,P*Q"R"=(Q°- R} (modp).
A,u,v>0
A+2u+3v=6s

The case s = 2 is illustrated in Table 2.

What is interesting is perhaps not the actual method, for it merely
involves routine computations, but rather the existence of the identity
itself. It seems that there is no simpler expression of the form 126 f(x)
that will serve our purpose.

In the other case for p = 19, namely k = 12, the corresponding
expression is somewhat longer. The exponent of Q3 — R? is 10 and
we are dealing with P°QfR? where a + 28 + 3y = 59. The result of
solving the congruences is
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120(4P*Q%R + 16P*Q?*R3 + 12P*Q*R5 + 17P*Q''R’
+10P*Q"R® + 8P*Q''R" + 16P*Q®R" + 6P*Q°R"
+13P*Q?R" + 5P3Q® + P3Q¥R* + 8P*Q*’R*
+ 2P3Q19R6 + 5P3Q16R8 + 5P3Q13R10 + 4P3Q10R12
+7P’Q"R" + 2P3Q*R'6 + 9P3QR'® + 9P?Q*"R
+ 7P2Q24R3 + 13P2Q21R5 + 2P2Q18R7 + 7P2Q15R9
+5P2Q"2R'" + 7P2Q°R'3 + 16P*Q°R'® + 15P2Q3R"
+18P?R" + 4PQ*® + 6PQ*R* + PQ®R*
+ 14PQ20R6 + 8PQ17R8 + 8PQ14R10 + PQ8R14
+ 13PQ°R'S + 12PQ*R"® + 150 R + 4Q% R
+130%R° + 160" R’ + 3Q"6R? + 10Q"*R"!
+ 15Q10R13 + 5Q7R15 + 7Q4R17 + 14QR19)
=(Q*-R)'Y  (mod 19).

In one of his proofs of (4), Ramanujan uses (7) and (8) as well as
Q(PQ — R) = 7204, ;3(x),

2PQ% — P2R — QR = 1728¢, 1(x),
P3Q —3P?R + 3PQ% — QR = 3456¢3 ¢(x)

and
15PQ? — 20P?R + 10P3Q — 4QR — P3 = 20736¢,4_s5(x)
in order to establish

(Q*—R?)® = —5¢ 5(x)+3¢2,7(x)+ 303 6(x) — s, 5(x)  (mod 11)

in which it is clear that the coefficients of x!1” on the right-hand side
are divisible by 11.
Alternatively, using our method we obtain

126(10P3Q" + P3Q1OR? + 7P3Q"R* + 7P3Q*R% + 5P3QR?®
+4P?Q"R + 10P2Q°R? + 8P2QSR’ + 9P?R® + 5PQ"*
+6PQ""R? + 8PQ3R* + 2PQ°RS + 3PQ?R®
+ 100B3R + Q'°R? + Q7R3 + 10Q*R” + 3QR®)
=(Q*-R?’ (mod 11).
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For the other p = 11 case, namely k =8, b =7 we use

126(3P2Q°R + 9P2Q°R3 + 8P2Q3R> + 5P?R" + 7PQ!!
+ 6PQ®R? + 5PQ°R* + 9PQ*RS + 6Q'°R + 8QR")
=(Q3-R>»* (mod 11).

In a similar manner we can complete the proof of all the congru-
ences in Table 1 except for k =26, p # 179 where, as can be verified
by computation, it turns out that there is no formula of the form
(13) 120 Y a, 5 ,P°QPR = (Q* - R)P*  (mod p).

a, B,y
In fact we obtain
(14) 120 > a, 5,,P°QPRY
a, B,y
= (Q3 _ R2)(p+l3)/l2 + u(p)PllQ(p——27)/4R(Q3 _ RZ)
(mod p)
for some a, g , and u(p) (mod p). As noted above, u(179) =0.

Nevertheless, using the same method we can show that, for p = 11
(mod 12), 47 < p <197, there are congruences of the form
(15) 120 Y a4, 4,,P°QPR" = Q°(Q* - R*P™®  (mod p)

o,B,y

which have the desired property. Indeed, Q77 is congruent modulo
p to a power series in x?. So multiplying the right-hand side of (15)
by Q77 preserves the divisibility by p of the coefficients of x"? . For
example with p =47, kK =26, b =42 we have

11 (123-a)/2
126 Z Z a, ﬂPaQﬁR(123—a—2ﬂ)/3
a=0 B=a
B=a (mod 3)

= 0%(Q* - R?° (mod 47)

where the coefficients a, g are given by Table 3.

