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ON ISOTROPIC SUBMANIFOLDS AND
EVOLUTION OF QUASICAUSTICS

STANISLAW JANECZKO 1

We study classification problems for generic isotropic submani-
folds. The classification list of simple and unimodal singularities is
obtained and the generic evolutions of quasicaustics in small dimen-
sion are classified. Examples encountered in geometric optics are
presented.

0. Introduction and preliminaries. Let X be a manifold, and ω be
a 2-form on X. The pair (X, ω) is called a symplectic manifold if
ω is closed, i.e. dω = 0 and nondegenerate [AM]. The representative
model of a symplectic manifold is a cotangent bundle T*M, endowed
with the canonical 2-form CUM = dϋu, where the 1-form $M on
T*M (Liouville form) is defined by

(u, ϋM) = (TπM(u), τ r M ( u ) ) , for each u e TT*M.

The mapping TUM is the tangent mapping of % : T*M -» M and
ττ*M: TT*M —• T*M is the tangent bundle projection. If (#,•) are
local coordinates introduced in M, and (p*, q{) are corresponding
local coordinates in T*M then O>M has the normal (Darboux) form
coM = EU<tPi*dqi [We].

We recall that a submanifold C c {X, ω) is coisotropic if, at each
x E C, the symplectic polar of TXC defined by

C£ = {v e TXX: (v Λ u, ω) = 0 for every w e ΓXC}

is contained in Γ X C By (vAu,ω) we denote the evaluation of ω on
the pair of vectors υ, u e TXX. If C£ = ΓXC for each x G C then
C is called the Lagrangian submanifold of X . In this case ω\c = 0,
and dimC = ^dimX. We see that dimC^- = codimC and {C^}
forms the characteristic distribution of ω\c Thus the distribution
D = \Jχec €χ *s i^volutive. Maximal connected integral manifolds of
D are called bicharacteristics. They form the characteristic foliation
of C (cf. [AM]). D represents the generalized Hamiltonian system
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with "Hamiltonian" C. Let F be the set of bicharacteristics of C.
Let p: C -+ F be canonical projection along bicharacteristics and we
define the graph of p,

<9?c = graph/? = { ( x j ) E l x 7 ; y = p(x), xeX}.

If F admits a differentiate structure and p is a submersion, then
there is a unique symplectic structure K on 7 such that

p*κ = ω\c.

Thus we deduce that 3%c *s a Lagrangian submanifold of X x 7
endowed with the symplectic structure Ω = π\κ-π\ω, where π, : I x
F —> X(F), / = 1, 2, are the cartesian projections. In fact Ω\^ =
p*κ - ω|c = 0 and d im^c = ^(dimX + dim F). Being the graph of
submersion, ^ c is called the symplectic reduction relation between
(X 9 ώ) and (F 9k). More generally we define a symplectic relation
^ from (X 9 ω) to (F, K) as an immersed Lagrangian submanifold
of the symplectic manifold ( I x 7 , Ω ) . For any subset ^ c l , the
set &(SF) = {y e F there exists x G ^ such that (x,y)e £?} is
called the image of & with respect to the relation 3i. If S? c F then
the set c^r(c5^) c X is called the counterimage of S? with respect
to 3ί. Here Λί is the transposed relation &* = {(y, x) e Y x X
( j c j ) € f } c ( y χ l 5 π\ω - π*/c).

Let L be a Lagrangian submanifold of (T*M9 % ) transversal, in
a neighborhood of some point p G L, to the fibers of the canonical
fibration %M - Then in a neighborhood of the point KM{P) € Λf there
exists a smooth function S: M -+ R such that L is locally defined as
the graph of the section dS: M -> T*M. S is called the generating
function of L (cf. [Hδr]). If the transversality condition is not fulfilled
then L is represented locally as an image &c(N) by the symplectic
reduction relation J ^ C c Γ*(Af xΛ), C = {(p, q, //, λ) // = 0},
where A = Rk is a Morse parameter space parametrized by (A),
and N is a Lagrangian submanifold of Γ*(Λ x M) transversal to the
canonical fibration. Thus L is always locally represented by a family
F, of functions on a manifold Λ, parametrized by M; F: M x Λ —•
R (cf. [Wei]). It is called the Morse family or generating family, and
defines L by the following equations:

