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APPROXIMATELY INNER AUTOMORPHISMS ON
INCLUSIONS OF TYPE III,-FACTORS

CARL WINSLOW

For arbitrary inclusions of factors with finite index, we
define a “fundamental homomorphism” which is a gener-
alization of both the Connes-Takesaki fundamental homo-
morphism for properly infinite (single) factors and Loi’s
construction for inclusions of type II;-factors.

It is shown that for nice inclusions of type III)-factors
(0 < A < 1), the kernel of the fundamental homomor-
phism coincides with the set of approximately inner au-
tomorphisms on the inclusion. To prove this, we first
give a characterization of approximate innerness on type
III-inclusions in terms of Loi’s and Connes-Takesaki’s in-
variants.

1. Introduction. The importance of studying automorphisms
on von Neumann algebras was highlighted through Connes’ classi-
fication theory for type IIl-factors. Recently it has been suggested
to generalize Connes’ automorphism approach to subfactor theory
(see e.g. [Kal],[L2]).

In Connes’ theory, an important class of automorphisms on a
von Neumann algebra M is Int(M), the closure — in u-topology,
as usual — of Int(M) in Aut(M); members of this set are called
approrimately inner. Assume M is a hyperfinite factor. If M is
of type I or I, then Int(M) = Aut(M), but if M is of type Il
or III, one has Int(M) = Ker(mod), where mod is the fundamen-
tal homomorphism of Connes and Takesaki (see [CT, IV.1]). For
type Ill-factors, this was announced by Connes in 1975, and the
first published proof was given recently in [KST]. The result had
prominent applications long before a proof appeared, cf. [KST, §0].
As another recent development along these lines, we mention [HS],
which will be crucial here.
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In the case of an inclusion M D N of factors, one consider the
groups

Aut(M,N) = {a € Aut(M) | «(N) = N}
Int(M, N) = {Ad(u) € Aut(M) | u € U(N)}

and here, the closure Int(M, N) of Int(M, N) contains what is called
the approzimately inner automorphisms of M O N. A characteri-
zation of these in the case where M D N is a finite index inclusion
of type II;-factors with the generating property was given for the
irreducible case by Loi [L2] and generalized by Kawahigashi [Ka1l],
cf. also [L3, §2] and §2 here.

In this paper, we treat primarily the situation where M and N are
of type III, for some A €]0, 1. Our first result is essentially a com-
bination of Connes’ and Takesaki’s approach to the single type III-
factor case and Loi’s method for the type II;-inclusion case. Then we
define a “fundamental homomorphism” for factor inclusions, which
generalizes the constructions of both Connes-Takesaki and Loi, and
use it to give another characterization of approximate innerness in
the III,-case.

I am grateful to the University of California at Berkeley for the
hospitality extended to me during the spring of 1992 when this
work was done. I am also very grateful to Y. Kawahigashi for many
helpful suggestions on the subject. Finally, I thank P. H. Loi for
sending me a copy of [L1].

2. Preliminaries on semifinite inclusions. Let P O @ be an
inclusion of type II-factors with separable preduals and a common
normal semifinite faithful trace 7. Fix a finite projection e € Q.
Then with A = ePe, B = eQe, we call A D B the associated II;-
inclusion of P 2 Q. Taking a system (e;;)§5_; of matrix-units in Q
with e;; = e, we get a type I-subfactor F' = span(e;;) of @ such
that P D @ is isomorphicto AQ F D BQF.

LEMMA 2.1. If a € Aut(P,Q) satisfies T o a = T, then there
exists a unitary u € U(Q) such that with § = Ad(u) o , we have
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B =pPla®1 and Blg = s ® 1 with respect to the above splitting of
P20Q.

Proof. Apply [C2, 3.11] to Q. O

P D Q is called strongly stable if ( PO RO QQ® R) = (P 2 Q)
where R is the hyperfinite II;-factor. Note that, by [B], P D Q is
strongly stable if A O B has the generating property as defined in
[P1, 4.1].

Now let w be a free ultrafilter on N and recall from [C1] the stan-
dard notations for asymptotic centralizers and their automorphisms.
As in [L2], C, (P, Q) will denote the set of w-centralizing sequences
for P with elements belonging to ). We have the following analogue
of [L2, 4.4] and [Kal, 3.1].

