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DESINGULARIZATIONS OF SOME UNSTABLE ORBIT
CLOSURES

MARK REEDER

Let σ be a semisimple automorphism of a connected
reductive group G, and let Gσ be the fixed points of σ. We
consider the Gσ-orbits on the space of nilpotent elements
in an eigenspace of dσ. We give a desingularization of the
orbit closures and relate the G^-orbits to the G-orbits.
Along the way, we describe the fixed points of σ on a flag
variety G/P where P is a σ-stable parabolic subgroup of
G.

I. Introduction. In this note we observe some consequences of
Richardson's theorems on orbits of reductive groups, in the following
situation. Let G be a simply-connected reductive algebraic group
over an algebraically closed field F whose characteristic is either zero
or sufficiently large (as specified below). Let g be the Lie algebra of
G, and let λί be the variety of nilpotent elements in g. Let σ be a
semisimple automorphism of G, fix a nonzero element q G F x , and
consider the variety

J\fσ^q = { 1 6 ^ : dσ(x) — qx}.

If q is not a root of unity then Λfσ,q is the whole g-eigenspace of dσ,
hence is a linear subspace of Q. If q is a root of unity, the variety
λίσjq may even be reducible.

It was shown by Steinberg that the group of σ-fixed points Gσ

is also a connected reductive F-group ([S]). The adjoint action of
Gσ preserves each eigenspace of dσ, and Nσ,q consists of those Gσ-
orbits in the g-eigenspace of dσ which are "unstable", in the sense
of geometric invariant theory ([H2]). According to a theorem of
Kac and Richardson ([Ri3]), the G^-orbits on Λίσ^q are exactly the
irreducible components of sets of the form ΛίσjQ Π Ό, where Ό is a
nilpotent G orbit. Richardson also proved (with our assumptions on
the characteristic of F, see [Ril]) that there are only finitely many
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nilpotent G-orbits, hence there are only finitely many Gσ-orbits in

Let O C J\fσΆ be one such Gσ-orbit. Then the Zariski closure O
of O in MσΆ is an aίfine variety which is generally singular. The
main purpose of this note is to resolve the singularities of Ό (Prop.
(3.2)). More precisely, we construct a vector bundle E over a partial
flag variety of Gσ, and define a closed morphism π : E —> O such
that TΓ : π~ι(O) —> O is an isomorphism. The idea is simply that
(σ, q~ι) acts on the known resolution of the closure of GO, the
nilpotent G-orbit containing O. The desired resolution of O is then
found by taking fixed points under (σ, q~λ). Moreover these fixed
points separate the various Gσ-orbits in Λfσ,q ΠG O, as described in
Prop. (4.1) below. For example if σ is induced by an automorphism
of the Dynkin diagram, (4.1) implies that every nilpotent G-orbit
meets Λfσ,q in at most one Gσ-orbit. Taking q — 1, we recover the
well-known fact that nilpotent orbits in so(2n + 1) and sp(ή) are
determined by elementary divisors.

The method requires a precise description (Prop. (2.3)) of the
fixed points of σ in a flag variety G/P where P is a σ-stable parabolic
subgroup of G. Richardson ([Ri3]) has already proven that there
are finitely many orbits and they are all closed. Here we count and
describe the orbits explicitly, using Steinberg's work in [S].

Hesselink ([H2]) has constructed desingularizations of closures of
"strata" for more general group actions. Each stratum is a union
of orbits, and in the case of nilpotent G-orbits, Kraft proved that
the strata and orbits coincide. For our varieties λίσjQ it is not known
if the orbits are strata, and even if they are (it is an interesting
question), the proof is likely to be a more difficult route to a desin-
gularization than the one taken here.