L = {(p, 0) G Γ*M there exists A G Λ, such that

p = ΘF/dq(q, λ) and 0 = ΘF/dλ(q, A)},

near p eT*M. The mapping ^ i 7 : Λf x Λ —> Λ, is assumed to have
maximal rank at (71M(P) , 0) G Λf x Λ. The set of critical values of the
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Lagrange projection %M\L*> L —> M is called the caustic of L. The
corresponding theory of generating families for coisotropic varieties is
presented in [Ja3]. In what follows we construct the generating family
approach to another important class of objects of symplectic geometry
called isotropic submanifolds (cf. [Wei], p. 4).

Let / be an isotropic submanifold of (T*M, CUM) \ i.e. if i: I —>
T*M is an immersion of / then Ϊ*COM = 0. We assume dim/ <
d i m M , then the quasicaustic of / is defined as an image ΆM(I) .

Isotropic submanifolds and their quasicaustics arise naturally in a
number of contexts including, for example, optical diffraction on aper-
tures [Kel], [Ja2], geometry of bicharacteristics of Hamilton-Jacobi
equations [AM] and symmetric phase transitions [JR]. In this paper
we introduce the notion of generating families for isotropic subman-
ifolds. Then we find that the natural group of equivalences, in the
space of generating families, preserves the boundaries and corners in
Morse parameters (cf. [Sie]). In contrast to the equivalences of the
coisotropic submanifolds, which preserve the fibre structure in unfold-
ing parameters (cf. [Was], [Ja3]), our group comes from the straight-
forward generalization of the standard singularity theory (cf. [Wai]).

In §1, we introduce the notion of /-Morse family generating an
isotropic submanifold / and show geometric examples where isotropic
submanifolds and their generating families appear naturally.

In §2, we describe the general singularity theory machinery that
can be used to classify isotropic submanifolds and their quasicaustics.
Then we classify the simple and unimodal /-Morse families generating
the isotropic submanifolds with dim/ = dimM — 1, which involve
maximally three Morse parameters.

In §3, we apply the methods of singularity theory of functions on
varieties [Bru], giving the complete classification of generic evolutions
of quasicaustics that can occur if d imM < 4.

Acknowledgments. I would like to thank Ted Courant, Richard
Montgomery and Tudor Ratiu for helpful discussions.

1. Generating families for isotropic varieties. Let / be a connected
submanifold of a symplectic manifold (X, ω). If for each x e I,

I± = {υ e TXX: (v Λ w, ω) = 0 for every u e TXI} D TXI,

we call / an isotropic submanifold of X. If /: / —> X is an im-
mersion of / then / is called isotropic if z*ω = 0 (cf. [AM]). It
follows that dim/ < ^ dimX, and lagrangian submanifold is the case
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Let / be an isotropic submanifold of (T*M, % ) , dim/ < dimM .
Following the idea that all symplectic objects should be, at least lo-
cally, generated by generating families we seek an adequate notion
corresponding to isotropic varieties.

DEFINITION 1.1. The smooth function (germ) G: MxRLxRκ -» R
is called an /-Morse family if the smooth map

MxRK3 (q9λ) - ( § | ( t f , 0, A), ~(q, 0, A)) e RL x Rκ

is nonsingular on the stationary set

(1) Σ/

G

Let G be an /-Morse family; then it is easy to check that the set

(2) / = I (p, q) e T*M : there exists A such that

p = ^(q, 0, A), | | ( < 7 , 0, A) = 0 = ^ ( t f , 0, A)}

is a smooth immersed isotropic submanifold of T*M. If we drop the
conditions of Definition 1.1, then the corresponding set defined by (2)
may be a singular isotropic variety. In this case we call the function
G a generating family for / .

Now we have an analog of the theorem on local generating families
for lagrangian submanifolds (cf. [Wei], Ch. 6). We assume M = RN.

PROPOSITION 1.2. To each germ of an immersed isotropic submani-
fold (/, 0) c T*M, there exists a germ of an I-Morse family

G: {MxRLxRK,(0, 0, 0)) -> R

such that (1, 0) is defined by (2).