LEMMA 2.2. Assume P D @ 1is strongly stable and of finite indez.
Let 0 € Aut(P, Q) satisfy Tof = At for some X # 1. Then 0,|c, (p0)
18 aperiodic.

Proof. Since every power of 6 satisfy the assumptions for 6, it
suffices to find a sequence (z,) € £°(N, Q) which is centralizing in
P and satisfies 0(z,) — 2, #— 0 (0s*, n — w). By [L2, 4.5] we may
assume that

(P2Q@,0)=(A® Ry1 2 B® Ry1,00 ®0))

where 6y € Aut(A, B), Ry, is the hyperfinite II-factor and ) is
the (up to conjugacy unique) automorphism of Ry ; with mod(6,) =
A~L. Since 0 & Int(Ro;1) = Ct(Ro1) — cf. [C1, lemma 5] — we have
a sequence (y,) € (Ro,1). such that

0x(Yn) — Yn 7 0 (08", n — w).

Thus putting z, = 1 @ y, € @ (n € N) produces the desired se-
quence. O

LEMMA 2.3. If P,Q,0 are as in (2.2), then 0,|c,(p) 15 stable,
i.e. for any u € U(C,(P,Q)) there ezist v € U(C,(P,Q)) such that
0, (v) = wv.

Proof. This follows from (2.2) and [L2, 4.2 2)]. O
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We close this section with a brief review of Loi’s characterization
of approximately inner automorphisms on II;-inclusions, including
the improvements made by Kawahigashi, and with some notational
modifications and trivial extensions. Let now A O B be any inclu-
sion of II;-factors with finite index, andlet BC A C A; C A, C ---
be the tower for A O B, with Jones projections ey € Aj. Assume
the action of A to be standard with respect to its tracial state, and
let J4 be a modular conjugation. We then get a tunnel (Bi)i>o
for A O B by defining By = JaAj,;Ja, with Jones projections
e_r = Jgegt2Ja € Br_1, k > 0. By an inner perturbation argu-
ment, we obtain a homomorphism ® : Aut(A4,B) — G, where G
is the topological group of sequences (a(®))$2, of automorphisms
o) € Aut(B), N A) such that

o o® e Aut(BjnAB,NB), j=0,1,...k

o o¥lp ng=akD

e a¥e_j)=e, j=0,1,..,k—1
The multiplication and topology on G are defined ”pointwise”. From
[L2] and [Kal], we then have:

THEOREM 2.4. With the above notation, ® is continuous. If
A D B has the generating property, then Ker(®) = Int(A4, B).

® can also be defined using the tower: each oo € Aut(A, B) ex-
tends in a unique manner to o € Aut(Ay) satisfying ax(e;) =
ej, 3 =1,..,k, cf. [Kal, 1.5], [L2, 3.1]. If ®(a) = (a))2,, we
then have

o™ (2) = Jyops1(JazJa)Js, € ByN A, k> 0.
Therefore, (2.4) implies

COROLLARY 2.5. When A D B has the generating property
anda € Aut(A, B) satisfies ax|a,np = 1,k € N, then a € Int(A, B).

For a Il-inclusion P D (@ of finite index, we can still construct
the continuous homomorphism ® : Aut(P,@Q) — G as above (see
[L3, §2] and [Kal, 3.6]) and we still get Int(P, Q) C Ker(®). The
opposite inclusion follows in the II;-case by the generating property,
which is impossible in the II,-case; instead, we note the following
version of (2.4):
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COROLLARY 2.6. IfP O @, A DO B and F are as in the
beginning of this section and A O B has finite index and the gen-
erating property, then ® : Aut(P,Q) — G as defined above satisfies
Ker(@lAut(A,B)) = -I_ITE(A, B)

A proper characterization of approximate innerness in the type
II.-case is obtained in §4.

3. The discrete decomposition method. Fix )\ €]0,1[ and
let M O N be an inclusion of type III)-factors with separable pred-
uals. We assume M 2 N to be of finite index (cf. [Ko]) and denote
by E the minimal conditional expectation of M onto N (cf. [H]).

