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SINGULAR HOMOLOGY AND COHOMOLOGY
WITH LOCAL COEFFICIENTS AND

DUALITY FOR MANIFOLDS

E. SPANIER

This article contains an application of the author's previous work
on cohomology theories on a space to an exposition of singular the-
ory. After a summary of the relevant concepts concerning cohomology
theories in general, singular homology and singular cohomology with
local coefficients are defined. Each of these is presented in two ver-
sions, one with compact supports and one with arbitrary closed sup-
ports. It is shown that each version satisfies an appropriate duality
theorem for arbitrary (i.e. nonorientable) topological manifolds.

1. Introduction. This paper is a presentation of singular homology
and cohomology theory with local coefficients. Included is a treatment
of the usual singular homology with compact supports (which is based
on finite chains) and the singular homology based on locally finite
chains. The former is a weakly additive theory and the latter is an
additive theory.

Similarly, there are two types of singular cohomology, one with
compact supports and one with arbitrary supports. In an n-manifold
X the basic duality theorem asserts the isomorphism of the two types
of ^-dimensional homology for an open pair (U, V) in X to the
corresponding two types of (n — q)-dimensional cohomology of the
complementary closed pair (X — V, X — U) with coefficient systems
suitably related.

Our approach is to study homology and cohomology on a fixed space
X and to prove the duality theorem referred to above by comparing
two cohomology theories on X, one being the appropriate homology
of the open pair in complementary dimension and the other being the
corresponding cohomology theory of the complementary closed pair.
For this we present the relevant concepts concerning such theories and
a review of the comparison theorem for them.

Thus, the paper is divided into two parts, §§2 through 5 are devoted
to general concepts concerning covariant and contravariant functors
defined on pairs in a space, and §§6 through 10 are devoted to appli-
cations of these ideas to singular homology and cohomology and to a
proof of the duality theorem for manifolds.
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Many of the results in the paper seem to be known in some form but
not readily available in the literature. What is new is the generality of
our treatment and the methods used. The presentation is reasonably
self contained except for two results. The first is the main comparison
theorem (stated below in Theorem 2.1) whose proof can be found in
various forms in any of the references [9, 12, 13]. The second is the
existence of a Thom class for arbitrary manifolds (needed in §10 for
the duality theorems) a proof of which can be found in [7].

Section 2 contains definitions of a cohomology (homology) functor
on X as a contravariant (covariant) functor from closed (open) pairs
in X to the category of graded modules, together with a suitable nat-
ural transformation, such that continuity, excision, and exactness are
satisfied. The main comparison theorem for cohomology functors is
stated as well as a dual for homology functors.

In §3 we review some notation and terminology for chain (cochain)
complexes, and in §4 we consider chain (cochain) functors on a space.
These are often used in constructions to obtain homology (cohomol-
ogy) functors. In §5 we introduce chain (cochain) prefunctors. These
may be obtained by applying the hom functor to cochain (chain) func-
tors. By taking suitable direct limits of a prefunctor one obtains a
corresponding functor. Since the hom functor converts direct sums
of modules to direct products, it takes weakly additive functors into
additive prefunctors.

In §6 we define the singular chain complex with a local system as
coefficients. This is a weakly additive theory. In §7 we consider lo-
cally finite singular chains and obtain an additive singular chain func-
tor with local coefficients. We prove that in a locally compact finite
polyhedron the corresponding homology is isomorphic to the cellu-
lar homology of the polyhedron based on infinite chains. In §8 we
introduce singular cohomology with local coefficients. By using the
hom functor on singular cochains with compact support we construct
another additive homology functor. This is compared with the one
based on locally finite singular chains, and the two are shown to be
isomorphic on manifolds.

Sections 9 and 10 are devoted to a proof of the duality theorem for
manifolds. The algebraic machinery necessary to compare singular
homology of an open pair in X with cohomology of the complemen-
tary closed pair is set up in §9. This uses a suitable cohomology class
Uin(XxX,XxX-δ(X)) where δ(X) is the diagonal of Xx X.
In §10 we consider the case where X is an n manifold and U is its
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Thorn class and deduce the duality theorem. Some variants of duality
are also discussed.

2. Cohomology and homology functors. We assume throughout that
the space X is paracompact and Hausdorff. This isn't absolutely es-
sential for some of the results but it simplifies the presentation and
suffices for our applications. R will denote a fixed principal ideal
domain. All modules will be over R.

A cohomology functor AT*, 5* on X consists of:

(a) a contravariant functor H* from the category of closed pairs
(A, B) in X and inclusion maps between them to the category of
graded R modules (H*(A,B) = {H*(A, B)}geZ) and homomor-
phisms of degree 0 between them, and

(b) for every closed triple ( i , 5 5 C ) in I a natural transforma-
tion

δ*: H*{B, C) -> H*(A, B) of degree 1,

such that the following three properties are valid:

Continuity. For every closed pair (A, B) in X there is an isomor-
phism

p: lim{i/*(M, N)\(M, N) a closed neighborhood of (A,B)}

where p{u} = u\(A9B) for u e H*(M, N).

Excision. For closed sets A, B in X there is an isomorphism

p: H*(A UB,B)& H*(A ,AnB)

where p(u) = u\(A, A nB) for u e H*(A uB,B).

Exactness. For every closed triple (A, B, C) in X the following
sequence is exact

> Hq{A, 5) 4 #*(Λ, C) ^ i f * (5 , C)

What is here called continuity was called tautness in [8, 9]. This
definition of a cohomology functor is equivalent to that of an ES
Theory [10, 11, 12] although it is formally different. The defini-
tion given here is more convenient for dualization. It is a conse-
quence that every cohomology functor defines a cohomology theory
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H', δ' on X (as defined in [9, 12]) in which H'(A) = H*(A, 0) and
δ': H'(AnB) -> H'(A\JB) is suitably defined. The cohomology func-
tor is nonnegative if Hq(A, B) = 0 for # < 0 and all closed pairs
{A,B).

A family {Sj}j€j of subsets of X is discrete if each point of X has
a neighborhood meeting at most one element of the family. Given a
discrete family {{Aj, Bj)}jeJ of closed pairs in X, for each j eJ let
C/ = U Ϊ / 7 Ai, a closed set in X . For each j e J there are restriction
homomorphisms

H*{Aj U C,, Bj U C,-) 4 JΓ ( U (^-, Bj)) ^ H*{Aj , £,).

The cohomology functor is said to be weakly additive if the homomor-
phisms {pj} define an isomorphism

H*(Aj\JCj9Bj\jCj)κH*l\J(AJ9Bj)
\jeJ

for every discrete family {(Aj, Bj)}jej, and it is additive if the ho-
momorphisms {pj} define an isomorphism

jeJ

for every discrete family {(Aj?, Bj)}jeJ. (Note that, by excision,
if*(4/ U C/, ̂  U C, ) = / / * ( ^ U (Bj U C/), 5 7 U Cj) « //*(^ y , J?/)
for each 7 € / , so weak additivity as defined above is equivalent to
that defined in [13].)

A homomorphism φ: Hf , δ^ —• 7/|, J2 between two cohomol-
ogy functors on the same space X is a natural transformation from
HI to //I (of degree 0) which commutes up to sign with δ\, δ^ -
The following is a consequence of the main comparison theorem for
cohomology theories [9, 12, 13] and the five lemma.

THEOREM 2.1. Let φ: H\, δ^ —• //£, 2̂ ^ α homomorphism-be-
tween cohomology functors on X and suppose both are weakly additive
or both are additive. Suppose there is n such that φ: Hf(x9 0) —>
H^x, 0) is an n-equivalence for all x e X. If both H*, δf and
H2, δ% are nonnegative or if X is locally finite dimensional then
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φ: H\{A, B) —• H^A, B) is an n-equivalence for all closed (A, B)
in X.

Dually, a homology functor H*, d* on X consists of:

(a') a convariant functor H* from the category of open pairs
(£/, V) in X to the category of graded i?-modules (H*(U, V) =
{#,(£/, F)},€Z), and

(b;) for every open triple (U, V, W) in X a natural transforma-
tion d*\H*{U, V)-+H*(V, W) of degree - 1 ,

such that the following three properties are valid:

Continuity. For every open pair (U, V) there is an isomorphism

i: Km{H*(U'9 V
f)\(U', V) open and (V, T') c ((7, F)}

where /{z} = /'(z) for z G H*(U'9 V
f) (and /' : H*(U', F;) ->

/ί*(ί7? F) is induced by the inclusion map (£/', K;) c (U, V)).

Excision. For open £/, V in X there is an isomorphism

/://*([/, £/nF)^/7*(£/uF, F)

induced by the inclusion (17, U Γ)V) c (U UV, F) .

