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LENGTH OF JULIA CURVES

DaviD H. HAMILTON

Let the Fatou set of a meromorphic function f have two
components with Denjoy-Wolff points at which f is not
transcendental. Then the Julia set J is a “circle/line” or
is nowhere rectifiable. In particular if f is rational and J
is a Jordan curve then it follows it follows (in the second
case) that dim(J) > 1.

Let F' : C — C be a meromorphic function. The Julia set
J = J(F) is the complement of the set of normality of the iter-
ates F". Fatou (1920) proved that if F' is rational and if J is a
closed Jordan curve then either J is a “circle/line” or it has a dense
set of points where there is no tangent. Under various special as-
sumptions on the behaviour of F' on J one can say more about the
case where J is a closed Jordan curve not equal to a circle/line:
Fatou claimed that if “F' is expanding on J” then J has Hausdorff
1-measure A(J) = oco. (This was proved by Brolin (1965).) Also if
“F is expanding on J” Sullivan (1983) proved that the Hausdorff
dimension satisfies dim(J) > 1. Sullivan does this by applying his
construction of the conformally invariant measure to Brolin’s result.
The main result of this paper is that these results hold for arbitrary
rational functions.

THEOREM 1. Let F : C — C be a rational function. Suppose
that the Julia set J is a Jordan curve. Then J is a circle/line or
dim(J) > 1.

REMARKS. (i) Actually Przytcki, Urbanski and Zdunik [14]
had proved Theorem 1 for the “repellant case”. Also Zdunik [17]
proves that if F' is any polynomial with Julia set J a Jordan curve
then dim(J) > 1. We only prove A(J) = oo and then make good
use of Decker and Urbanski [5].

(ii) Note that we require J to be a closed Jordan curve. Our result
is considerably more general than for Jordan curves. We only re-
quire that F' has two foreward invariant (disjoint simply connected)
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domains 2; and Q,. Then we prove that either C — (Q; U ) is a

circle/line or A(C — (Q; U Q3)) = oo. The case that J is a Jordan

arc has to be treated separately and follows from a general result we

prove for “dendrites”, i.e. when both J and C — J are connected.
Our method depends primarily on the harmonic measure

wj = wj(zj)E’ Qj)’

i.e. the value of the function harmonic on 2; with boundary value
1 on E and 0 on 0Q; — E taken at some point z; inside ;. The
actual points z; are unimportant so we henceforth refer only to the
harmonic measures Ow;. Our basic result is:

THEOREM 2. Let F be a rational function with two foreward in-
variant (disjoint) domains 0, and Q. Then either 0 = 0 is a
circle/line or

dw1 1 dw2.

REMARKS. (i) This immediately implies (by classical results
of Riesz, see [13]) that in the second case J is nowhere rectifi-
able. However we can improve this considerably by using results
of Bishop, Carleson, Garnett and Jones [3]. They characterise the
disjoint domains for which the harmonic measures are mutually sin-
gular. Let T be the set of points on J where there is a tangent.
If the mutual boundary is a closed Jordan curve J singularity is
equivalent to A(T") = 0. In the general case one only has to replace
tangents by “mutual sectorial accessability”. In any case there is no
“tangent” at almost all points, considerably strengthening the old
result of Fatou.

We prove Theorem 2 directly as a consequence of our rigidity
theory for inner functions f, see 8], [9] and [10]. Now f is inner
if it is a bounded analytic function on the unit disk D with radial
boundary values f(z) € dD for z € dD (a.e.). Shub and Sulli-
van [15] dealt essentially with the special case where f is rational,
i.e. a finite Blaschke product, and f fixes a point inside the disk.
They prove that if there is a (mutually) absolutely continuous map
¢ : 0D — 0D so that g = ¢ o f o ¢! is also Blaschke (on 9D)
then ¢ is Mobius (bilinear or the complex conjugate of a bilinear
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map). In the general case the real difficulty is dealing with func-
tions with “Denjoy-Wolff” point on dD, the generalization to inner
functions being straight foreward. The general result is that inner
f have nontrivial conjugations by absolutely continuous ¢ to other
inner functions if and only if f is not ergodic on dD. By using the
techniques of this method we shall obtain the stronger result on the
singularity of harmonic measures.