Let ¢ be a A-trace on N. We then assume that 1) = ¢o F is a
A-trace on M; this is the case e.g. when M N N’ is a factor. As
shown in [L1, §2.6], our assumption means that M and N have
a common discrete decomposition; to fix notation, we repeat the
details here. With P = My, @ = Ny, we get an inclusion P D () of
II-factors with common trace 1. Asin §2, we obtain the associated
IT;-inclusion A O B and a type I-factor F' such that

(P2Q)=(A®Q F2B®F).

It is also clear that if u € U(N) satisfies ¢ o Ad(u) = A¢@ then
¥ o Ad(u) = M. Hence if we define § = Ad(u) € Aut(P,Q), we

have
(MDON)Z(PxgZ2QXgZ)

which means that M and N have a common discrete decomposition.

We finally assume that M D N is strongly amenable in the sense
of Popa [P2]. One way to express this condition is to say that
A D B has the generating property. This is the case for instance
when M D N has finite depth, cf. [L2, 3.2], [P1, 4.9], [O]. Note
also that the strong amenability assumption implies hyperfiniteness
of all the factors introduced above.

THEOREM 3.1. Let notations be as above. For a € Aut(M, N),
the following statements are equivalent:

(4) @ € Int(M, N)

(17) There is a unitary ug € U(N) such that with B = Ad(up) 0,
we have ¢ o B|y = ¢ and B|4 € Int(A4, B).
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(¢13) There is a unitary uy € U(N) such that with 8 = Ad(ug)oq,
we have mod (B|n) = 1,0|a € Aut(A4, B) and ®(B|a) = 1, where
® : Aut(A, B) = G is as described in §2.

The equivalence of (i) and (ii), applied to the single factor case
M = N, yields the following result (also noted in [HS, 13.6(iv)]):

COROLLARY 3.2.  With notations as above, @ € Aut(N) is

approzimately inner if and only if there is a unitary uy € U(N)
such that ¢ o Ad(up) o @ = @.

NoTE.The existence of such a unitary for any A-trace is, of course,
equivalent to its existence for some specific A-trace.Using this and
the characterizations of approximate innerness mentioned in §§1-2,
the equivalence of (ii) and (iii) follows immediately. Thus we only
need to prove (i) < (ii).

Proof that (i) = (ii). Let a € Int(M, N). Since a|y € Int(N),
we have ¢ o a™l|y = A\"¢ o Ad(w) for some n € N and some w €
U(N), according to [CT, IV.1:3;9]. So with vy = u"w one has
¢ o Ad(ug) = ¢ o a7l|y, i.e. with the notations of [CT, IV.1.7]
we have ¢ o oy € Wy. Also from [CT, IV.1.7] we get a Borel
map u : Wy — U(N) satisfying ¢ o Ad(u(x)) = x, x € Wy. Thus
$oAd(u(poal|y)) = poal|y. Let

h(a) = Ad(u(¢ o a™'|w)) 0 a,
then ¢ o h(a)|y = ¢ and
poh(a)=dpoEoh(a)=¢doh(a)oE=¢oE =1,

so h(a)|p € Aut(P, Q). Putting the pieces together, essentially as
in [CT, IV.1.9], we have defined a Borel map h : Int(M,N) —
Int(M, N) satisfying ¢ o h(a)|y = ¢ for all a, and we can define
a Borel map ¥ : Int(M, N) — Aut(P,Q) by ¥(a) = h(a)|p,a €
Tt (M, N).

Note that if v € U(N), @ = Ad(v), and vy = u(¢poAd(v*)|n), then
h(a) = Ad(vov) and ¢ o h(a)|y = ¢ implies vov € Q; this means
that we have ¥(Int(M, N)) C Int(P, Q).

Also note that if IT denotes the canonical projection of Aut(P, Q)
onto Out(P, Q) = Aut(P, Q)/ Int(P, Q), then ¥’ = II¥ defines a ho-
momorphism. Indeed, if a1, ap € Int(M, N), v; = u(¢po o; '), i =
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1,2 and vy = u(¢ o a3 o7 |n), then

h(al)h(az) = Ad(vlal(vz))oqo@
h(alaz) = Ad(’ljlg)alaz

and
¢ o Ad(via1(v2)) 0 sy = ¢ = ¢ 0 Ad(v12) 0 12w,

which imply vi04(ve)v, € Q. This shows ¥(ajan) = ¥(a;)V(ay)
modulo Int(P, Q).