Exactness. For every open triple (C/, F, W) the following sequence
is exact

The homology functor is nonnegative if Hq{U, V) = 0 for <? < 0
and all open pairs ({7, F) . Given a discrete family {(IT/, F/)}^/ °f
open pairs in X, for 7 e / let M7; = U/^ ̂ / F° r e a c ^ j € J there
are homomorphisms induced by inclusion

H.{Uj9 VJ)XH* l\J(Uj9 Vj)\ X H.(UjUWJ9 VjUWj).
J

The homology functor is weakly additive if the homomorphisms
define an isomorphism
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for every discrete family {((//, Vj)}jeJ > a n d it is additive if the ho-
momorphisms {ifi define an isomorphism

jeJ

for every discrete family {(C//, F/)}./€/
Complementation and sign changing interchanges homology func-

tors and cohomology functors. That is, the equation

Hq(X - B9 X - A) = H-g(A9 B)

can be used to define a covariant functor 77* on open pairs if 77* is
given on closed pairs, or conversely, defines 77* on closed pairs if 77*
is given on open pairs. In each case there is a similar way to relate δ*
and d* so that corresponding to a homology functor 77*, <9* there is
a cohomology functor and conversely. Complementation in this form
does not preserve nonnegativity but does preserve weak additivity and
additivity and it is involutive.

A homomorphism h: 77*, d* —•//£, dl between two homology
functors on the same space is a natural transformation from 77* to
77* commuting up to sign with <9* and dl. The following comparison
theorem is one consequence of Theorem 2.1 obtained by complemen-
tation and sign changing.

THEOREM 2.2. Let h: 77*, <9* —• 77**, dl be a homomorphism be-
tween two homology functors on X and suppose that both are weakly
additive or both are additive. If h: 77*(X, X - x) -> 77^(X, X - x)
is an isomorphism for all x e X and X is locally finite dimensional
then h: H*(U, V) —> Hl(U, V) is an isomorphism for every open pair
(U, V) in X.

3. Chain complexes. In the next section we will see that a homol-
ogy (or cohomology) functor can be obtained from a functor from
open (or closed) pairs to the category of chain (or cochain) complexes
having properties analogous to the continuity, excision, and exactness
properties.

In this section we summarize some definitions and properties of
chain complexes over 7?. By changing the sign of the degree in such a
complex we obtain a cochain complex and vice versa. This procedure
will be referred to as "the sign changing trick" and implies that re-
sults valid for chain (or cochain) complexes have analogues valid for
cochain (or chain) complexes.
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A chain transformation between two chain complexes is called a
weak chain equivalence [3] if it induces isomoφhisms of the respective
homology modules. Every chain equivalence is a weak chain equiva-
lence, and every weak chain equivalence between free chain complexes
is a chain equivalence (recall that R was assumed to be a principal
ideal domain). In a similar fashion we define the concept of weak
cochain equivalence between cochain complexes.

Let θ: C —> C be a chain transformation and let G be an R-
module. Then 0 ® 1: C®G -> C®G is a chain transformation, and
if θ is a chain equivalence, so is θ ® 1. However, if θ is a weak
chain equivalence, then θ ® 1 need not be a weak chain equivalence.
We will replace C ® G by another chain complex which is a functor
of C and (7 such that a weak chain equivalence of C will induce a
weak chain equivalence on the new chain complex. The main interest
in this construction is in the case of chain complexes which are not
free.

Let 0 -> Pi Λ Po Λ G -> 0 be a free presentation of G. Then
P = {Po > Λ , #} is a free chain complex with

G i f# = 0,

and there is a weak chain equivalence e: P —* ((7, 0) where ((7,0)
is the chain complex with G in degree 0 and trivial chain modules
in degrees other than 0. If Pι is another free chain complex with
ε': P' —• ((?, 0) a weak chain equivalence, there is a chain equivalence
τ:P-*F such that δ 'oτ = ε.

Consider the complex C®P. Since P is free it is a consequence of
the Kunneth formula [8] that for every q there is a split short exact
sequence (universal coefficient formula)

0 - Hq{C) ® G ^ Hq(C® P) -> tor(/^_i(C), (?) - 0.

Furthermore, if θ: C —• C ; is a weak chain equivalence, so is θ <S>
1: C ® P —• C(S)P, and if C is a free chain complex, then 1 ®ε: C®
P -^ C ® G is a weak chain equivalence. Finally, if Pf is another
free chain complex with ef: Pf —• ((7, 0) a weak chain equivalence,
then C ® P and C ® P ; are chain equivalent. Therefore, H*{C®P)
depends canonically on C and G.

If C, C are chain complexes there is a chain complex hom(C, C)
[3] where hom(C, C')q is the module of homomoφhisms φ from C
to C of degree q (so φ(Q) c C _^ for all /) and with

d": hom(C, C7)* -> hom(C, C%-i
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defined by d"(φ) = d'oφ+(-l)<*φod . Then d"d" = 0 so hom(C, C)
is a chain complex. Note that hom(C, (G, 0))q = hom(C-q, G) so
that if C is a nonnegative chain complex, hom(C, (G, 0)) is a non-
positive chain complex. In this case we consider hom(C, (G, 0)) as a
nonnegative cochain complex by changing the sign of the degree. Sim-
ilarly if C* is a nonnegative cochain complex we change the sign of
its degree and obtain a nonnegative chain complex hom(C*, (G, 0)).

If C, C are chain complexes and θ: C —• C is a weak chain
equivalence, then

hom(0, 1): h o m ( C , (G, 0)) -* hom(C, (G,0))

need not be a weak cochain equivalence. Because of this we consider
an injective resolution of G

Here, Q = {Q°, Q} , δ} is an injective cochain complex with

T'
and η: (G, 0) —• Q is a weak cochain equivalence.

Consider the cochain complex hom(C, Q) (hom(C, Q)q consists
of pairs {ψQ,φ\) where φ0: Cq -* Q° and ψ\\ Q_i —> Q1 and
^(^o ? ί̂ i) = ( ( - l ) ^ o °d , (-l)^^i od +δ o ^ 0 ) ) . For every # there
is a split short exact sequence (universal coefficient formula)

0 -> ext(iίy_i (C), G) -^ ^ ( h o m ( C , Q)) -> hom(//^(C), G) ^ 0.

Furthermore, if θ: C —• C is a weak chain equivalence so is
hom(#, 1): hom(C ;, Q) —• hom(C, Q), and if C is a free cochain
complex, then

hom(l, η): hom(C, (G, 0))-^hom(C, Q)

is a weak cochain equivalence. Finally if Q is another injective
cochain complex with a weak cochain equivalence ηf: (G, 0) —• Q7,
then there is a cochain equivalence hom(C, Q)-^hom(C, Q'). There-
fore, 77*(hom(C, Q)) depends canonically on C and G. Similarly if
C* is a cochain complex then hom(C*, Q) is a chain complex (with
hom(C*, Q)q consisting of pairs (^o, ψ\) where ΨQ\ Cq —> 2° and



SINGULAR HOMOLOGY AND COHOMOLOGY 173

4. Chain and cochain functors. It is frequently the case that a homol-
ogy (cohomology) functor is obtained from a suitable chain (cochain)
functor on the space. This section contains the relevant definitions.

A chain functor C* on a topological space X is a covariant functor
from the category of open pairs in X to the category of chain com-
plexes of R modules (C*(C7, V) = {Cq(U, V)}qeZ) such that the
following three properties are valid:

Continuity. For every open pair (U, F) there is a weak chain equiv-
alence

i: lim{C*(t/', V')\(U', V) open and (V,V) c (ϊ/, V)}

Excision. For open sets U, F in X there is a weak chain equiva-
lence

i: C*((7, £ / n F ) - + C * ( £ / U F , F).

Exactness. For every open triple (C/, F , W) in X there is a short
exact sequence

0 - > C * ( F , jPF)Λc*(C/? PF)-tc*(C/ ? F)-> 0.

The chain functor is nonnegative if Cq{U, V) = 0 for # < 0 and
all open pairs (17, V) in X. It is weakly additive if for every dis-
crete family {([//, Vj)}jeJ of open pairs in X there is a weak chain
equivalence

/:
induced by the maps /,•: C*(Ϊ77 , F,) -> C*(U7 G/(l7y, F;)). It is addi-
tive if for every discrete family {(Uj, Vj)}jej there is a weak chain
equivalence

σ': C* ( \J{Uj,
\jeJ

where Wj = U/^7 C// and σ' is induced by the maps

\J(UJ9 Vj)) -+ C*(UjUWj, UjU

W /
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THEOREM 4.1. If C* is a chain functor on X and G is an R mod-
ule, there is a homology functor H*( , ;G) on X with Hq(U, V\ G)
= Hq(C*(U, V)®P) {where P is a free resolution of G) and <9* the
connecting homomorphism corresponding to the exact sequence

0 - » C * ( F ,

If C* is nonnegative or weakly additive, the same is true of //*(•, G),

Proof. The operation on chain complexes of forming their tensor
product with P commutes with direct sums and direct limits, takes
weak chain equivalences into weak chain equivalences, and takes short
exact sequences into short exact sequences. Therefore, the continu-
ity, excision, and exactness properties of C* yield the corresponding
properties of i/*( , •; G), <9*. Nonnegativity of C* clearly implies
nonnegativity of 77* ( , G) and weak additivity of C* implies weak
additivity of #*(•, . G). D

Additivity of C* does not imply additivity of //*(•, G) because
tensor product of chain complexes with P does not commute with
infinite products.