Of course the congruences in Table 1 are really statements about
Cauchy powers of Ramanujan’s t-function and can be established us-
ing modular function theory as already indicated. The author conjec-
tures that, corresponding to every congruence of the form (1) there is a
congruence (13), except possibly when p =11 (mod 12) and k = 26
in which case both (14) and (15) apply.
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TABLE 3
a o a
Bl o 3 6 9| gl 1 4 7 10| B 2 5 8 11
0 15 T1 6 2 [ 31
3021 35 4|41 41 5145 12
6| 7 32 3 7140 21 19 8| 41 42 20

9] 21 0 8§ 33|10 38 2 27 4 (1133 16 20 30

18 | 18 4 16 42 |19 | 44 3 23 25120128 11 44 44
21 1 45 15 29 9122123 31 45 29} 23|37 14 31 28
24 133 39 36 29|25 )22 33 21 12| 26 | 24 2 1 17
27 | 41 1 35 17 | 28 | 37 8§ 25 25| 29 5 28 41 43
30| 25 37 38 45| 31 {45 28 27 16| 32|26 44 10 27

36 | 40 16 45 26 | 37 | 31 41 36 138 1|13 3 18 33
39 | 33 1 34 14} 40| 12 33 3 3141 )38 27 28 46

45 | 32 34 14 44 | 46 2 31 25 5147133 39 35 43
48 | 24 15 2 38 (49145 34 16 24|50 ) 38 43 11 14
51 4 9 45 22152122 46 18 29 |53 | 14 16 28 44
54 7 30 38 4 | 55| 37 3 6 7156 |17 11 17 26
57 1 30 29 7 23| 58125 6 42 59 | 45 9

60 | 29 16 61 | 13

Further congruences can be established by the same method. For
example each of the following functions is congruent modulo p to a
power series of the form 126 f(x).

p=11: (Q°-R)*+4P°Q"(Q* - R?),
(Qa _RZ)IO + 6P8Q23(Q3 _ Rz)’
p=13: (Q°-R%’+5P2Q%(Q* - R"),
Ql3(Q3 —R2)7 + 2P4Q“(Q2‘ _ Rl“),
p=17: (Q°-R*»*+3PZR¥Q’-R?),
(Q°-R?’+6P"Q'R(Q° - R?),
(Q* - R%)® + 10P°QVR(Q° - R),
(Q3 _Rz)n + 9P“Q23R(Q3 _ Rz)’
(Qa ~R2)12 + 10P6Q30(Q3 _Rz),
Q17(Q3 _Rz)u + 12P6Q23(Q27 _Rxs)’
p=19: (Qs R%)13 4 p205(Q% — R?2),
p=23: (@°-R%’+4P1Q(Q° - R?),
(Q3 R%)' +21P°Q*(Q° - R?),
( }Q2)20‘+_4}98£253(<23 }22)’
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p=29: (Q*-R>»®+19P7QISR(Q3 - R?),
(Q3 _ R2)13 + 2P9Q30R(Q3 _RZ),
(Q3 _R2)18 +20P11Q44R(Q3 _ RZ),
(Q3 _RZ)ZO +P6Q54(Q3 __RZ)’
(Q3 _R2)25 + 9P8Q68(Q3 _ RZ),
Q”(Q° - R*)° +5P2Q%(Q° - R?),

p=31: (Q3 R*)®+29P%Q'(Q° - R?),
( 2)2 +2P2Q11(Q51 —R34),
(Q3 R** +16PQ"R(Q° - R?),
p=37: (Q@°-R»)*+16P°Q°R(Q° - R?),
(Q° - R%) +32P8Q'%(Q* - R?),
(Q3 __Rz)lO + 36P7Q22R(Q3 _RZ)’
(Q3 _Rz)zs +P2Q”(Q57 _R38)
p=41: (Q°-R)! +40P’QPR(Q° - R?),
(Q3 R2)18 +30P°Q¥R(Q* - R?),
( )25 +22P11Q65R(Q3 2),
(Q° - R*)* +4P°Q™(Q* - R?),
(Q3 R*)* +34P3Q%(Q° - R?),
p=43: (Q°-R)*+8P°QV(Q*-R?),
(Q3 —R2)29 + 4P2Q17(Q69 _R46),
p=47: (Q%- R2)32 +34P8Q%(Q% - R?),
(Qs _ R2)40 + 25P8Q113(Q3 _ Rz)

and
p=541: (Q*-R»)VS,

Finally we have a general result:

THEOREM. Suppose p = 6t + 1 is prime. Then there exist integer
coefficients ag such that

d
12— > ap0fR

B,y
2p8+3y=5p

= (Q3 — R2)(p+1)/6 _ <";t) 0P=1(Q3@+D/2 _ Rp+1y  (mod p).



CONGRUENCE PROPERTIES OF FUNCTIONS 155

Proof. If B and y are related by 28 + 3y = 5p then
IZx%C—QBR” =48QP'R"-1(Q3-R?)  (mod p).

Writing w for the integer 2"6"—1 , we have to solve the following set of
congruences modulo p.

4al = (_l)w )
— — (_1\yw-1 w
16a4 — 4a, =(-1) (w B 1) ,
w
40 =Nt - 40 -6 =17 (41,).
_ _ — 3+ W 4t
so-3as = (30 )+ (7).
4o+ 3)apas =0*(3).
40+ Opis 40+ g =0 (5,0,
5p—-3 Sp—-9

4

w
5 Asp-3)/2 ~ A5 A(sp-9)2 = ( 1 ) ’

5p-3 . 4¢
— 4—-2-—0(517_3)/2 =1- ([ ) .

A solution is possible since

= () e () - ()
- G) . (‘“3; 1) - (“t’) (mod p)
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