The group action (Gσ,J\fσ,q,Ad) arises in many settings. Suppose
that q is not a root of unity, so that J\fσ,q is a linear space, and
in particular an irreducible variety. There is a unique Zariski dense
orbit in Nσ,q, so by definition, the triple (GσjΛfσ,q, Ad) is a "prehomo-
geneous vector space", hereafter abbreviated as PV. The complex
PV's which are also irreducible representations were classified by
Sato and Kimura ([S-K]). The PV's occuring as some {Gσ,λfσ,q, Ad)
are called "PV's of parabolic type" ([Ru]), because they also arise
as subspaces of nilradicals of parabolic subalgebras which are in-
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variant under a Levi subgroup. (Gσ is a Levi subgroup in some
reductive subgroup H < G whose Lie algebra contains ΛΓσ,q.) Most
irreducible PV's with finitely many orbits are of parabolic type.
However, parabolic PV's can easily be reducible, and there seems
to be no classification of reducible PV's.* We remark that the big
group G is not to be discarded, as it greatly clarifies the structure
oί(Gσ,K,g,Ad).

Suppose now that q G Fx is arbitrary, but that σ either has
finite order or is conjugation by some element in a one-parameter
subgroup of G. Then g has a grading g = φgz such that Gσ has Lie
algebra go and V is the set of nilpotent elements in jji. These spaces
were initially studied by Vinberg ([V]), who proposed a scheme for
classifying the orbits.

My initial interest in such orbit closures O came from the rep-
resentation theory of p-adic groups ([K-L]). In this setting, G is a
complex group (the "Langlands dual group"), σ is inner, and q is
the cardinality of the residue field, hence not a root of unity. The
intersection cohomology of O is apparently related to multiplicities
in unramified principal series representations of the p-adic group
dual to G, just as with Schubert varieties and Verma modules (see
[G], [R], [Z]). In this context, Zelevinsky found desingularizations
of O for G = GLn and used them to compute the intersection coho-
mology of some special (9's, for which his resolution was "small" in
the sense of [G-M]. The resolutions constructed in this paper are
not always small.

An earlier version of this paper had σ being inner, as above. How-
ever, in addition to other helpful comments, the referee pointed out
Sekiguchi's paper [Se], which discusses Λ/"σ,_i when σ is an invo-
lution. Among other results, Sekiguchi gives a resolution of the
orbit closures of maximal dimension in Λ/"σ?_i, so following the ref-
eree's suggestion, I modified this paper to include semisimple auto-
morphisms, thus extending that part of Sekiguchi's work. In this
setting, the Gσ-orbits in Λ/"σ)_i are of interest in the representation
theory of real Lie groups (see [Vo]).

Thanks are due to Gary Seitz, for telling me about Richardson's
paper [Ri3].

*Added in proof: See Kasei-Kimura-Yasukura, Amer. J. Math., 108 (1986),
643-692.
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II. Fixed point varieties in flag manifolds. Here we use
some of Steinberg's results in [S] to describe the fixed point subva-
riety of a flag manifold under the action of a semisimple automor-
phism. In this section there is no restriction on the characteristic of
the ground field F.

Let G be a connected, simply-connected and semisimple algebraic
group over an algebraically closed field F, and let σ be a semisimple
automorphism of G. That is, σ is an automorphism of G whose
differential dσ acts diagonalizably on the Lie algebra Q of G. We
say a subgroup i ί C G i s "σ-stable" if σH = H. If K C H C G
are closed σ-stable subgroups of G, then σ acts on the variety H/K
by the rule σ{hK) = (σh)K, for h G H. We write (H/K)σ for
the fixed points of σ in H/K. According to [S, (8.2)], Gσ is a
connected reductive group. By [S, (7.5)], there exists a σ-stable
Borel subgroup B C G, and a σ-stable maximal torus T C B. Let
U be the unipotent radical of JB, and let t C t φ u = b be the
corresponding Lie algebras. Let Δ, Δ + , Σ be the roots of t in g,
u and u/[u, u], respectively. Since σ preserves T and B, it acts on
Δ, preserving Σ and Δ + , and on the normalizer N of T in G, and
hence on the Weyl group W = N/T. Let Wx

σ = Nσ/Tσ. This is the
subgroup of Wσ consisting of elements which can be represented in
Nσ.