On the other hand, from §2, we have the continuous homomor-
phism @ : Aut(P,Q) — G. Since ®(Int(P,Q)) = 1, we get a ho-
momorphism @' : Out(P,Q) — G determined by ®'Il = ®. As
OV = P'TIV = 'V’ we infer that ®V¥ is a Borel homomorphism
between Polish groups, and therefore is continuous. It follows that
®¥(Int(M, N)) = {1}.

By construction, ¥(«) preserves the trace on P 2 @, so (2.1) gives
a unitary vy € U(Q) such that 3 = Ad(vo) o ¥(a) has f|p = 3|4 ®1
and Blg = 8| ®1. Since ¥(a) € Ker(®) we get 3|4 € Int(4, B) by
(2.6). Also ¢ o By = ¢ since vy € @, and 3 is the perturbation of
a by a unitary from N.

-Proof that (11) = (i). Let @ € Aut(M, N) and let uy € (N) be
given such that with 8 = Ad(ug) o @, we have 3|4 € Int(A4, B)
and ¢ o 8|y = ¢. From the last property, [of,8|y] = 0,t € R, so
B(Q) C Q. Also [, E] = 0 since F is the minimal expectation, so
o =¢oFEop =1, whence §(P) C P. Using (2.1) it is now easy
to see that B|p € Int(P, Q).

We have 8(u)u* € @Q since [07, 8|5] = 0,t € R, so by [CT, II1.5.3]
there exists a unitary v € U(Q) with the property v*0(v) = B(u)u*,
ie. vB(u)v* = 8(v)uv* = wvu*uv* = u. Let v = Ad(v) o 8, then
still v|p € Int(P,Q), but y(u) = u so that [y|p,68] = 0. Choose
a sequence (u,) C U(Q) and a free ultrafilter w on N such that
lim,_,, Ad(u,) = 7v|p in Aut(P). Then

lIx 0 Ad(0(un)) 00 — x 0y o6
=|lxo8oAdp(u,) — xofovy|p|| — 0

for all x € P,, ie. lim,,,Ad(6(u,)) = 7|p, and therefore
(0(uX)u,) C U(Q) is an w-centralizing sequence in P. (2.3) now
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provides a sequence (v,) C U(Q) which is centralizing in P and
satisfies .
0(unvy) — Unvy = 0.

Resuming, if we put wy, = u,v,,n € N, then (w,) CU(Q), 8(w,) —
wy, 25 0 and Ad(w,) — v|p in Aut(P). At this point, we can re-
peat the end of the proof of the type IIIp-case in [KST, Theorem 1(i)]
to conclude that Ad(w,) — 7 in Aut(M). Thus y € Int(M, Q) and
in particular a € Int(M, N). O

The equivalence of (i) and (iii) in (3.1) means that the topoligical
property of approximate innerness is described by the algebraic in-
variants ® and mod , defined in terms of the II;-inclusion and the
single type III-factor. One may wonder if it is possible to define a
similar invariant “directly” on the type III-inclusion. We shall see
in the next section that this can indeed be done, but the following
application of (3.1) shows that simply repeating Loi’s construction
does not suffice:

EXAMPLE 3.3. Let A O B be an irreducible inclusion of hyper-
finite II;-factors which has Dy, as principal graph for some n > 2.
(The existence of such an object was claimed in [O] and proved in
[Ka2].) Since A D B has finite depth and hence the generating
property, we can define o € Aut(A, B) by its action on the derived
tower as follows: o interchanges the last two vertices of the prin-
cipal graph and leaves the other vertices fixed (cf. the last part of
[KL]). Fix A €]0,1[ and let 6, € Aut(Rp;) be the automorphism
of the hyperfinite II-factor Ry ; which scales the traces of Ry; by
A Let P=AQ®Rp1,Q = B® Ry; and 0 = 0 ® 05 € Aut(P, Q).
Then we have a type III)-inclusion M O N given by M = P Xy Z
and N = @ %g Z, the principal graph of which is A4,_3. (This last
— and important — fact was first noted in [L2, 6.5]; details can be
found in [KL].) In particular, any automorphism acts trivially on
the derived tower of M D N.