Thus, weakly additive homology functors can be obtained from
weakly additive chain functors. To get additive homology functors, in
the next section we shall use the hom( , Q) construction applied to
a weakly additive cochain functor. Therefore, we now introduce the
concept of a cochain functor, dual to that of a chain functor.

A cochain functor C* on X is a contravariant functor from closed
pairs in X to the category of cochain complexes of R modules
(C*(A, B) = {Cq{A, B)}qeχ) such that the following properties are
valid:

Continuity. For every closed pair (A, B) there is a weak cochain
equivalence

p: lim{C*(M, N)\(M, N) a closed neighborhood of (A,B)}

Excision. For closed sets A, B in X there is a weak cochain equiv-
alence

p: C*(A UB,B)^ C*{A ,AυB).
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Exactness. For every closed triple (A, B, C) in X there is a short
exact sequence

0 -+ C*(A, 5) Λ C*(Λ, C) ^ C*(£, C) -* 0.

The cochain functor is nonnegative if C^(^4, 2?) = 0 for # < 0
and all closed {A, B) in X . It is weakly additive if for every discrete
family {(Aj, Bj)}jej of closed pairs in X the homomorphisms

p'j: C*(Λ, u Cj, Bj u C, ) -> C* ( (J (Λ, , * , )

induce a weak cochain equivalence

*(Aj\jCj,BjUCj) - C. l\J{Aj,Bj)

\jeJ

(where Cj = Uί=έ/ ̂ « f°Γ e a c n 7)» a n <^ it ^s additive if there is a weak
cochain equivalence

jeJ

induced by the maps pj: C*(\Jjej(Aj, £,-)) -> C*(^ί7, Bj).
Complementations and sign changing

{Cq{A9 B) = C_^(Z - 5, X - ^))

interchanges chain and cochain functors preserving weak additivity
and additivity (but not nonnegativity). The following analogue of
Theorem 4.1 is obtained by complementation and sign changing.

THEOREM 4.2. If C* is a cochain functor on X and G is an R
module, there is a cohomology functor //"*(•, •; G), δ* on X with
H«(A ,B;G) = H<*(C*(A, B) ® P) {where P is a free resolution of
G) and δ* is the connecting homomorphism corresponding to the exact
sequence

0 -• C*(A ,B)®P-> C*{A ,C)®P-+ C*(B, C) ® P -> 0.

If C* is weakly additive the same is true of H*{*, \G).

5. Prefunctors. We have viewed homology on X as a covariant
functor on open pairs of X and so our chain functors are also co-
variant functors on open pairs of X. Dually cohomology on X is a
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contravariant functor from closed pairs of X and the corresponding
cochain functors are also contravariant functors on closed pairs. It
may happen that we encounter or construct a covariant functor from
closed pairs of X or a contravariant functor from open pairs. If such
functors satisfy suitable hypotheses they are called chain (cochain)
prefunctors on X. By passing to appropriate direct limits they give
rise to chain (cochain) functors.

One way of constructing a chain (cochain) prefunctor is to apply
hom( , Q) to a cochain (chain) functor (where Q is an injective res-
olution of a module G). This procedure applied to a weakly additive
cochain (chain) functor yields an additive chain (cochain) prefunctor.

A cochain prefunctor C* on X is a contravariant functor from
the category of open pairs (£/, V) of J to the category of cochain
complexes of R modules (C*(t7, V) = {Cq{U, V)}geZ) such that
the following are valid:

Excision. For open sets U, V in X there is a weak cochain equiv-
alence

p: C*(£/UF, F)->C*(£/, UnV).

Exactness. For every open triple (U, V, W) in X there is a short
exact sequence

o-+c*(t/, F
Nonnegativity, weak additivity, and additivity are defined for cochain

prefunctors in fashion analogous to their definition for cochain func-
tors. There is no continuity property involved in the definition of
cochain prefunctor.

Dually a chain prefunctor C* on X is a covariant functor C* from
the category of closed pairs (A, B) in X to the category of chain
complexes of R modules satisfying excision and exactness.

THEOREM 5.1. Let C* be a chain functor on X and G an R module.
For an open (U, V) in X define

C*(U, F)=hom(C*(£/, K),β)

where Q is an injective resolution of G. Then C* is a cochain pre-
functor on X. If C* is weakly additive, then C* is additive. Dually if
C* is a (weakly additive) chain functor define, for a closed pair (A9''B)
in X,

Then C*(A> B) is an (additive) chain prefunctor on X.
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Proof. Because Q is an injective complex, the excision property of
C* implies that of C* and the exactness property of C* implies that
of C*. Thus, C* is a cochain prefunctor.

Assume C* is weakly additive. We prove C* is additive. Let
{(£//, Vj)}jej be a discrete family of open pairs. Then there is a
weak chain equivalence

\j£J

Therefore, there is a weak cochain equivalence

hoπψ , 1): horn C* \J(Uj, Vj) , Q

-+homl®C.(Uj,Vj),Q\.

Since h o m ( φ y e / α(C/, , Vj), Q) » \[j€J hom(C([/7 , ^ ), Q) we ob-
tain a weak chain equivalence

j jeJ

proving that C* is additive.
This completes the proof of the statement about the cochain pre-

functor. The dual statement about chain prefunctors is proved
similarly. D

THEOREM 5.2. Let C* be a cochain prefunctor. Define, for {A, B)
a closed pair in X,

C*(A, £)=lim{C*(£/, V)\(U, V) an open neighborhood of {A, B)}.

Then C* is a cochain functor and if C* is additive, so is C*. Similarly
if C* is a chain prefunctor define, for open (U, V),

C*(£/, V) = l im{C*μ, B)\(A, B) closed c (t/, F)}.

C* w α c/zα/π functor and if C* w additive, so is C*.

Proof. Since X is normal, if a closed pair (̂ 4, B) is contained in
an open pair (U, V) there is a closed pair of neighborhoods (M, TV)
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of (A, B) with (M, N) c (U, V). Using this and the definition of
C* it follows that C* is continuous.

Since the cohomology of a direct limit of cochain complexes is the
direct limit of the cohomology of the cochain complexes, the excision
property for C* follows from that for C*.

Since the direct limit of exact sequences is exact, the exactness prop-
erty for C* follows from that for C*.

Therefore, C* is a cochain functor. To prove it is additive if C*
is, note that, since X is paracompact, it is collectionwise normal.
Hence, if {(Aj, Bj)}jej is a discrete family of closed pairs in X there
exist discrete families of open pairs {(Uj, Vj)}jej with (Aj, Bj) c
(Uj, Vj) for each j , and as these discrete families vary over such
neighborhoods their unions \JJ€J(UJ , Vj) form a cofinal family of
open neighborhoods of \JjeJ(Aj, Bj). Since C* is additive, there is
a weak cochain equivalence

Taking the direct limit of both sides as (Uj, Vj) vary over discrete
neighborhoods of (Aj, Bj) yields the additivity of C*. This proves
the result for C*.

The result for C* follows similarly. D

Combining Theorems 5.1 and 5.2 we obtain the following.

COROLLARY 5.3. Let C* be a chain functor on X and G an R
module. For a closed pair (A, B) in X define

C * μ , 5 ; G ) = lim{hom(C*(C/, V), Q)\(U, V) an open

neighborhood of(A,B)}

where Q is an injective resolution of G. Then C*( , G) is a cochain
functor on X. / / C * is weakly additive\ then C*( , •; G) is additive.
Dually, if C* is a (weakly additive) cochain functor on X define, for
(t/, V) open in X,

C,(U, V;G)= lim{hom(C*(A,B)yQ)\(A,B) closed c(C/, V)}.

Then C* is an (additive) homology functor on X. D

REMARK 5.4. In Corollary 5.3 if C* (or C*) is nonnegative it is
not true that C* (or C J is nonnegative; however, the corresponding
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cohomology functor Ή* (or homology functor /7J determined by
C* ( C J is nonnegative because of the universal coefficient formula.

Even for prefunctors which are neither weakly additive nor additive
we can obtain weakly additive functors by using limits over compact
(or cobounded) sets as we now describe. (Recall that a set A c X is
cobounded if X - A has compact closure.)

THEOREM 5.5. Let C* be a cochain prefunctor on X. For {A, B)
a closed pair in X define

C*C(A,B) = lim{C*(£/, V)\(U, V) open cobounded

neighborhood of(A,B)}.

Then Cc is a weakly additive cochain functor. Dually, if C* is a chain
prefunctor on X define, for open ({/', V) in Xy

C«(U9 V) = Km{C*(A9B)\(A,B) compact c (U, V)}.

Then C_l is a weakly additive chain functor on X.

Proof. The proof that C* is a cochain functor (and C* *s a chain
functor) is analogous to the proof in Theorem 5.2 that C* ( C J is a
cochain (chain) functor.