Let V C t* be the real span of the roots in Δ, and let Vσ be the
fixed points of σ in V. For any root α, let a denote its orthogonal
projection into Vσ, with respect to a ^-invariant inner product on

preserves and acts faithfully on Vσ ([S, (1.32)]). Let
Wσ and Wl denote the restrictions of Wσ and W} to Vσ. We have
Wσ ~ Wσ as abstract groups, but the latter is a reflection group
with respect to a new root system. We describe this more precisely.

The projections of all roots form a non-reduced root system in
Vσ. We get a reduced root system as follows ([S, §1]). Let S^ be the
collection of positive roots whose projection to Vσ is proportional to
a. There are two possibilities for Sa ([S, (8.2)]):
(1) Sa = {α, σα, σ 2 α , . . . } no two of which sum to a root, or

(2) Sa = {α, σα, β — a + σa] is a σ-stable positive system of type
A2.

For a G Δ + , let [a] G Vσ be the longest projection to Vσ of a root
in Sa. Likewise, for any subset J C Δ + , let [J] = {[a] : a G J} .
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Set [Δ] := Wσ[Σ]. Then by [S, (1-32)], [Δ] is a root system in Vσ

with base [Σ], positive roots [Δ]+ = [Δ+] and Weyl group W^. (The
root system of Gσ turns out to be a subsystem of [Δ].) According
to [S, (8.2)], the reflection S[a] G Wσ corresponding to [a] G [Δ+] is
given by

(1) S[a] = sasσa " \vσ or

(2) S[a] = sβ\VσJ

according to the two cases for Sa described above.
All of this is related to the structure of fixed point group Gσ in

the following way. For each positive root α, let Ua C U be the
corresponding root subgroup. We have σlla — Uσa. Consider the
product Πβesa Uβ. In the two cases for Sai either the root groups in
the product commute (case (1)), or the whole product is the three
dimensional Heisenberg group (case (2)). Hence the product is a
group. Since σSa — Sa, the product is also invariant under σ, and
we set

\βesa

By [S, (8.2)] again, U[a] is either trivial, or a one-parameter group.

Finally, [S, (8.2)(4)-(7)] combine to give

LEMMA 2.1. U[a] is nontriυial if and only if the reflection S[a]
belongs to W£. Moreover, W£ is generated by such reflections.

This allows us to prove

LEMMA 2.2. There exists a set Y(σ) of coset representatives for
Wp\Wσ such that if nw G N represents w G Y{&), then

n^ιBσnw C B.

Proof. Since Uσ is the product of the C/[α]'s, this amounts to
having n^ΊJ[oi\nw C U for all a G Δ + . Since

n~ιU[a]nw C

it is enough to find coset representatives w G Wσ such that w~1Sa C
Δ + whenever U[a] is nontrivial. Let < be the Bruhat order on the
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Weyl group Wσ, with respect to the positive system [Δ+] of [Δ].
This satisfies the rule ([J, (2.19)])

w

In each coset in W£\Wσ, choose one element w G Wσ which is not
< any other member of its coset W£w. Let w G Wσ be the unique
element whose restriction to Vσ is w, and let Y(σ) be the collection
of w's so obtained. Then Y{σ) is a set of coset representatives for
Wι

σ\Wσ.
For any x G Wσ, we have xσ = σx, as automorphisms of Δ. Let

a G Δ + . Since σ preserves Δ + and Sa is spanned over the positive
integers by the σ-translates of one of its members, we have either
xSa Q Δ + or xSa C —Δ+. Moreover, the former possibility holds
if and only if x[a] G [Δ]+. Now take x — w~ι, where w G Y(cr). By
(2.1) and the Bruhat-minimality of w, we have x[a] G [Δ]+ whenever
U[a] is nontrivial, so w has the required properties. D

Now let P be a σ-stable parabolic subgroup of G. By [S, (7.5)],
there is a maximal torus T and a Borel subgroup JB, both σ-stable,
such that T C B C P. With notation and results as above, P
corresponds to a σ-stable subset of Σp C Σ. More precisely, Σp
consists of those simple roots which are roots of t in the Lie algebra
of the unique Levi subgroup L of P containing T. Since σT = T
and σP = P, we also have σL = L, so Σp is indeed σ-stable. Let
Wp be the subgroup of W generated by the reflections in Σp. Then
Wp is also preserved by σ. The following result may be viewed
as the determination of all σ-stable parabolic subgroups in the G-
conjugacy class of P.