As a specific example, let « = 0 ® 1 € Aut(P, Q); then [a,0] =0
whence o can be extended in the obvious way to @ € Aut(M, N),
cf. [HS, 13.2]. Thus the action of & on the derived tower (defined in
analogy with Loi’s construction) is trivial, but & is not approzimately
inner. For suppose it is. Choose a A-trace ¢ on N such that Q = Nj.
Then by our supposition and (3.1), there exists a unitary uy € U(N)
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such that ¢ o Ad(up) o @|n = ¢, Ad(up) € Aut(A) and ®(Ad(up) o
&|4) = 1. Identifying @ with its image in N, we have N = (QU{u})"
where u is the canonical generating unitary in the discrete crossed
product. Since

&oof(u) =Nty =0l oi(u), t€R
agoof(z) =a(z) =0l oda(z), z€Q, teR

we have [@|y,0?] = 0 and hence 0?°" = of, t € R. It follows that
(D¢ o a|y : D@); = p*1, t € R, for some pu > 0. But as &% = 1,
an application of the chain rule for Connes’ cocycle derivatives now
gives u = 1 whence ¢ o Ad(ug) = ¢po &|y = ¢. Thus up € Ny = Q.
Since the tower for P O @ can be obtained from the tower of A O B
by simple tensoring, it is therefore clear that

(I)(&lp) = @(Ad(uo) (o] dlp) = 1,

with ® here defined on Aut(P,Q) as explained in §2. But a|p =
a = 0 ®1 and we then obtain the contradiction that ®(o) = 1.
Therefore & ¢ Int(M, N).

4. The continuous crossed product method. Let M O N
be an inclusion of o-finite factors with finite index and minimal
expectation E : M — N. Let ¢ be a normal semifinite faithful
weight on N and put ¢ = ¢ o E. Also define

N:‘—NNU«tR, MZMXawR.

Then M D N is an inclusion of semifinite von Neumann algebras.
Let A : R = N C M be the canonical unitary representation, and
denote by 7 the usual injection of M in M. As in [HS, 12.1] we
have for each o € Aut(M,N) an automorphism & € Aut(M, N)
given by

a(r(z)) = m(a(z)), z € M
a(\(t)) = (DY oa™ : DY))A(t), t € R.
Using Connes’ unitary cocycle theorem, it is routine to check that

the pair (M D N, @) depends only on (M 2 N, ), ie. it does not
(up to isomorphism) depend on the choice of ¢.
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We shall need the following fact, which is a (partial) generalization
of [HS, 12.2 (v)], though the proof given here is entirely different.

PROPOSITION 4.1. If M and N are properly infinite with sep-
arable preduals, then the map o — &|jn5 15 @ continuous homo-
morphism.

Proof. The homomorphism property is immediate from [HS, 12.1].
To prove continuity, choose ¢ to be a dominant weight on N; then
1 is dominant on M (see [CT, I1.1.2]), and we obtain a “common
continuous decomposition” of M and N, i.e. a continuous action 6
of R on My O Ny such that

(M D N,o%) = (M, xgRD N, xR 0)

where 8 denotes the action dual to 6 - and a trace 7 on M, D N,
satisfying 700, = e, s € R (see e.g. [CT, 11.1.3],[L1, p.47]). Let
Ao : R — Ny xg R C My, xg R be the canonical unitary representa-
tion.

Now let W, and u : Wy — U(N) be as in [CT, IV.1.7]. Let
a € Aut(M, N). Then ¢ o o~ !|y is also dominant on N and thus
poally € Wy by [CT, I1.1.1]. Put o/ = Ad(u(¢oa™!|n)) o a.
Since ¢ o o|y = ¢, we can choose a unitary v, € U(N,) like in
[CT, p.569], so that with o = Ad(v,) o ¢/, we have

a”"(Mo(s)) = Xo(s),s € R

It now follows from the arguments of [HS, §13], with obvious ad-
justments, that we have an isomorphism I : M N N' — M, N Ny
such that

(a”)Nil\;IﬂN’ = I~1a”|M¢ﬂN;I7 ac Aut(M7 N)