We show C* is weakly additive. Let {(Aj, Bj)}jeJ be a discrete
family of closed pairs in X and let (U, V) be an open cobounded
neighborhood of \JjeJ(Aj, Bj). Then there is a finite set F c / such
that j φ. F implies Aj c V (since X— V is compact it can meet only
finitely many Aj's). If w e c£(U/€/C4/ > ^/)) ^ a s ^ e f ° r m u = {v}
where i; G C*(C/, F) then w| U7 ^ F ( ^ 7 » ̂ 7) = 0 s o (bY t h e analogue
of the Lemma in [13]) it follows that C* is weakly additive. D

6 Singular homology. In this section we introduce the usual sin-
gular homology of X with coefficients in a local system. This is a
weakly additive homology functor on X. A corresponding additive
homology functor will be introduced in the next section. Our treat-
ment of singular theory dates back to Eilenberg [5] and is the one most
commonly used since the appearance of [5].

We begin by recalling some properties of local systems. Local sys-
tems were defined by Steenrod [14]. The definitions below are equiv-
alent to his. A local system [8] Γ of R modules on a space X is
a function associating to every x e X an R module Γx and to ev-
ery path ω: I —> X a homomorphism Γ ω : Γω(0) —> Γω(i) (this is the
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reverse of the definition in [8]) such that:

(1) If εx is the constant path at x , then Γε^ = l Γ ( x ) .

(2) If ω(l) = ω'(0) the product path ω*ω' is defined and Tω^ω> =

Γω ' o Tω: Γω(0) -> Γω'(i)
(3) If ω and ω' are homotopic paths (i.e. homotopic relative to

{0, 1}), then Γ ω = Yω>: Γω(0) -> Γ ω ( 1 ) .

Let / : Y —• X be a continuous map and Γ a local system on X. A
Γ section of / is a function s assigning to every y e Y an element
s(y) G Γf(y) such that, for every path ω in 7 , Γfoω(s(ω(0))) =
s(ω(l)). The set of all such Γ sections of / is an R module Γ(/)
under pointwise operations of functions. In case Y is path connected
and every closed path in Y is mapped by / into a null homotopic
path in X (e.g. if Y is simply connected), then for every y0 e Y the
map φ$: Γ(/) —• Γy^ ) defined by ψo(s) = s(yo) is an isomorphism.

If Γ is a local system and G is an R module, hom(Γ, G) is
the local system (hom(Γ, G))x = hom(Γ x , G) and, for ω a path
in X, (hom(Γ, G))ω: (hom(Γ, G))ω{0) -• (hom(Γ, G)) ω ( 1 ) is equal
to (hom(Γω, I ) ) - 1 : hom(Γ ω ( 0 ) , G) -> hom(Γ ω ( 1 ) , G) (so for φ e
hom(Γ, G) ω ( 0 ) , (hom(Γ, G))ω(φ) ^ p Γ ^ G hom(Γ, G ) ω ( 1 ) ) .

Two local systems Γ and F are paired to an R module G if there
is bilinear map ( , •): ΓxφΓ^ —• G for each x such that if ω is a path
in X then for γ e Γ ω ( 0 ) , γ e Γ ω ( 0 ) we have (γ, γ') - (Tω(γ), Γ ω ( / ) ) .

EXAMPLE 6.1. There is a pairing of hom(Γ, G) and Γ to G defined
by (<P>V) = φ(ϊ) for γ eΓx and ^ e (hom(Γ, G))x - hom(Γ x, G).

If Γ and Γ are paired to G then for every path connected Y and
map / : Y —* X there is a pairing of Γ(/) and Γ'(/) to G defined
by (s,s') = (5(y), ^(y)) for y e Y (the value of (s(y),s'(y)) is
independent of y e Y because Y is path connected).

For q < 0 define Δ^(X; Γ) = 0 and for <? > 0 define Ag(X; Γ) to
be set of all finitely non-zero functions c which assign to every singular
^-simplex σ: Ag —> X an element c(σ) G Γ(σ). Then Aq(X] Γ) is an
R module under pointwise operations of functions. If gσ e Γ(σ) let
gσσ denote the element of Aq(X Γ) such that

0 iϊσφσ',

^ if σ = σ1.

Then every element c e Aq(X;Γ) has the form c = ^ σ gσσ where
# σ = 0 except for a finite set of σ 's.

If gσ e Γ(σ) and σ ^ is the /th face of σ, then gσ\σ^ e Γ(σ^).



SINGULAR HOMOLOGY AND COHOMOLOGY 181

Thus, there is a homomorphism

defined by d(Σσgσσ) = Σσ Σo<i<g(^y(8σW{i))σ{i). It is easily ver-
ified that dd = 0 so that Δ*(X Γ) = {Aq(X Γ), a} is a nonnegative
chain complex. If c = Σ σ ĝ cr its support \c\ = \J{σ(Δq)\gσ Φ 0}, a
compact subset of X. If 4 c X, then Δ*(Λ ; Γ ) = {CG Δ*(X Γ)||c| c
4̂} is a subcomplex of Δ*(X Γ), and we define

so there is a short exact sequence

0 - \*{A Γ) -> Δ*(X Γ) ^ Δ*(X,A;Γ)->0.

THEOREM 6.2. Le/ Γ be a fixed local system on X. Then Δ*( , •)
defined for (U 9 V) open by Δ*(i7> V) =Δ*(ί7, F ; Γ) is a nonnegative
weakly additive chain functor on X.

Proof. Continuity follows from the fact that as (£/', F') vary over
open sets with ( F \ F') c (U, V), then UΔ*(C/;;Γ) = Δ*(t/;Γ)
and UΔ*(K'; Γ) = Δ*(F; Γ) because every element of Δ*(ί7 Γ) (or
Δ*(F Γ)) has support a compact subset of U (or V) so is contained
in Uf (or V) for some open t/' (or V) whose closure is contained
in U (or F ) .

For excision let ^ be a collection of subsets of X and define
Δ * ( ^ Γ) to be the subcomplex of Δ*(X Γ) consisting of finite sums
Σcj such that for each j , Cj £ Δ*(X; Γ) and there is some Vj e
Ψ° with \CJ\ c Vj. If Ψ" is a collection of subsets of 4̂ such that
A = U F ( Ξ ^ i n t F ' , then the inclusion map Δ*(?^; Γ) c Δ#(^4; Γ) is
a chain equivalence (proof analogous to that of Theorem 14 on p.
178 of [8]). In particular if U and F are open sets in X, then
Δ*(C/ Γ)+Δ*(F Γ) c Δ*(C/U F Γ) is a chain equivalence. It follows
that

[Δ*(t/; Γ) + Δ * ( F ; Γ)]/Δ*(F; Γ) - Δ*(C/U F ; Γ)/Δ*(F; Γ)

= Δ*(C/UF,F;Γ)

is a chain equivalence. Excision follows from this and the Noether
isomorphism

Δ*(C7, C/n F ; Γ) = Δ*(£/; Γ)/Δ*(t/Π F ; Γ)

= Δ*(C/;Γ)/[Δ*(C/;Γ)ΠΔ*(F;Γ)]
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If (U, V, W) is an open triple in X there is a short exact sequence

so exactness is satisfied.
Thus, Δ*( , •) is a nonnegative (by definition) chain functor. It is

weakly additive because every chain has compact supports [13]. D

It follows from Theorem 6.2 that for every R module G the singu-
lar homology on X with coefficients T®G, denoted by //•(•, Γ® G)
and defined by Hq(U, V; Γ® G) = Hq{A*{U, V; Γ) ® P) (where />
is a projective resolution of G1) is a nonnegative weakly additive ho-
mology functor on X.

7. Locally finite singular homology. In this section we introduce the
locally finite singular chains to obtain an additive homology functor.
In a special situation we relate this new homology to limits of the usual
singular homology. This is applied to show that for a locally finite
simplicial complex the locally finite singular homology is isomorphic
to the simplicial homology based on infinite chains. The locally finite
singular homology was considered in Seminaire Cartan [2] where it
was called "singular homology of the second kind".

For j > 0 a function c which assigns to every singular (/-simplex
σ: Aq —• X an element c(σ) e Γ(σ) is called a locally finite q-chain
if {σ(Aq)\c(σ) φ 0} is a locally finite family in X. The locally finite
^-chains form an R module A™{X\ Γ) under the usual operations
on functions. For q < 0 we define A™(X Γ) = 0. If c e A™(X Γ)
with 0 < q its support \c\ = \J{σ(Ag)\c(σ) Φ 0}, a closed subset of
X. If c €Δ£°(X; Γ) with ? < 0 w e define |c| = 0 .

If {Cj}jej is a family of elements of A™(X; Γ) it is said to be
locally finite if the family of supports {\cj\}jej is locally finite. In
this case the sum Σ/e/ cj *s defined as an element of A™(X Γ) (be-
cause for every singular ^-simplex σ, σ{Aq) is compact so meets
only finitely many \CJ\ and so Cj(σ) = 0 except for a finite set of

's). In particular, if q > 0 and c = Σσ gσσ e A™(X; Γ), then
iy(gσW{i))σ{i)}gσϊθ is a locally finite family so

Σ (-mg
σ 0<i<q

and there is a homomorphism
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such that d(Σσgσσ) = ΣσΣo<i<σ(-iY(gσ\σW)σW. Then \dc\ c |c|
and ddc = 0 so there is a nonnegative chain complex Δ£°(X; Γ) =
{Δ£°(X; Γ), d} of locally finite singular chains with coefficients Γ.
We define H™>{X Γ) = Hq(Δ?(X Γ)).