PROPOSITION 2.3. Let G be a semisimple simply connected alge-
braic group. Let σ be a semisimple automorphism of G, and let P
be a σ-stable parabolic subgroup of G. Then with notation as above,
(1) (G/P)σ = JJ GσwP/P (disjoint union). In par-

ticular, each connected component of (G/P)σ is a Gσ-orbit.

(2) Each double coset W^w(WP)σ meets Y{σ) {see (2.2)).

(3) Each Gσ-orbit in (G/P)σ is complete. In other words, the
group of σ-fixed points in any σ-stable parabolic subgroup of G
is parabolic in Gσ.
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(4) // P = B is a σ-stable Borel subgroup and y G Y(σ), then
(yBy~ι)σ = Bσ, so (G/B)σ is a disjoint union of [Wσ : W%]
copies of the flag variety Gσ/Bσ.

Proof. Assertion (2) follows immediately from (2.2). For (1) we
recall the Bruhat decomposition. For each w G W, let Uw be the
product, taken in some fixed order, of the root groups Ua with
w~ιa G - Δ + . Let Wp be the set of w G W such that wΣP C Δ+.
Then every point in G/P may be uniquely written as uwP for some
w G Wp, u G Uw. Since Σp and Δ + are σ-stable, so are Wp and
Uw. It follows that

(G/P)σ= U (UwwP/P)σC U UσwP/PC

Let n e N represent some tϋ G Wσ. Then σ(n) = nt for some ί e T,
so σ(wP) = σ(n)P = n ί P = n P = lϋP. Hence to G Wσ implies
GσwP/P C (G/P) σ , so we have

- u cσwp/p= u

where F(σ) is as in (2.2).
We next show disjointness. Since G = C/iVβ =

have

Let y G F(σ) and consider the orbit GσyP/P in (G/P)σ. By (2.2)
we have

GσyP/P= (J UσxBσyP/P= (J [

It follows that for two elements $/, y; G V(σ) we have GσyP/P
Gσy'P/P if and only if we have equality of double cosets

wι

σyWP = wςy w>.

Since Y(σ) C Wσ, this is the same as
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proving (1).
Now (G/P) σ , being closed in G/P, is complete. Hence each con-

nected component of (G/P)σ is complete, proving (3).
Finally, let y G Y(σ). Then y~ιBσy C β, so Bσ C {yBy-ι)σ.

Both sides are solvable, and are parabolic subgroups of Gσ by (3).
Hence they are Borel subgroups of Gσ, and must be equal. D

2.5. REMARKS. (1) Simple examples (eg. [Ri3, 3.3]) show that
(2.3) (4) fails for nonminimal parabolic subgroups. See also (2.6)
below.

(2) We could have given a more conceptual, though less explicit,
construction oΐY(σ) by invoking [Ri3, 10.2.1] (our (2.3)(3)) at the
outset. For, if w G Wσ and B is a σ-stable Borel subgroup of
G, then by [Ri3, 10.2.1], Bσ and (wBw~ι)σ are Borel subgroups
of Gσ containing the same maximal torus Tσ, so there exists x G
Wl such that x~ι(Bσ)x = (wBw~ι)σ, from which it follows that
(xw)-1Bσ(xw) C B.