Proof. To each germ (/, 0) corresponds a coisotropic submanifold
( C , 0 ) c Γ M with / to be its bicharacteristic passing through 0. Let
p: C —• T*RL denote the canonical projection along bicharacteristics
of C . Then there exists a Morse family G: M x RL x Rκ -+ R for
graph/? c (T*M x T*RL π^ω^z, θ 7I\WM) , such that / is the image
of the mapping

J

G 3(q,λ)-+ ( H ( « , 0, A), βf) 6 Γ*M.
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Let RN x Rs x Rκ 3 (q, μ, λ) -+ G(q, μ9λ) be a Morse family
generating the symplectic relation R in (T*RN x T*RS, ω^s θ ωΛ*)
(cf. [Ja2]). Then we immediately have the following result.

PROPOSITION 1.3. Assume that the mapping

has a maximal rank on the stationary set ΣQ = {(q, μ, λ): | j ( # , μ, λ)
= 0}. Then the family

RNxRwx Rs~w

is an I-Morse family generating the isotropic submanifold defined as
an image of {(v, μ) e T*RS: v = 0, μx = 0, . . . , μw = 0} by the
transposed symplectic relation R*.

EXAMPLE 1.4. Systems of rays by diffraction on apertures. Let X =
Rn be the configuration space of geometric optics. Let S be a hy-
persurface with boundary dS in X, representing the aperture of an
optical system (cf. [Ja2]). Let Ψ be an initial wavefront hypersur-
face in X with coordinates (μ\, . . . , μn-\) Then all rays passing
through the boundary of an aperture dS form an isotropic subvari-
ety In~ι of (Γ*X, coχ) (this is also an isotropic subvariety of the
symplectic space of all rays [Ja2]). In~ι is generated by the distance
function, say G(x, β, λ, μ) from the point μ = (μ\, . . . , μπ_i) of
the wavefront to the point (0, β, λ) of the complement of the aper-
ture o == \(U, /> , /tj ? . . . , ΛJJ_2/ G Λ J Jΰ ^ Uj , (Λ

 ==
 (ΛI , . . . 3 Aγι—2)) 5

plus the distance from the point (0, β, λ) G 5 to the final fixed point
x G X . In this case L=\,K = 2n-Z and generically G is an
/-Morse family.

There are isotropic varieties which play an important role in geom-
etry and physics (see [Kel], [Hor], [AG], [Ja2]) and they are no longer
smooth. Nevertheless they can still be represented in the form (2) by
the /-generating families.

EXAMPLE 1.5. Isotropic varieties of polynomials. Let us consider the
space of polynomials.

f Y2k+2

k+l-l

) •
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endowed with the symplectic structure ω = Σ ^ 1 dpi Λ dq , derived
from the unique SL2(i?)-invariant symplectic structure of the space
of binary forms of 2k + 3-degree by symplectic reduction (see [Zak],
[AR1]). The space of characteristics of the Hamiltonian system with
Hamiltonian H(p, q) = pλ + ~q{p2 + + \~q\+\ -> corresponding to
translations of x, is identified with the space of polynomials

"•e=I χ2k+\ χ2k~ι

k k—\

:~ΪT ~~ PkTZ ϊTΓ "•" ' * ' ~*~ v ι) Pi

endowed with the reduced symplectic form Σί=i dpi Λ dqi. By the
obvious identification

(x - t)2k+2 „ ( x - 0 2 ^ 1 _ (x - t)k+ι _ (x - t)k

we obtain the /-generating families for the isotropic spaces of poly-
nomials Ir in T*Q having root of multiplicity > k + 1 + r. Recall
that /o is a lagrangian variety in T*Q called an open swallowtail (cf.
[Arl]).