Observe that (o")~| g = &l and that o|vyany = o'|aynny,
for all & € Aut(M, N). Moreover from the proof of [CT, IV.1.9],
the map o +— o is a Borel map, and therefore so is o — &|n5:-
This together with the homomorphism property establish continu-
ity. O
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NowletN=M_1 C M=M0 - Ml (_: M2 c ... be the
tower for (M D N, E) with Jones projections e, € M,k € N
(cf. [Ko]). Asin §2, each a € Aut(M, N) has unique extensions
ar to My with ox(ex) = ex and ag|p,_, = ax—1. Define 9 = ¢
and (recursively) ¢y = tx_1 0o Ex, k € N, where Ey : M, —
M,._; are the expectations arising from the tower construction (see
[Ko, §5]). Put My = Mg %, R, k € N, and extend each o
to @ € Aut(Mk,Mk 1) as above. Also, we let op = « for nota-

tional convenience. Then (akl M0 N,):o belongs to the topological

group G defined as the set of sequences (ﬂ(’“ ) o of automorphisms
8% € Aut (M;c NN, M;_ lﬂN') satisfying B* le iR = Bk,
with multiplication and topology defined “pointwise”.

DEFINITION 4.2. The map Y : Aut(M,N) — G given by
Y(a) = (Gkljiznm )iz, @ € Aut(M,N)

is called the fundamental homomorphism of the inclusion M 2O N.

PROPOSITION 4.3.

(i) Y is a homomorphism

(ii) If M = N is properly infinite with separable predual, then T
is the classical Connes-Takesaki fundamental homomorphism

(iii) If M and N are Il -factors and E coincides with the trace
preserving conditional expectation (e.g. if M N N' = C), then Y is
Loi’s homomorphism ® as described in §2.

Proof. (i) and (ii) are obvious consequences of [HS, 12.1; 13.1].
(i) follows by choosing ¢ to be a trace; we then see that

My,NN' = (M, N'")® L®(R), k>0

and that T(a) corresponds to (ak|mnn' ® 1)52, under this isomor-
phism for all @ € Aut(M, N). O

PROPOSITION 4.4. In each of the following cases, the funda-
mental homomorphism s continuous:
(i) M and N are properly infinite factors with separable preduals
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(ii) M and N are I1;-factors, and E is trace preserving.

Proof. This follows in case (i) from (4.1) and in case (ii) from the
proof of (4.3)(iii), since & — a4, is continuous for all k. O

COROLLARY 4.5. If M and N are properly infinite factors with
separable preduals, then

Tnt(M, N) C Ker(Y).

Proof. Let m : My — M, be the natural injections. If o =
Ad(u) € Int(M, N) for some u € U(N), then by uniqueness oy =
Ad(u), k > 0, and therefore éy = Ad(m(u)) € Int(My, N), k > 0.
Thus Int(M, N) C Ker(Y), and we apply (4.4)(i). U

It is natural to expect equality to hold in (4.5) for strongly amenable
inclusions of finite index. In fact, using (2.1), (2.5) and the analogue
to the argument of (4.3)(iii), this is easily seen to be true when M
and N are II-factors with a common trace preserved by . We now
show that it is also true in the situation considered in the previous
section:

THEOREM 4.6. Let A €]0,1[. The set of approzimately inner
automorphisms on a strongly amenable, finite index inclusion M O
N of type III\-factors with a common discrete decomposition is equal
to the kernel of the fundamental homomorphism of the inclusion:

nt(M, N) = Ker(T).

Proof. For this proof, we have the assumptions from the beginning
of §3, so in addition to the notation introduced in this section, we
also use the notation given in §3 prior to the statement of (3.1). In
particular, ¢ and 1 are now assumed to be A-traces.

By (4.5), we only have to prove that Ker(Y) C Int(M,N). So
assume a € Aut(M, N) has T(a) = 1. To show that « € Int(M, N)
we must by (3.1) and (3.2) show that for some v € U(N), 8 =
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Ad(v) o « satisfies S|y € Int(N) and 8|4 € Int(4, B). Whatever v
may be, the first follows from [KST, Theorem 1(i)] and [HS, 13.1]
since T(a) = 1 implies &|, 5 = 1. By (3.2) we may thus assume
that ¢ o a|y = ¢, and it remains according to (2.5) to explain why,
for some perturbation 8 of a as above, we have |4 € Aut(A, B)
and (ﬁlA)k'Akr'\B' =1 keN

The (nontrivial) fact that £ o Ej o --- o Ej is the minimal ex-
pectation for the inclusion M O N was established in [KL], so
¢ oaly = ¢ entails Y o ax = 9 for all k. If we let P, denote
the centralizer (Mj)y, for all k > 0, then as noted in [L2, §3],
QCPCP CP--- is the tower for P O (), with Jones projec-
tions (eg)r>1 - the same as for the tower of M O N. By [Ko, 5.1],
for each k we have o} (e;) = ex, t € R and hence o}* = 1, where
to = —27/log A\. Thus we have My = Py, %y Z and P, = A; ® F for
all k, where (A) denotes the tower for A D B.