(3) Matsuki (over C, [M]) and Springer (char(F) Φ 2, [Sp]) have
described all of the Gσ-orbits in G/B when σ is an involution. They
prove in particular that (G/B)σ is exactly the union of the closed
G>-orbits in G/B. Let P be a parabolic subgroup containing J3, and
let π : G/B —> G/P be the natural projection. If Y is a closed Gσ-
orbit in G/P, then Y = τr(Y') for any closed 0,-orbit Y1 C T Γ " 1 ^ ) -

Hence the result of Matsuki and Springer implies that (G/P)σ is the
union of the closed Gσ-orbits. The same assertion holds when σ is
inner but not necessarily involutive. Indeed, σ is then conjugation
by some element of a torus S C Gσ. Let Y C G/P be a closed
Gσ-orbit as above. By BoreΓs fixed-point theorem [B, (10.4)], the
fixed point set Y§ of S in Y is nonempty, so Y meets (G/P) σ , hence
Y c (G/P)σ.

2.6. EXAMPLES. There are two extreme cases of (2.3). If σ
is conjugation by an element s G Γ, then Wσ = W and W£ is
generated by the reflections about roots which are trivial on 5. On
the other hand if σ is induced by an automorphism p of the Dynkin
diagram, then Wj = Wσ ([S, (8.2)(5)]), so (G/P)σ is connected.

Here is an example of a mixed case. Take G = E6 (simply con-
nected version), and let σ be the involution of G whose fixed point
set has type C4. Explicitly, take p to be the automorphism of E6
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induced by the nontrivial diagram symmetry as in the previous para-
graph, and let s = ά o (—1), where α 0 is the highest root and ά o ( ί )
is the corresponding one parameter subgroup of T. We can take
σ — zsp, where is is conjugation by s. Then Wσ, which only de-
pends on p, has type F4. Meanwhile Wj, being the Weyl group of
Gσ, has type C 4 . Hence [Wσ : W$] = 3. We compute Y(σ). Number
the simple roots of Eβ as follows:

c*i a2 a3 α 4 a5

Using [S, (8.2)], one gets explicit conditions for each U[a] to be
nontrivial, and the simple roots of Tσ in Bσ are then found to be

[a2 + a3 + a6] [on] [a2]
O O n

If tϋ G y(σ), we must have w ιa > 0 for a = cti, a2l 0̂ 3,
(See the proof of (2.2).) Since w is σ-invariant, we must also have
w~ιa± > 0 and w~la^ > 0. It is now easy to see that w can only be
one of {1, 56, SβSi}, where Si G W is the simple reflection about α .̂
Hence this set must be Y(σ). Using (2.3), we find that (G/P)σ has
3 — \Σp Π {αi, α 6 } | connected components. The components are not
isomorphic in general. For example, let P be a cr-stable parabolic
subgroup with Levi component of type A§. Then Pσ has Levi of
type C3, while (s§Ps§ι)σ has Levi of type A3, so (G/P)σ has two
components: Gσ/Pσ ~ P 7 and Gσ/(sβPSβl)σ, which is the variety of
Lagrangian 4-planes in Fs.

III. The desingularization. We retain the notation and hy-
potheses of the previous section, except we now assume that the
characteristic of the ground field F is either zero or p > 2κ, where
K is the maximum of the Coxeter numbers of the simple factors of
G. For any variety S on which σ or dσ acts, Sσ denotes the fixed
points. If H is any σ-stable subgroup of G with Lie algebra ί), it
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follows from [B, III.9.1] that the Lie algebra of Hσ is f)σ. We abbre-
viate the adjoint action of G by g Y := Ad(g)Y for g G G and any
subset F C j . Let λί be the variety of nilpotent elements in the Lie
algebra g of G. Fix q G F x , and set

Λ/^ = {x G M : rfσ(x) =

We need the analogue of a normal s^-triple ([K-R, (1.2)]).

LEMMA 3.1. Let e G Λfσ,q. Then there exists h G g σ ; / G g

[Λ,e] = 2e, [Λ,/] = - 2 / , [e,/] = /ι.