Gr:QxRrxRr+ι

In the case k = 2, r = 1, i.e. the variety of polynomials of fifth
degree having root of multiplicity > 4, the stationary set is described
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by the three equations

EXAMPLE 1.6. Generalized open Whitney umbrellas. Consider the
s p a c e o f p a i r s o f b i n a r y f o r m s o f d e g r e e I n + 1 , ( f , g ) e M2n+2 x
M2n+2 9

2/1+1 • Λ i 1 \ 2π-t-l / r\ i 1 \

/ = Σ (2nk )^χky2n+ι-k, 8= Σ ( Γ )biχ
iy2n+ι-i.

k=0 V ' i=Q ^ '

By the lineo-linear invariant {/, g} in the space of binary forms (cf.
[KR]), we define the bilinear form

ω((/, g), ( / , gf)) = ({/, ^} - {f, g})(2n + 1)!

which endows the space MlnArl x M2n+2 with the SL2(i?) invariant
symplectic structure. We recall

2n+\ / ~ , i

{/^}=Σ(- 1 ) 2 n + 1 "Ί \
A;=0 V

In the corresponding Darboux coordinate we write

f = ί 0 ( 2«+1

By the symplectic reduction on hypersurface {#o = 1} we obtain
the reduced symplectic space identified with the pairs of polynomi-
als (f,~g)e Q2n+ι x Q2n (we put y = 1 and consider the derivatives
of ^-polynomial)

7=7;

endowed with the Darboux reduced symplectic structure

2«=1
w = Σ d p i Λ dqt -

The corresponding Hamiltonian of translations in (Q 2 / ί + 1 x Q 2 w , ω)
is
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Its space of hamiltonian curves is identified with the space of pairs of
polynomials, (F, G) € X

χ2n+l χ2n~^

F + 7 ! + +

with ω = Y%1\ dp i Λ dq\. It defines the symplectic mapping along
characteristics of H, say π # : C = {H = 0} —> X. The coisotropic
submanifold C is generated by the following generating family (cf.
[Ja3]) F: Q 2 n + 1 x R2n xR2n ->R,

( ι 1 1

F(q,a9λ) = Y λ U Y ^ ~ l

i=2 \ /=2

We denote C? = {{p, q) e Q2n+ι x Q2n: px = 0, . . . , pr = 0} r >
2. By reduction π # : C Π Cf -* X we obtain the corresponding
coisotropic varieties in the space of pairs of polynomials with roots
of multiplicity greater than or equal to (0, r — 1). Their generating
families can be written as

2ιι+l

i=r+l \ /=2

In an analogous way we obtain the generating families for coisotropic
varieties πH(C n C/), Cf = {{p, β) 6 Q 2 w + 1 x Q 2 w : fcn+i = 0, . . . ,

i-s = 0}, 5 > 2, namely

2/1+1-5

Hs(q,a,λ)= Σ
ι=2

We see that π#(C n C^7 Π Cf) c X form the lagrangian varieties.
The irreducible component of the case r = n + 1, ^ = « is known
as the open Whitney umbrella singular lagrangian variety (see [Giv],
[Ar2]), which appeared as a generic singularity of systems of rays pass-
ing through the singular initial conditions represented by the generic
isotropic submanifolds situated in given hypersurface {H = 0}.

By straightforward calculations using the generating family F
for C, we obtain the generating family for lagrangian variety
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πH(CnC>+ιnCfl)t namely

f ( ή. D- jf (Σ (^Tr7i!'"+1^-.+ Ϊ^Ίv>

i=0 / i=0

1 = (A, λ\,..., A n).

This variety has two components: the first one forms the pairs of

(F, (?) with roots of multiplicity at least (n+1, ή). The second forms

the pairs (JF, G) with roots of multiplicity at least (n,n + l). The

first component is called an open Whitney umbrella and is generated

by the degenerate /-generating family:

Λ = (A,

Intersection of both components is an isotropic variety (polynomials
with roots of multiplicity at least (n + l9n+l))9 with the generating
family

2 / n + k 1 i \

{

β -{βi, βi)> A = (A, λ i , . . . , A Λ + i ) .