Clearly Δ*(X; Γ) c Δ f ( X ; Γ) (in fact, Δ*(X; Γ) is the subcom-
plex of Δ£°(X; Γ) of chains having compact support) so there is a
homomorphism

Hq(X 9Γ)-+H?(X;Γ).

If A c X we define XΔ?(A;Γ) = {c G A™(X; Γ)\\c\ c Λ}. This
is a subcomplex of A™(X Γ) and consists of chains in A which are
locally finite in X (a stronger condition than being locally finite in
A). We define XH?(A\ Γ) = H*(xAf(A\ Γ)). In case Λ is closed
in X, *Δ~(Λ Γ) = Δ2°(Λ Γ) so that XH?(A Γ) = H?>(A Γ) in
this case.

If c G XΔ^°(^4 Γ) there is a set F closed in X with F c A such
that c G ΔfCF Γ) (for example, F = |c |). Therefore, if {^ ;} ; € / is
a family of subsets of A directed upward by inclusion such that every
subset of A which is closed in X is contained in Aj for some j G /
then XΔ?(A;Γ) = \JJeJ

xΔ?(Aj;Γ) and so l i m { ^ ° ° ( ^ ; Γ)} «

If B c A c X then X ΔJ°(5;Γ) c ^ Δ f ί ^ Γ) and we define
xAf{A, B Γ) = x Δ f (Λ Γ)/XΔ^(B Γ). There is then a short exact
sequence of chain complexes

0 -> XΔ£°(£ Γ) -* XΔ^°(^ Γ) -> XΔ^°(^, 5 Γ) -• 0.

THEOREM 7.1. For (U, V) an open pair in X define Δ£°(ί7, V) =
XΔ^°(C/, F ; Γ). Γλen Δ °̂ w α nonnegative additive chain functor on
X.

Proof. Continuity follows from the fact that as (U1, Vf) vary over
open pairs with (Z7',F') c (£/, V) then (JΔfίt/O = Δ2°(t/) and
(JΔ^°(F / )=Δf(F) so that limίΔfίC/7, F ;)} « Δf (J7, F ) .

For excision let ^ be a family of subsets of X and define
xAf(T\ Γ) to be the subcomplex of Δ2°(ΛΓ; Γ) consisting of lo-
cally finite sums ΣjeJCj such that for each j G / , c7- € Δ£°(X; Γ)
and there is some Vj• e Ψ' with \CJ\ c Vj. If 2^ is a collection
of subsets of 4̂ such that A = | J F G ^ i n t F then the inclusion map
XΔ£°(5^ Γ) c XA™(A Γ) is a chain equivalence (proof analogous to
that of Theorem 14 on p. 178 of [8]). Excision follows from this (as
in the proof of excision in Theorem 6.1).
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If (U, V, fF) is an open triple in X there is a short exact sequence

so exactness is satisfied.

Thus, Δ£° is a nonnegative chain functor on X. To show it is
additive suppose {Uj}jej is a discrete family of open sets in X and
V C \JjeJ Uj *s ° P e n Then there are isomorphisms

and additivity of Δ£° follows. D

Thus, usual singular homology is obtained from a weakly additive
chain functor and locally finite singular homology is obtained from an
additive chain functor. In case X is compact the two theories agree.
The following is a generalization of this.

LEMMA 7.2. If B c A and A - B has compact closure in X then

Proof. If A - B has compact closure in X, then for c e
XA™{A, B\ Γ) the set {σ\c{σ) φ 0 and σ(Δ*) Π {A - B) φ 0} is
finite. Therefore, xAf(A Γ) = xAf{B Γ) + Aq{A Γ) and so

XA™(A, B Γ) = xAf(A Γ)/XA™(B Γ)

= [xAf{B Γ) + Aq{A Γ)]/xΔξ>(B Γ)

= Aq{A Γ)/Δ,(5 Γ) = Aq(A, B Γ). D

Our next result relates H£° to limits of //* in a special situation.

THEOREM 7.3. Assume there is a sequence {C/}/>o of subsets of X
such that X = (J/intC/, Q c Q + i for each i, and Ci is compact for
each i. ΓAeft ί/^re is a short exact sequence

H™(X; Γ) -, \im{Hq(X, X-Q; Γ)} - 0.
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Proof, (Note that a sequence {Q} of subsets of X satisfying the
hypotheses of the theorem exists if and only if X is a σ-compact space
as defined in Dugundji [4].) For each / there is a quotient chain map

τr. Δ^(X; Γ) -> XA?(X, X - Q Γ)

and these define a chain map

τ: Δ-(X; Γ) -> H m { x Δ r ( X , X - Q Γ)}.

We prove τ is an isomorphism. If c G Δ£°(X; Γ) is in kerτ then
τ/(c) = 0 for each / so c G ZΔ£°(X - Cz Γ) for each z. Since
U/ Q = X, it follows that f|, XΔ£°(X - Q Γ) = 0 so c = 0 and τ is
a monomorphism.

To show τ is an epimorphism let {c, G XΔJ°(X, X - Cz Γ)} be
an element in lim {XΔ£°(X, X - C, Γ)} . The element c/ can be re-
garded as a locally finite sum of singular simplexes each having support
which meets Q . Similarly Q + I is a locally finite sum of singular sim-
plexes each having support which meets C/+i. The condition that c, +i
maps to Q implies that on singular simplexes whose support meets
C\ both Ci and c/+1 have the same value. Therefore, there is a chain
C = Σ SσO in X such that if \σ\ nCf Φ 0 then gσ = the value of c,
on σ. We show c is a locally finite chain in X . Since X = (J int Q ,
if x G X there is i such that x e intC/. If |σ| n intC/ ^ 0 then
\σ\Γ\Ci Φ 0 so gσ is the value of c, on σ. Since C/ is a locally finite
chain, there is a neighborhood N of x such that there are only a finite
number of σ 's with \σ\Π N Φ 0 and Q(σ) Φ 0. Then TV n int Cz is
a neighborhood of x such that there are only finitely many σ 's with
|σ| Π (TV Π int Q) ^ 0 and gσ φ 0. Therefore, c G ΔJ°(X Γ) and
clearly τ(c) = {τ, (c)} = {cz} so τ is an epimorphism.

By Lemma 7.2 since Cz is compact, there is an isomorphism
Δ*(X, X - Q Γ) « ZΔ^°(X, X - Q Γ) so that Δf(X Γ) is iso-
morphic to lim{Δ*(X,X - C Z ;Γ)}. Each of the chain maps
Δ*(X, X - Ci+χ Γ) —> Δ*(X, X - C/ Γ) is an epimorphism so by
A.15 on p. 402 of [6], l im^Δ^X, X - Q• Γ)} = 0, and then by A.19
on p. 407 of [6] there is a short exact sequence

0 -

- H™{X\ Γ) - lim{//^(X, X - Q Γ)} -> 0. D

We use this last result to show that for the space of a locally fi-
nite simplicial complex K, then H™{\K\\ Γ) is isomorphic to the
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homology group of the complex of infinite simplicial chains with co-
efficients Γ.

Let K be a locally finite simplicial complex and let C£°(K; Γ) be
the infinite chain complex of oriented simplexes with coefficients Γ
(thus an element c e C%°(K; Γ) is a function assigning to every
oriented ^-simplex σ of K an element c(σ) e T(\σ\) such that if
a' is the oppositely oriented simplex then c(σ) + c(σf) = 0). Sim-
ilarly let A™{K\ Γ) be the infinite chain complex of ordered sim-
plexes with coefficients Γ (so c e A^(K; Γ) is a function assign-
ing to every ordered ^-simplex σ of K an element c(σ) e Γ(|σ|)).
There are natural chain maps [8] μ°°: A™(K; Γ) -> C2°(K; Γ) and
j,oo. ^(AΓ Γ) —> Δ2°(|AΓ| Γ) which are chain equivalences for every
finite complex K.

THEOREM 7.4. If K is a locally finite simplicial complex there are
isomorphisms

μ?: Hg(A?(K; Γ)) « Hq(C™(K; Γ))

and

Proof. The local finiteness of K implies that K = |J£o ^ where AT/
is finite for each / and \Kj\ c int |AΓ/+i | . By analogues of Theorem 7.3
for C£°(K; Γ) and Δ^°(^; Γ) there is a commutative diagram with
exact rows (in which K — int \Kf\ is denoted by Lz and all coefficients
are in Γ)

t oo t ' t

0 -* ]*ml{Hq+l{\K\, \ L t \ ) } - > H™(\K\) - > l i m { ^ ( | V | , | L , | ) } - > 0 .