Proof. The proof is a straightforward modification of
([K-R, Prop. 4]). By the version of the Jacobson-Morozov theo-
rem given in [Ca, p. 152], there exists a triple (e, hf,f) satisfy-
ing the above relations. Write h1 — Σh'λ where dσ(hf

χ) — λ/ι'λ,
λ G Fx. Then 2e = [h',e] = Y^[hf

λ,e\. Comparing dσ eigenval-
ues, we get 2e = [Λ/1?e]. Likewise, we write f = Σ / ^ , and the
relation [e, /;] = h1 implies h[ = [e,/' i] G [e,g]. Set /ι = /î .
By [Ko, Cor. 3.5] (which is shown in [Ca, p. 141] to apply when
char(F) > 2/ς), there exists / such that (e, h, f) satisfy the above
relations. D

Let e G Λfσ,q and fix a triple (e, h, /) as in (3.1). We have a
grading g = Θifl(i), where g(z) = {x G g : [/ιx] = ix}. Each g(z) is
also dσ-stable, since ad(/ι) and dσ commute. Hence the parabolic
subalgebra

is dσ-stable, so the corresponding parabolic subgroup P of G is σ-
stable, and we are in the situation of (2.3). In particular, Pσ is a
parabolic subgroup of the connected reductive group Gσ, and the
Lie algebra of Pσ is

We next set
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The latter is an Ad(Pσ)-invariant linear subspace of JsΓσφ even if q
is a root of unity, because p 2 consists of nilpotent elements. Let

be the P-orbit of e. By [Ca, 5.7.3], pg i s the unique open dense
P-orbit in p 2. It follows that pg and hence Ge are dσ stable.

Define the incidence variety

E = {(gPσ,x) G Gσ/Pσ x 0 : x G g q}.

This is a vector bundle over Gσ/Pσ via projection onto the first
factor. One could view E as the fiber product Gσ x# q, but the
former picture is more convenient here. Let

π : E —> K,q

be projection onto the second factor. Then π is Gσ-equivariant, and

closed since Gσ/Pσ is complete, by (2.3) (3).

PROPOSITION 3.2. Let O be the Gσ-orbit of e G Nσ,q. Then the
image of π is O and E A O is a resolution of singularities.

Proof We first show that the Pσ-orbit of e is dense in q. From
the representation theory of SL2 ([Ca, 5.4]) we see that the map

ad(e) : g(i) —> φ + 2)

is surjective for i > 0. Hence, given x G q, there exists y G p with
[y, e] = x. We can write y = Σyx where j / λ 6 p and dσ(yx) = λyx

for λ G F x . Comparing eigenvalues of dσ, we get x = [yx,e], and
yι G p σ . This shows that ad(e) : p σ —> q is surjective, so Pσ e is
open and dense in q.

From this it follows easily that the image of π is O. Indeed, since
the image of TΓ is closed and contains e, we have O C π(E). On the
other hand,

q = P^QO.

Since τr(E) = Gσ q and (9 is preserved by Gσ, we have the other
containment.

We next show that π is bijective over O. We recall the well-known
resolution of Ge (c.f. [H, p. 108]). Consider the vector bundle

E = {(gP, x) G G/P X 0 : x G p p2}.
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Then the map

given by projection onto the second factor is G-equivariant, closed,
has image G e, and is bijective over G e.

We define an automorphism σq of E by

The fixed point space of σq is

Eσq = {(gP, x) G (G/P)σ x fl : xeM,qΓl g-p2}.

This is a disjoint union of vector bundles over the connected com-
ponents of (G/P)σ. In the notation of (2.3) these components are
given by

iβ/P)σ = Π GσWP/P,
wewi\wσ/(wP)σ

and each component is a flag variety for Gσ.
The component of Eσq lying over GσP/P is

{(gP, x) E GσP/P x β : xeλfσ,qn g-p2}.

Since Gσ/Pσ = GσP/P and for g € Gσ, we have Nσ,q Π g-p2 =

9'(Mτ,q Π p2) = p q, this component is none other than JE1.
Note that π restricted to E is just our original π : i? — y O. Since

the fibers of TΓ over G e are singletons, the same must be true of
the fibers of π over O. The proof of (3.2) is now complete if the
characteristic of F is zero.