2. Classification of isotropic submanifolds. Let (/, 0) be a germ of
a proper isotropic submanifold of (T*M\ O>M) . Let

G: (MxRLxRκ, (0, 0, 0)) - i?

be a corresponding germ of the /-Morse family generating (7 ,0) .
Finding the generating families for coisotropic and isotropic sub-

manifolds suggests the corresponding groups of equivalences of un-
foldings preserving the fiber structure given on the space of unfolding
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parameters (cf. [Was]). In contrast the natural group of equivalences
for /-generating families is formed by diffeomorphisms preserving
the corner in the space of Morse parameters. In singularity theory
that group was first introduced by Arnold [AVG], then generalized by
Siersma [Sie], and first applied in symplectic geometry of holonomic
differential systems by Pham [Pha].

Let %[q9β9χ) denote the space of smooth function germs at zero
defined on M xRL x Rκ. By ^(q9β9χ) w e denote the maximal ideal
of %{q9β,λ). By (βx, . . . , βLW{q,β,λ) we denote the ideal of %[q9β9λ)

generated by β\, ... , β^ coordinate functions.
Let 3f(L9K) be the set of germs at (0, 0) of diffeomorphisms of

(RL x Rκ, (0, 0)) preserving the hyperplanes {(β, λ) e RL x Rκ

βi = 0} and the L-dimensional corner βf = {(β) e RL; βt > 0,
i = 1, ... , L} in RL x Rκ (cf. [Sie]).

DEFINITION 2.1. Two /-generating families (germs),

are said to be /-equivalent if there exist the germ of diffeomorphism

Φ: (MxRL xRκ, 0) -> (MxRL xRκ, 0), Φ(q, , >)e3f(L,K),

and a smooth function-germ a e (β\, . . . , βL)2^{qj,λ) s u c h that the
following diagram commutes

(MxRLxRK,0) % (MxRLxRK,0)

KM \ / KM

M

and
G\ o φ + a = Cr2.

We easily see that the corresponding isotropic submanifolds defined
in (2) by /-equivalent /-Morse families are identical. Now we use the
standard group of symplectic equivalences (cf. [AVG]).

DEFINITION 2.2. We say that two germs of isotropic varieties
(Ii, 0), (I2, 0) c (T*My ωM) are equivalent if there exists a sym-
plectomorphism Φ: T*M —> Γ*M preserving the fiber bundle struc-
ture such that

Φ ( / i ) c / 2 , Φ(0) = 0.

We see that two /-Morse families G\, G2 generate two equivalent
isotropic submanifolds I\, I2, if and only if there exist a diffeomor-
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phism φ: (M, 0) -+ (M, 0) and a smooth function-germ g: (M, 0)
—• (R, 0) such that (?i o (^, id) + g o nM and (?2 are /-equivalent.
In this case G\, G2 are said to be equivalent.

Now following the standard lines of singularity theory of functions
on boundaries and corners (cf. [AVG], [Sie]), we classify the versal
isotropic submanifolds of (T*M, CUM) by classification of the corre-
sponding versal /-generating families.

Let %[β9χ) denote the space of smooth function-germs at zero de-
fined on RL x Rκ. Let / G ^ ^ ) , /(O) = 0. An rc-dimensional
unfolding of / is a germ F E %[x 5^^) such that F\io\x^xRκ = f.
An unfolding F of / is called versal if given any other unfolding
H G <£{y, β, λ) of / there is a triple (Φ, a, g), where

(i) Φ(x,β,λ) = (Ψ(x),φ(x,β,λ))eRmxRLxRk, φ\{0}xRLxB*

id (0) 0
(ii) ae(βι,...,βL)g[X9β9λ)9 geg{x),

(iii) for (x, β,λ)eRn xRLxRκ,we have

F(x,β,λ) = H(Φ(x9β,λ))+a(x9β9λ) + g(x).

By ΔL,K(/)
 w e denote the Jacobi ideal of / e ^ , Λ ) > namely

We say that / G ^ ^ J has finite codimension c (equivalently we say
/ is finitely determined [Sie]) if

cod(/) = c = dim* ( r λ Λ I R

{ β A ) » \2& < °°
Δ{f) + {β P Γ %

If c is finite then c is the minimal dimension of a versal unfolding
of f. If gι, ... 9 gce ^(β,λ) a r e representatives of a basis of

then the miniversal unfolding of / is following (cf. [Mar])

1=1

DEFINITION 2.3. Let (x9 β, λ) -*• G(x, jff, A) be an /-generating
family for a germ of the isotropic submanifold (7,0) c T*M. We
say that (/, 0) is versal if G is versal.