Since the vertical maps on the sides are known to be isomorphisms,
the result follows from the 5-lemma. D

8. Singular cohomology. In this section we define the singular co-
homology of X which coefficients in a local system, and, using this,
we define another additive homology function X which we compare
with the one defined in the last section.

Let Γ be a local system on X and for a pair (M, N) in X
let Δ«(M, N; Γ) = 0 if q < 0 and for q > 0 let Δ«(Af, TV; Γ)
be the module of #-cochains of M which vanish on N (i.e. u e
Aq(M,N;Γ) is a function assigning to every singular ^-simplex
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σ: Aq -»• M an element u(σ) e Γ(σ) such that if σ(Aq) c N then
u(σ) = 0). ForueAq(M,N;Γ), q > 0 define δu G Δ « + 1 ( M , N; Γ)
by

(δu)(σ)=

where σ: A i + 1 —• M and if g e Γ(σ(')) then g e Γ(cr) is the unique
element such that g\σ^ = g. Then <$<J = 0 so there is a cochain
complex A*(M, N Γ) = {A*(M, N Γ), δ} .

In case Γ, F are local systems on X paired to an R module G as
in §6 there is a pairing A«{M, N ;Y)®Aq(M, N Γ) -> G defined by
(u, c) = £("(<7), gσ) where c = Σσ gσσ. In case u e Aq{M, N; Γ)
and c = X) g σ σ € Δ ί + 1 (Λf, iV F) we have

Σ (-V'Mrt.gσ).
gσ σ 0<i<q+l

Now for any g e Γ(σ^)) we have (g, ^σ) = (g, 5"σ|σ^^). Therefore,

In case Γ = hom(Γ, G) we have

Aq(M, N; hom(Γ, G)) » hom(Δ^(M, iV; Γ ) , G)

an ^ corresponds to hom(θ, 1) under the above pairing.
The singular cohomology Hq{M, ΛΓ Γ) is defined to equal

Consider the cochain complex Δ*(t/, F; Γ) as a functor of open
pairs (C/, F) in X. For an open triple (I/, V, W) there is a short
exact sequence

0-Δ*(t7, F;Γ)-^Δ*(ί7 ? JF;Γ)->Δ*(F, f F ; Γ ) ^ 0 .

If t/, V are open sets in X then (by an argument similar to the proof
of excision in Theorem 6.2) there is a weak cochain equivalence

Δ*(C/UF, F;Γ)-+Δ*(£/, UnV Γ).

Furthermore, if {(I//, F/OI e/ is a discrete family of open pairs in X
there is an isomorphism

jeJ
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Thus, Δ*( , Γ) is a nonnegative additive cochain prefunctor on X .
By Theorem 5.2 there is a corresponding cochain functor Δ* which

associates to a closed pair (A, B) in X the cochain complex

Δ * ( ^ , G ; Γ ) = lim{Δ*(C/? V\Y)\{U, V) an open

neighborhood of (A, B)}

whose cohomology functor is denoted by Ή*(A, B Γ). It is a non-
negative additive cohomology functor on X. Note that H*(A, B Γ)
is not the singular cohomology of (A, B) with coefficients Γ but
is the limit of the singular cohomology of open neighborhoods Of
{A, B). (However, because (X, 0) is an open pair, 77* (X, 0 Γ) =
H*(X, 0 ; Γ) is the singular cohomology of (X, 0).) In case X is
an HLC space, H*(A, B\ Γ) is isomorphic to the Cech-Alexander
cohomology of (A, B) with coefficients Γ [9].

Similarly by Theorem 5.5 there is a weakly additive cochain functor
Δ* which assigns to a closed pair (A, B) in X the cochain complex

X(A,B\ Γ) = lim{Δ*(C/, F ; Γ)|(£/, F) open cobounded

neighborhood of (A, B)}

whose cohomology functor is denoted by Έtc{A, B Γ). It is a non-
negative weakly additive cohomology functor on X . In case X is
HLC, H*C(A, B Γ) is isomorphic to the Cech-Alexander cohomology
of (A, B) with coefficients Γ and with compact supports.

For a pair (M, N) in X we define

Δ,(M,iV;hom(Γ, G))

= lim{hom(Δ*μ, £ Γ), Q)\(A, 5) closed c (M, JV)}

where Q is, as usual, an injective resolution of G. We define
Kq{M, N; hom(Γ, G)) = Hq(A*(M, JV; hom(Γ, G))). Then for a
closed pair (-4,5), we have

Δ,(Λ, 5 hom(Γ, G)) = h o m ^ μ , B Γ), β) .

By Corollary 5.3 there is an additive chain functor Δ* which associates
to an open pair (17, V) in X the chain complex Δ^C/, V\ hom(Γ, G)).
We want to compare the additive homology functor

# * ( . , . ;hom(Γ,G))

just defined with the additive homology functor defined in §7 by using
locally finite singular chains. Note that Δ* (and //J are defined for
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local coefficients of the form hom(Γ, G) for some local system Γ and
some module G. It is not clear how much of a restriction this imposes
on the resulting local system hom(Γ, G).

We begin with a pairing

Δ*(C/', V'\ Γ) x XA™(A, B; hom(Γ, G)) -> G

for a closed pair {A, 2?) contained in an open cobounded pair
(£/', V). Let c = Σ σ £ σ σ e *Δ~(Λ J9; hom(Γ, G)) and let u G
Aq(U\ V'\ Γ). Then M vanishes on every singular simplex σ in V.
Since X - K' is compact there are only a finite number of σ 's such
that gσ φ 0 and |σ| n (X - V) φ 0 . Therefore

is a finite sum of elements of G. In case

~ !(Λ, 5 ; hom(Γ,

then 9c = Σ σ Σ o < κ , + i ( - l ) ' ( ^ | σ « ) σ « and

Σ (-

Passing to the direct limit as (£/', K7) varies over open cobounded
neighborhoods of (A, B) we obtain a pairing

Δ?C(A ,B;Γ)x xAf{A, 5 hom(Γ, G)) -> G

which corresponds to a homomorphism

ψ: ^ μ , B hom(Γ, G)) -> hom(Δ^(v4,5;Γ),G)

such that (p(c))({M» = {u,c) for c e XA?(A, B\ hom(Γ, G)) and
W G Δ ^ I / ' J F ' Γ ) where (t/7, F ;) is an open cobounded neighbor-
hood of (A, B). For the injective resolution

we see that ηφ: XA™(A, B\ hom(Γ? G)) -> hom(Δ?(^, 5 ; Γ), Q)
and

(ηφ)(dc)({u}) = η(u, dc) = η{δu, c) =

= d(ηφ(c))({u})

so that (ι?^)d = d(ηφ).
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Passing to the direct limit of both sides as (A, B) varies over closed
pairs in (U, V) yields the homomorphism

φ: XA™(U, V; hom(Γ? G)) ->Δ,(t/, V; hom(Γ, G))

and φd = dφ. So ^ is a natural chain map and determines
a homomorphism φ* from X//J°( , •; hom(Γ, G)), <9* to
#*(•, •; hom(Γ, G))9 <9* both nonnegative additive homology func-
tors on X.

If X is finite dimensional it would follow from Theorem 2.2 that
if φ* were an isomorphism for pairs of the form (X, X - x) for
x E X then <p* would be an isomorphism for all open (U, V) in
X. To obtain the local result we consider the case of an n manifold
(i.e. a paracompact Hausdorff space in which each point has an open
neighborhood homomorphic to Rn).

LEMMA 8.1. If X is an n manifold, then

φ*\ XH™(X, X-x\ hom(Γ, G)) « H,(X, X-x\ hom(Γ, G))

is an isomorphism for all x e X.

Proof. Since X - (X - x) = x is compact, it follows from Lemma
7.2 that

XH™{X, X-x; hom(Γ, G)) « /^(X, X - JC hom(Γ, G)).

Let C/ be an open neighborhood of x with U homomorphic to a
closed n ball. Then

/ ^ ( F , V- x hom(Γ, G)) « //^(X, X - x hom(Γ, G)).

Since U is simply connected, hom(Γ, G) is equivalent to a constant
system on ΊJ so that

hom(Γ x , G), qφn.

For the other group note that cofinal in the family of all closed pairs
in (X, X—x) are pairs of the form (X, X—U) where U is as above.
Then Δ*(X, X - U Γ) and Δ*(Z7, U - U Γ) are chain equivalent.
Since U is simply connected,

0, qφn,

ΓJC, q = n.
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Therefore,

^(X,X-jc;hom(Γ, G))

= Hq(A*(X,X-x;hom(T,G)))

= i ^ ( l i m { h o m ( Δ * ( X , X - U ; T ) , Q)})

« l i m { / f g ( h o m Δ * ( Z , X - U Γ ) , Q)}

»\\m{Hq{homTc(U, V-U;Γ),Q)}

I hom(Γx, G), # = rc,

the last isomorphism by the universal coefficient formula.

Finally, we observe that the pairing we defined induces a pairing

xHn(V, U-x; hom(Γ, G)) x H»(U9U-U\Γ) -+ G

which is isomorphic to the evaluation pairing

hom(Γx , G ) x Γ , - i G .