Let Py = P %9 Z %49 R/tyZ, where t, = —27/logA. Then B,
can be viewed as the crossed product M x,» R/tgZ. We let my be
the canonical injection of M in Py and Ay be the canonical unitary
representation of R/tgZ in Py, so that M x4 R/tZ = (me(M) U
Mo(R/tZ))". For ease of notation, we extend Ao to R in the obvious
way. By [HS, 5.6] we have an isomorphism I from M onto P, ®
L>(0,log A~!) which is given by

I(n(z)) =m(z)®1, z €M
I(A() = Xo(t) @ m(e), te R

where m(e?)¢(s) = e®¢(s) for t € R, s€]0,logA™![ and £ €
L?(0,logA71). As in the proof of (ii) = (i) of (3.1), we may as-
sume that a(u) = u by perturbing « by a unitary from Q. (Since
u € U(N), this perturbation also gives ax(u) = u, k¥ > 1.) Thus
we can extend a|p to (a|p)” € Aut(P x4 Z) as in [HS, 13.2}, and
actually (a]p)” = a under the identification of M with P x4 Z be-
cause a(u) = u. Similarly, since [o, 0¥] = 0, we have the extension
a = (a|p)™ of a to P, given by

a(my(z)) = mo(a(z)), z€ M
a(Ao(t)) = Ao(t), t € R/t Z.
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Since 9 o a = 1), we have a(A(t)) = A(t),t € R, so

IaI Y (mo(z) ®1) = mo(a(z)) @1, T€ M
T&I7 1 (Ao(t) ® m(e™)) = Ao(t) ® m(e), t € R

and we now see that Ial"!' =a® 1.

On the other hand, since [a|p,f] = 0, we have the version
[HS, 13.3] of the Takesaki duality theorem, i.e. an isomorphism
Jo : Py — P ® B(£?(Z)) such that Jo(a|p)=J5' = alp ® 1. Let

J=Jy®1: P,® L*(0,log\™!) - P® B({*(Z)) ® L*(0,log A1)

then JI is an isomorphism of M onto P® B(£*(Z)) ® L*(0,log A1)
which satisfies

JIa(JD) ' =(Hhe)(@e)(,h'el)=ap®l®1

where we used the fact that @ = (a|p)~.

Now observe that all the arguments of the preceding two para-
graphs go through with (M, ok, ¥k, Pr) and (N, a|n,d, Q) in the
place of (M, a, 1, P), so in particular we have, for each k, an iso-
morphism

L : MinN' = (P,NQ)®C®L®(0,log\7})

which carry &klenN' into ax|p,ng' ®1®1, where ay|p, € Aut(Py, Q)
by the adjustments of o made above. Thus @x|y, 5 = 1 implies —
after the perturbation of oo — that ax|p,no = 1 for each k. From
(2.1) we have a unitary w € U(Q) such that 8 = Ad(w) o « satisfies
Blp = Bla®1 and Blg = (| ® 1. Since e; € @' it easy to see that
Ad(w)oag|p, = Bk|p, (K > 0) — recall that the towers for P O @ and
M DO N have the same Jones projections — and so the isomorphism
P.NQ' — AxNB'®C carries fk|p,ng into (8]4)kla,np ®1, whence
(Bla)k|anpr = 1 as required. O
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Note added in proof. After the completion and circulation
of this paper as a preprint, much progress has been made on the
subject matter. In [2], the author proves that the fundamental ho-
momorphism as defined above is a complete cocycle conjugacy in-
variant for centrally free actions of discrete amenable groups, thus
providing a further analogy between this invariant and the Connes-
Takesaki module. Our invariant is further studied in [1], [3] and [4],
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and the fact — contained in §4 of the present paper — that the ap-
proximately inner automorphisms on a strongly amenable inclusion
of type [l are just the kernel of the fundamental homomorphism
on that inclusion, turns out to be essential in the classification [5]
of strongly amenable subfactors of type III,.
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