In sufficiently large characteristic, we use an argument from [Ril]
to prove that π is separable. The assumption that F has characteris-
tic p > 2κ is, by a wide margin, enough to ensure (see [Ril, §5]) that
the orbit maps under the adjoint action of G are separable. Hence
the tangent space to G-e is TeG-e = [g, e]. Decompose g = 0g Λ into
dσ-eigenspaces, so O C Qq. Then TeO C QqΠTeG e = g9(ΊΘλ[9λ, e] =
[gσ, e]. It follows that the differential of π at (Pσ, e) G E is surjec-
tive, so π is separable by [B, p. 41]. Hence TΓ : π~ι(O) —>• O is an
isomorphism by Zariski's Main Theorem. D

COROLLARY 3.3.

(1) dimO = dimGσ - dimPσ + dimq.
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(2) Ccσ(e) = CPσ{e), where C#(e) denotes centralizer in H of e.

(3) O Π q is exactly the dense Pσ-orbit on q. (See the proof of

(3.2).)

Proof The first two assertions are immediate from (3.2). We use
them to compute

dim Pσ e = dim Pσ — dim Cpσ (e)

= dim Pσ — dim Ccσ (e)

= dim Pσ + dim O - dim Gσ

= dim Pσ + [dim Gσ + dim q - dim Pσ) - dim <2σ

= dimq.

It follows that Pσ e contains an open subset of q which must meet,
hence equal, the dense Pσ orbit on q. •

According to [K], a result like (3.2) has the following consequence
in characteristic zero. Let O be an Gσ-orbit in Nσ,q, and let E be
the bundle over Gσ/Pσ as in (3.2). Let SdS be the graded sheaf of
sections of the dth symmetric power of the dual bundle of E. Then
®d>oSdS is the structure sheaf Oβ of J5, and the global sections
H°{Gσ/Pσ, SdS) are the regular functions on E which are polynomial
of degree d on each fiber. Let F[O] be the coordinate ring of the
affine variety O, The map π induces an injection of Gσ-modules

d>0

given by TΓ* (/)(mPσ) = / | m . q .

COROLLARY 3.4. Assume the characteristic of F is zero and that
q is a completely reducible Pσ -module. Then
(1) π* is an isomorphism of Gσ -modules.

(2) O is a normal variety.

(3) H*(E,OE) = 0 for i > 0. (One says that Ό has "rational
singularities ").

The proof of the analogous result for nilpotent orbits in [H] carries
over without change. Note that q is a completely reducible Pσ-
module if and only if the unipotent radical of Pσ acts trivially on

q
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IV. From G-orbits to Gσ-orbits. We retain the notation from
the proof of (3.2), and investigate the other components of Eσq —
(G Xp p2)σq occurring there. For w G Wσ, we put

so q = qi. Note that q^ is an Ad(iί;Ptί;~1)σ-invariant linear subspace
of λί^q. It follows from (2.3) that for each w G W^\Wσ/(WP)σ we
have a component

Ew = {(gwP,x) G GσwP/P x Q : x G g-qw},

and

Eσq = Π Ew.
wewi\wσ/(wP)σ

One could also view Ew as the fiber product

Ew — Gσ Xpσ qw.

Since Ew is a vector bundle over a smooth variety and π is Gσ-
equivariant and closed, we see that π(Ew) = Gσ qw is an G^-stable,
closed, irreducible subvariety of MσΛ Π G-e. Hence π(Ew) — Ow

for a unique G^-orbit Ow C G e. Note that π(Ew) meets G e if
and only if Λ£j(7 Π w pQ 7̂  0 . (Recall that pQ = p2 ΓΊ G-e is the
unique dense P-orbit in p2.) By [Ri3] the Gσ-orbits in Λ^^ΠG e are
exactly the irreducible components of Nσ,qC\G'e. Thus, the closure of
each such Gσ-orbit is an irreducible component of Λfσ,q ΠG-e. The
main result in this section ties these considerations together and,
in tandem with (2.3), reduces the computation of the Gσ-orbits in
G-e to knowing the dense orbit in the prehomogeneous vector space
(P, p2, Ad). We note that for each G there are only finitely many of
the latter to consider.