Therefore

φ*: XH™(X, X - x;hom(Γ, G)) -> Hn(X - X - x;hom(Γ, G))

is an isomorphism (corresponding to the identity map of hom(Γx, G)
—• hom(r x, G) resulting from the evaluation pairing above). D

THEOREM 8.2. For an n manifold X

ψ*:xH™{U, K;hom(Γ? C?)) « H*(U, F;hom(Γ, G))

for every open pair (U, V) in X.

Proof. Using Lemma 8.1 the result follows immediately from The-
orem 2.2 D

From the definitions we see that if (A, B) is closed in X then
H,{A, 5 hom(Γ, G)) = #*(hom(Δ*μ, B Γ), Q)). We already re-
marked that if X is HLC then, A*(A, B\ Γ) has cohomology iso-
morphic to the Cech-Alexander cohomology of (A, B) with compact
supports. It follows that in a locally compact HLC space X the groups
H_^(A, B; hom(Γ, G)) are isomorphic to the Borel-Moore homology
groups [1] of (A, B) with coefficients hom(Γ, G).
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9. Homology-cohomology comparison. In this section we construct
a homomorphism from singular homology χH£°(U, F) to singular
cohomology 77* (X - F , X - U) with suitable coefficient systems.
This homomorphism will depend on a cohomology class of
H*(XxX,XxX-δ(X)) where δ{X) = {(*, y) e X x X\x = y} is
the diagonal of X x X.

We shall assume Ψ* is an open covering of X such that if F ,
V eT' and F n F / 0 then every closed path in V U V is null
homotopic in X. If X is a paracompact space in which each point
has an open neighborhood W with the property that every closed
path in W is null homotopic in X, such a covering can be obtained
as follows. Let W be an open covering of X by sets W such that
every closed path in W is null homotopic in X (W is assumed to
exist) and let "V be an open star refinement of W covering X (such
star refinements exist because X is paracompact). Then Ψ* has the
desired property.

In §§6 and 7 it was noted that for any Ac X the inclusion maps

n A Γ) c xAf(A Γ), Δ * ( ^ n A Γ) c A*(A Γ)

are chain equivalences (where J^nA = {VnA\V e 2^}). If σ and σ'
are singular simplexes such that \σ\ c V, \σ'\ c V for F , V eT*
and |σ| Π |σ r | 7̂  0 then if x e |σ| n |<τ'| there are isomorphisms

If Λ:' is another point in |σ| Π \σ'\ let ω be a path in \σ\ from x
to x1 and α/ a path in \a'\ from x t o x ' . There are commutative
triangles

Γ(σ) -£ Γx Tx <- Γ(σf)

Since ω, α/ have the same endpoints and lie in VuV they are ho-
motopic in X so Γ ω = Γ ω ' : Tx —• Γ x ' . It follows that the composite
of the isomorphisms

Γ(σ) ^ Γ x ^ Γ(σ;)

is independent of the choice of x e |σ| Π \σ'\ so there is a well-defined
isomorphism /lσ σ ': Γ(σ) « Γίσ7).

If σ, σ r, σ/r are singular simplexes such that \σ\ c F , |σ ; | c F ; ,
|σ ;/ | c F / ; for V, F ' , F/ 7 G ̂  and M n |σ ; | , | σ | n | σ " | , H Π |σ/;|
are all non-empty, then λσσ» = ̂ σ'σ"^(τσ' : Γ(σ) « Γ(σ/ ;).
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Using this notation if g G Γ(σ), then g\σU) = λσσ^(g). It follows
that if c = Σσ 8aθ G Δ f ( r Γ), then

and if u eΔ«(^~; Γ), then

If Γ and F are local systems on X define Γ x Γ to be the local
system o n l x l such that (Γ x Γ\χ9y) = Γx ® Γy and (Γ x Γ)ω =
ΓpΓl ω ® ΓPr2 ω where prj: X x X —• X and p r 2 : l x l -^ I are
projections to the first and second coordinates, respectively.

Let U e Hn(X x X, X x X - δ(X) hom(i? x Γ, R)) be a given
cohomology class (here we regard R as a constant local system on X
in forming RxΓ on X x X) and let

a G hom(Δπ(ΛΓ x X, X x X - δ(X) i? x Γ), R)

be a cocycle representing t/.
Let τ: Δ*(X; i?) ® Δ*(X; Γ) -+ Δ*(X x I , Λ x Γ ) be an Eilen-

berg-Zilber map [8]. Then τ is a natural chain map (so
τ(Δ*(Ύ;i?)<g>Δ*(Z;Γ)) c Δ*(7 xZ,RxΓ) for all 7 , Z c X),
and in dimension 0, if [x] denotes the 0-singular simplex at the point
x, then

τ(a[x]® g[y]) = ag[(x, y)]

for αGJί , g € Γy and x, y e l . For an arbitrary local system P
on X define

θ: XΔ£°(^; Γ® Γ) -^^~q{T\ Γ)

by requiring it to be i? linear and such that if σ' is an (n-q) singular
simplex in V where F ' E ^ a n d c G XΔ£°(^ n(X- \σ\) Γ ® Γ)
then

θ(c)(σ') = 0

while if c = (g ® g;)^ e Δ ^ , Γ ® Γ) then

0(c)(σ') = (u, τ(σ'®gσ))λσσ<(g')=λσσ*({u, τ(σ'®gσ))gf)

(the right-hand side is 0 if |σ| Π \σ'\ — 0 because, in that case

τ{σ'®gσ)cXxX-δ{X)

and u vanishes on An(X xX, X x X - δ{X)\ RxΓ)). This uniquely
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defines θ because, for every singular simplex σ', given c e
* Δ ~ ( ^ ; Γ <g> Γ) there exist cx e Aq{T~\T®Γ) and c2 e
xAq

<>(T' n (X - \σ'\) Γ ® Γ) such that c = cλ + c2 (so that
Θ{c2){σ') = 0 and θ(cχ)(σ') is a finite sum of terms of the form
described above).

Given σ' in Δn_α + 1(F') for some V e Ψ~ let c = C\ + c2 where
ci G Aq{V Γ ® Γ) and c2 € *Δ£°(2^ n (A" - |σ'|) Γ ® Γ ) . Then
δ(θ(c)) = δ(θ(cι)) + δ(θ(c2)) and (5(θ(c2)))(σ') = 0 so (δ(θ(c)))(σf)
= (δ(θ(cι)))(σ'). To calculate (δ(θ(cι)))(σ') we need only calculate
it for C\ of the form (g ® ,?')σ where |σ| n |σ'| ^ 0 . In this case

where the corresponding term on the right is 0 if \σ\ Π |σ/(z) | = 0 . If
|σ| Π Iσ'^l ^ 0 , then λσ,(oσιλσσιw = λσσ> so we obtain

Now dτ(σ' Θ ̂ σ) = τ(5σ7 ® ̂ σ) + (-l)/I"4r+1τ(σ/ ® 9(gσ)) so that
τ(5σ' ® gσ) = dτ(σ' ® ̂ σ) + (-l)w~^τ(σ/ ®d(gσ)), and we obtain

(^) + (-1 )«'*(u, τ(σ'

Because δu = 0 since w is a cocycle, this equals
j

The corresponding term on the right equals 0 if \σ^\ n |σ'| = 0 and
if | σ ^ | Π \σ'\ Φ 0 , then λσσ* = ^ O J ^ ^ O ) SO we obtain

and, by definition, this equals (-l)n~qθ(d(g ® ̂ )^)(^0 Therefore,
^ maps the chain complex XΔ£°(^ Γ®P) into the cochain complex

* F) so that it commutes up to sign with d and δ .
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If B c X is arbitrary, then

τ ( Δ * ( ^ Π (X - B) R) <g> Δ*(^" n 5 ; Γ ) ) c Δ*((* -B)xB;RxΓ)

and w vanishes on the latter. Therefore, θ maps

X n (X - B) Γ ® Γ) into Δ * ( ^ , ^ n ί ; Γ) .

If fic^cl, the following diagram is commutative (the top row
is a short exact sequence with coefficients Γ ® Γ , the bottom row is a
short exact sequence with coefficients P , and the right-hand vertical
map is defined to make the diagram commutative)

0-^xA^(^ n(X- A)) - > * Δ ~ ( ^ Π (X - B)) -^x£^(ψ~ n (X - B), Ψ Π (X - A)) -*0

If (Af, B') c (A, B) there is a commutative square

B),^Π(X-A);Γ^Γf) Λ\°°(^ Π(I-5 ;),rπ(I-/);Γ0 Γ')

Let (^4,5) be a closed pair. Taking the direct limit of the homomor-
phisms (as (V, W) varies over open neighborhoods of (A, B))

θ: xA™(^Π{X-W),^n{X-V);Γ®Γ)->A*(^nV, ^ΠW; Γ)

determines the homomorphism

Similarly taking the direct limit as ( F , W) varies over open co-
bounded neighborhoods of (A, B) in X (and observing that, in case
( F , W) is cobounded,

Π (X - W), Ψ Π (X - V) Γ ® Γ))

we obtain a homomorphism

The homomorphisms θ and 0C depend on the choice of the cocycle
u and the Eilenberg-Zilber map τ . Altering u in the cohomology class
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U or altering τ will alter θ and θc by a chain homotopy. Therefore,
θ induces uniquely defined homomorphisms

and

θc

v: Hg(^ n (X - 5 ) , T n (X - A) Γ ® Γ )

The homomorphism

is defined so that commutativity holds in the square

xH£°(T~n(X-B), TΉ(X -A);Γ®Γ) > XH£°(X -B, X-A',Γ®Γ)

Γ) < Hn \A,B\ Γ).