Versality assures that all isotropic germs with fixed finite-determined
G(0, β, λ) are generated by an /-generating family (not necessarily
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/-Morse family) obtained by an arbitrary puUback from the versal
unfolding of G(0, β, λ) (cf. [Mar]).

To classify (/, 0)-versal isotropic submanifolds we need at first to

classify singularities of / e ^λ ^ with respect to the modified 2^L, in-

equivalence; i.e. we say that / , / ' e Jtλ ^ are equivalent if there

is a function g e {β\, . . . , ^ L ) 2 ^ , A ) such that / and f + g are
equivalent.

LEMMA 2.4 (on the pre-normal form). Let f e JtΆ ^ . Then there

are nonnegative numbers k, K\, linear functions /,- ofJ—(λ\,... , λ^y

variables, 1 < / < L—k, smooth functions ψi in^ϊκ y ψ e <£?κ, such

that f is equivalent to

L-k

(3) β\λ\ H h βkλk +

w/zere /: < K\ < K and Q is a nondegenerate quadratic form of

λκx+\> . . . 5 λκ-variables.

Proof. Using the splitting lemma (see [Sie], p. 122) and reducing
the terms of order two or higher in (β) we find the prenormal form
(3).

By this lemma and using the determinacy criteria (cf. [Jal]) we
have the following classification theorem (cf. [Mat] in ordinary case).

PROPOSITION 2.5. A. We assume L = 1 and the corank of f is
2. Then there are two series of simple singularities with the following
versal unfoldings:

Fs: λs

W + λp 4
q-\

<s+j-2βl

p-ί

Λ -T 2_jΛq+i—\Λ >
i=\

ί - 3

[J' + y ^ x λ ι s > 3 c = 2,

B. Unimodal, corank 3 (corank/ = L+K) singularities with L = 1
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are equivalent to one from the following list,

Dkχ. λ\λ2±λ\-χ +βλ2 + aβλ[, c = k + l, aφO,

k + l > 5, k>4,

£ 6 ; 0 : λ]±λj + βλ2 + aβλu c = l,
17 . Q 3 i 1 1 3 I /> 0 \ Λt Q 1 s% Q

LLη Q . Aγ ~r ΛJΛ2 Ί p/^2 ~r ClpA\ , C = o ,

xig o ^1 • ̂ 2 ~"~ P i ' ajjA\, c =— y j

^ 6 1 ^1 ^- ^2 •" P*Ί ' t+P^I 9 C = = o .

Since now we assume that our /-generating family has a minimal
number of λ-parameters, i.e. (d2f/dλidλj)(0) = 0. Changing the /-
generating family by subtracting or adding nondegenerate quadratic
forms of the remaining variables is called a stable equivalence of gen-
erating families (cf. [AVG]).

3. Quasicaustics and their evolutions. Let (/, 0) be an isotropic
submanifold of ( Γ ¥ , % ) with codim/ = dimM + r, r > 1.

DEFINITION 3.1. We call the image set (πM(I), 0) c M a quasi-
caustic corresponding to (/, 0).

Let (q, β, λ) -+ G(q, β, λ) be a generating family for (7,0). We
see that the quasicaustic of (7, 0) can be written in the following way,

Q(I) = {qeM: G(q,-, •) has a critical point on {0} x Rκ}.

If 7Γi: M x RL x Rκ —• M denotes the natural projection on the first
factor then we can write

The notion of quasicaustic was introduced in [Ja2] in the context of
geometric optics of diffraction on apertures (cf. Example 1.4). Gen-
eralization to the system of apertures was given in [JP].

On the basis of the preceding section (Proposition 2.5), by straight-
forward checking, we obtain

PROPOSITION 3.2. The only stable quasicaustics for L = 1 in di-
mension < 4 are dijfeomorphic to hypersurface or Whitney's cross cap
Q(F4)t extended by a cartesian product with Euclidean space.
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To study the evolution of quasicaustics we follow Arnold [Ar2]; we
first study the singularities of functions on quasicaustics. To deter-
mine the normal forms of these functions we need to compute the
module of logarithmic vector fields tangent to the given quasicaustic
(cf. [JP]).