PROPOSITION 4.1. (1) The map w »-> Ow described above is a
bijection from

{w € Wl\Wσ/(WP)σ : K,q Π w • plφ 0 }

to the set of Gσ-orbits in MσΆ ΠG e. The inverse of this bijection
sends a Gσ-orbit O C G e to the w G W*\Wσ/(WP)σ such that Ew
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is the unique component of Eσq meeting a π-fiber over some point
in O.

(2) The map π : Ew —> Ow is a desingularization of Ow.
(3) If Λfσ,q ίΊ W'pl is nonempty, then Ow = Gσ-(λίσjq ΓΊ w-pl) =

Ό^DG-e.

Proof Since π is bijective over G e, it is clear that any Gσ-orbit
in λfσΆ Π G-e can meet π(Ew) for at most one w G W£\Wσ/(Wp)σ.
Hence w »-» Ow is injective.

Take x G MσΛ Π G-e, and look at the fiber T Γ " 1 ^ ) = {(gP,x)},
where x G g-p2- We have qx — dσ(x) G dσ(g-p2) = σ(g)-p2, so
^ G σ(^) p2. But then (σ(g)P,x) G π " 1 ^ ) , so ^ P G {G/P)σ. This
shows that Λ4)g (Ί G e is contained in the union of the π(£ l

l ϋ)'s. Now
consider a G^-orbit OQ C Λ4,ςnG e, and suppose OQ meets π(Ew).
Then (90 C π(Ew) so (90 C π(Ew) since the latter is closed. Recall
however, that (90 is an irreducible component of λfσ,q ΓΊ G e, so we
must have (9o = π(Ew), since the latter is also irreducible.

Assertion (2) follows from the birationality of π, as we have argued
before.

Let x G OwΓ)Ge = Gσ<\wΓ)Ge. Then there exist m e Gσ, g e G and
υ G p2 such that x = mit ?; = g-e, so υ = (mw)~ιg e G p 2 n G e = p§.
Hence x G Λ^^Πmtί pQ. This proves the second equality in (3), the
other direction there being trivial.

We now know Ow C Gσ'(λfσ,q Πw-pl) = ~O^ D G-e. Moreover,
Λί^qΠw-pl, being open in the linear space λίσiqΠw p2, is irreducible.
It follows that Gσ (ΛΓσjq Π w pl) is an irreducible subset oϊNσ^q Π G e
containing the irreducible component Ow of Λ/̂ ?9 ί l G e. Hence

nw p2). ' D

COROLLARY 4.2. LetO c gbe a nilpotentG-orbit. ThenOnΛfσ,q

is a union of at most \W^\Wσ/(Wp)σ\ orbits under Gσ.

COROLLARY 4.3. Assume σ is induced by a symmetry of the
Dynkin diagram of G. Let O C 0 be a nilpotent G-orbit. Then O
meets Nσ,q in at most one Gσ-orbit.

Proof. In this situation, W% = Wσ as remarked in (2.6), so the
result is a special case of (4.3). D

When q = 1, we are counting the number of nilpotent Gσ-orbits
in gσ which are contained in a single G-orbit. It is well-known that
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nilpotent orbits in so (2n + 1) and sp(n) are determined by elemen-
tary divisors. The above results say this is due to the connectedness
of the varieties (G/P)σ, which is in turn deduced from the equal-
ity Wl = Wσ. Likewise, every ZQ nilpotent orbit meets f4 in at
most one F4-orbit, and similarly for G2 C Spin(8). In the case
G = SX(2n), Gσ = SO(2n), one checks that \Y{σ)\ = 2, so (4.2)
reduces to the well-known result that at most two nilpotent orbits
in so(2n) have the same elementary divisors, and these orbits are
conjugate in O(2n).
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