Similarly the homomorphism

is defined so that commutativity holds in the square

> Hq{X-B,X~A\T®Γ)

H?-q(yrnA,<PrnB',r) < Hn

c

 g(A,B\Γ).

Both θu and θ^ are natural and commute up to sign with con-
necting homomorphisms. The image θu(z) is the slant product U/z
[7, 8] for local coefficients.

10. Duality in manifolds. Throughout this section X will be as-
sumed to be an n manifold. We prove various duality theorems re-
lating homology of a pair in X to cohomology of the complementary
pair.

THEOREM 10.1. Suppose X = U°^ointC/ where C[ is compact and
Ci c C +i for each i. Then for any local system on X,

H™(X; Γ) « lim{Hn(X, X - C z, Γ)}.
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Proof. By Lemma 1 on p. 299 of [8] Hn+ϊ(X, X - Q?, Γ) = 0 for
each / (the lemma referred to asserts the result for a constant local
system G, but the same argument establishes the result for an arbi-
trary local system Γ). The theorem follows from this using Theorem
7.3. D

It is straightforward to verify that lim {Hn(X, X - C, G)} is the
same as H%(X G) as defined on p. 299 of [8]. From Theorem 6 on p.
303 of [8] it follows that for a connected n manifold X, H™(X R) φ
0 if and only if X is orientable over R, and from Theorem 5 on p.
302 of [8] there is a bijection between orientations of X over R and
generators of H™>(X;R).

In general there is a local system Γ^ on X with

Γx = Hn(X,X-x;R)

and, if ω is a path in I , Γx: Γ (̂Ox —• Γ^(1) is suitably defined as in
[7] by "moving along ω ". The dual local system Γ z * = hom(Γ x , R)
has the property that r £ * « Hn(X, X-x R) for all x e X. In fact,
Γ^ « i? for each x G X and Γ^ corresponds to multiplication of i?
by ±1 depending on ω. Therefore, Γ x * « Γ x . On X x X the local
system i? x Γ z * is isomorphic to hom(i? x Γx, i?).

For x G X there are isomorphisms

Hn(X,X-x; Γx) « hom(i/w(X, X - x R) Γf)

« hom(i/"(X, X - x i?), Hn{X, X - x /?))

and z x G Hn(X 9 X - x Γ x ) will denote the element corresponding
under the above to the identity map of Hn[X, X - x R).

A ΓΛom class on X is an element

U G i/"(X x X, X x X - δ{X) hom(i? x Γ x , R))

such that, for each x G X, θc

u(zx) = I e Hc(x; R). It is known
(Theorem 4.7 in [7]) that every manifold has a unique Thorn class. In
the sequel we use the Thorn class U in defining θ and θc and omit
specific reference to U in the notation.

THEOREM 10.2. For every closed pair (A,B) in X and every local
system Γ of R modules on X there are isomorphisms

9: XH™{X -B9X-A\TX®T) π Ήn~q(A ,B;Γ)
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and
Rc * H ( Y — R Y — Λ Tx (9) T\ ~ ΎTn~q (Λ R Γϊ

Proof. Define cohomology theories //' and H on X by H'j(A, B)

with ^ ' , 5 suitably defined connecting homomorphisms. Then θ is a
homomorphism of Hr

 9 δr into 77, <5 which is an isomorphism
for every x e X (because W{x) = xH^_j{X, X - x; Γx ® Γ) =

//7(x Γ) « ^ ( x i?) ® Γ x , and both sides are 0 except for j = 0
when θ is an isomorphism by the choice of U). Since H' and H
are additive and X is finite dimensional, it follows from Theorem 2.1
that θ is an isomorphism for all closed (A, B) in X.

The result for # c is obtained similarly because the two sides be-
ing compared are weakly additive cohomology functors and θc is an
isomorphism for every x eX. •

REMARK 10.3. Replacing Γ by Γ X ®Γ and noting that TX®ΓX « R
so that Γx ® (Tx ® Γ) « i? ® Γ « Γ we see that for (^4,5) closed in
X there are also isomorphisms

and

θ: XH™(X -B,X-A;Γ)π Ήn~g(A ,

θc: Hq(X -B,X-A\T)π Ήn

c~
g(A, 5 Γ x ® Γ)q(

for an arbitrary local system Γ.
Theorem 10.2 and Remark 10.3 express duality between the two

types of singular homology groups of an open pair in X (i.e. weakly
additive or additive homology) with two types of Cech-Alexander co-
homology groups of the complementary closed pair (either weakly ad-
ditive or additive cohomology) with arbitrary coefficient systems. This
duality is not just an isomorphism of the homology groups with coho-
mology groups but is an isomorphism of cohomology theories with all
its implications. There is also the following result which expresses du-
ality between the Borel-Moore homology of a closed pair in X and the
singular cohomology of the complementary open pair (which equals
the Cech-Alexander cohomology) of the open pair.

THEOREM 10.4. If (A, B) is a closed pair in X and Γ is a local
system on X there is an isomorphism

H (A, B hom(Γ, G)) * Hq{X - B, X - A\TX ® hom(Γ, G)).
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Proof. In §9 we defined a map

θc: A ^ Π(X - B), ^ n(X - A);ΓX ®Γ) ->A*C(^ ΠA, 3r ΠB Γ)

for (A, B) a closed pair in X. Define a chain complex (C, d) so
that Q = Δ " ' V n ^ , ^ Π 5 ; Γ ) and 9: Q -* Cq.x equals (5:

ΔΓ^n^,^n£;Γ)^ΔΓ*+\^n^,^n£;Γ). Then θc is a
map of degree 0 from Δ * ( ^ n ( X - £ ) , ^ Π ( X - , 4 ) ; ΓX®Γ) to C*
which commutes up to sign with d. By Theorem 10.2, θc induces
an isomorphism on homology. It follows that θc also induces an
isomorphism on cohomology

H*(C* G) » iΓ(Δ*(T n (X - B), ^ n (X - Λ) Γ x ® Γ) G)

for any R module G. Because of the way C* is defined, this yields
an isomorphism

n (X - 5) , ^ Π (X - A) hom(Γ* ® Γ, (?))

and this corresponds to an isomorphism

^ _ ^ μ , 5 hom(Γ, G)) « /ί^(X - 5 , X - ^ hom(Γx ® Γ,

Because of the special nature of the local system Γ^ it is easy to
see that hom(Γz ® Γ, G) » Tx ® hom(Γ, G) so that

Hn_g(A, 5 hom(Γ, G)) « i/^(X - 5 , X - Λ Tx ® hom(Γ,

D

In case X is orientable, Tx w i? and the Theorems 10.2 and 10.4
assert isomorphisms of homology with coefficients in a constant system
with cohomology in the same constant system. In the non-orientable
case, however, if the homology is in a constant local system the corre-
sponding cohomology has coefficients in a non-constant local system
and vice versa.

REFERENCES

[1] A. Borel and J. Moore, Homology theory for locally compact spaces, Michigan
Math. J., 7 (1960), 137-159.

[2] H. Cartan, Seminaire de topologie algebrique, ENS, (1948-49).
[3] A. Dold, Zur Homotopietheorie der Kettenkomplexe, Math. Annalen, 140

(1960), 278-298.
[4] J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1968.
[5] S. Eilenberg, Singular homology theory, Ann. of Math., 45 (1944), 407-447.



200 E. SPANIER

[6] W. S. Massey, Homology and Cohomology Theory, Marcel Dekker, New York,
1978.

[7] E Spanier, Duality in topological manifolds, in Colloque de Topologie Tenu a
Bruxelles (Centre Beige de Recherche Mathematiques) (1966), 91-111.

[8] , Algebraic Topology, Springer-Verlag, New York, New York, 1982.
[9] , Cohomology isomorphisms, Contemp. Math., 12 (1982), 315-329.
[10] , Cohomology with supports, Pacific J. Math., 123 (1986), 447-464.
[11] , Cohomology theories on compact and locally compact spaces, Revisita

Matematica Iberoamericana, 2 (1986), 29-53.
[12] , Cohomology theories on spaces, Trans. Amer. Math. Soc, 301 (1987),

149-161.
[13] , Weakly additive cohomology, Publicaciones Matematiques, 34 (1990),

145-150.
[14] N. E. Steenrod, Homology with local coefficients, Ann. of Math., 44 (1943),

610-627.

Received August 27, 1990 and in revised form November 28, 1990.

UNIVERSITY OF CALIFORNIA
BERKELEY, CA 94720