Let (/, 0) be an isotropic, versal germ. Let

be its versal /-generating family. We restrict our considerations to
the complex analytic or real analytic case, @{q), &(q9β,λ) etc. By
Derlog<2(/) we denote <^)-module of germs of analytic vector fields
on (Rn, 0) which are tangent to the nonsingular part of Q(I).

Using the Malgrange Preparation Theorem (cf. [Mar]) we see that
the module

where

ί <l <L9 I <k <K, 1 < /, j < L, is a free ^)-module generated
by l , ί i , . . . , & Thus for each h e #(q9βtχ) we have

1=1 ι</=l

where γl9δk, ξij e <?(q9β9χ) and a, α/ e &{q). If h e #(q,β,λ) satis-
fies the conditions

. 0 Λ dh( 0 Λel—f 0 A *£(. 0 )\
? υ ? h Wi *} \dβr9 ' h d λ k

( ' ? } r
then the vector field η = Σ?=i α/(^/d<?/), where ac+\, . . . , an are
arbitrary elements of (9^ 9 is tangent to Q(I) (cf. [JP]).

Let Q(I) be a quasicaustic and g: {Rn D Q(I), 0) -* R be a
smooth function. We wish to classify these functions up to changes
of coordinates in Rn which preserve the quasicaustic Q(I). These
we obtain by integrating vector fields obtained from the basis, say d, ,
constructed above. We denote the resulting group of diίfeomorphisms
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by &{Q{I)). Using the standard results of singularity theory on va-
rieties we obtain the analogous notions of stability and determinacy
(see [Bra], [AVG]).

We use the Jacobi ideal (ϋ\g, . . . , ϋsg) <9n . Thus we have the cri-
terion for stability of g, namely g is S?(Q(I))-stable if and only if

where Jtn is a maximal ideal in (9^ . Thus if we have a family of
functions on β(7), say W: (RnxU, OxU) -> (R, 0) parametrized by
an open set U c RP and Wu{-) = W( , w) is stable for each u eU.
Then if Wi, W2 a r e i n the same component of U stability implies
that WUχ and WUi are 3?(Q(I))-equivalent provided all #/ vanish at
0 G β ( / ) . Now we have the following

PROPOSITION 3.3. Let (Q(F4), 0) be the stable quasicaustic in R?
corresponding to an F^-singularity. Then under the generic condition

the function g on Q(F4) is stable and 2ί'[Q(F4))-equivalent to one of
the functions,

g{q) = ±qι ± q3 .

Proof. At first we show that g is a stable germ. By straightfor-
ward calculations using formula (4) we find the generators of the @(qy
module of logarithmic vector fields Derlog Q(F4) (cf. [Ja2]), namely:

0 a d

So we have

1

1

π2

?3(

2 a
1 .

id

dg

1 dg 2 dg dg 1 dg\
3 9^3 3 dq\ dq3 3

This implies that g is 1-determined by its one-jet jxg. Let g(q) =
a\q-$ + α2<?2 + #3<7i so we obtain the four types of stable functions
defined by the connected components of the complement of the variety
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a)

K1

b)

F 4

FIGURE 1

= 0}. Therefore by local triviality property of g we obtain the
desired result.

COROLLARY 3.4. A generic (and stable) function on Q(F4) x Rk is
equivalent to

1. J>i, or
2. ±q\ ±q$±y\±' '±yfc, where {yi}\ are coordinates on Rk.

By simple checking of the intersection of the "big" caustic Q(F4)
with the family of the level sets of the functions ±q\ ± q^ we obtain
the following result.

COROLLARY 3.5. Generic evolution of quasicaustics in the plane are
illustrated in Figure 1 a, b.

Using the stable families of level sets defined by functions of Corol-
lary 3.4, namely:

on quasicaustic Q{F4) x R we obtain the following result.

COROLLARY 3.6. Generic evolution of quasicaustics in R? are illus-
trated in Figure 2 a, b, c, d (L = 1).
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