Before proceeding consider some examples. If the Julia set J of
a rational function f is a circle/line then f is essentially a Blaschke
product. Examples where J is not a circle/line may be obtained
by quasiconformal conjugation of a Blaschke product to a rational
function F'. Now if the fixed point is not on the Jordan curve J
we have the expanding case. So this theory is new only for the
case where we have a neutral attracting point, i.e. petals. Similar
results are also seen in the usual family of suspects z2 + ¢. For ¢
close to 0 we have that J is a closed Jordan curve surrounding a
strongly attracting point. However for some values like ¢ = 1/4
although J remains a Jordan curve the bounded attracting point
is also on J. For other values of ¢ we obtain the so called “rabbit
ears”. In this case f2 is invariant on two bounded domains §2; and
Q, as well as one unbounded domain {2;. Now Theorem 2 implies
that the relevant harmonic measures are mutually singular. This is
hardly surprising for €2; and €2, as they only touch at one boundary
point. However for ; and 3 this is nontrivial. (Now we do not
necessarily have that 0Q2; have infinite 1-measure, only that if they
do have finite 1-measure then they meet on a set of zero measure.)

Also Theorems 1 and 2 will also be seen to hold for a large class
of meromorphic functions F'. However we need to restrict ourselves
to meromorphic functions which are ergodic with respect to the
harmonic measure on the invariant domains.

Now F is ergodic if there is no set £ C 02; with

0<wj(E)<land F7Y(E)=E.

A sufficient condition for this is that the “Denjoy-Wolff” point for
F on a foreward invariant domain €2 , i.e. the point w in the closure
of Q so that for all z in Q F"(2) — w, should be a finite point (so
that F' is analytic at w). The function F' = tan(z) is an example.
However there are meromorphic functions, such as F' = 2z + tan(z)
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(with “Denjoy-Wolff” point at co) which are not ergodic.

THEOREM 3. Let F' be a meromorphic function with two foreward
invariant (disjoint) domains 0y and Qy upon which F is ergodic with
respect to the harmonic measures dw;. Then either 02 = 08, is a
circle/line or the harmonic measures are singular.

REMARKS. (i) We also give an example of a meromorphic func-
tion F' with Julia set J being a Jordan curve separating the plane
into forward invariant unbounded domains with harmonic measures
which are mutually absolutely continuous but J is not a circle/line.
Indeed the harmonic measures are absolutely continuous with re-
spect to dA on J. However we do not know if such J can be of
locally finite lengh (although they are never smooth).

Finally we deal with the case where J is a Jordan arc or even
a “dendrite”. The general case is for a simply connected foreward
invariant domain €. In many situations the points of 052 are acces-
sible from several different directions, i.e. to be more precise several
prime ends correspond to the same boundary point. For example if
J is a Jordan arc then (except at the end points) two prime ends cor-
respond to each point of J. At the opposite extreme is the “rabbit”
where a countable number of prime ends cut off some of the bound-
ary points. Although we cannot speak of a homeomorphism of the
circle generated by this correspondence we can obtain a bijection.
Thus as above we shall prove:

THEOREM 4. Let F' be a rational function so that the Julia set
J and its complement are connected. Then J is a circular arc/line
interval or A\(J) = 0.

REMARKS. Actually one proves that the resulting bijection is
trivial or singular. If J is actually a Jordan arc then Theorem 4 also
holds for meromorphic functions.

The author would like to thank the referee and acknowledges
conversations with M. Yacobson and P.W. Jones.

2. Conformal Pullback to the disk. Let F' be meromorphic
on C with Julia set J. We consider a foreward invariant simply
connected component €2 of C — J. Let h be the conformal mapping
of the unit disk D onto 2. We have by Fatou’s Theorem
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ll_rﬁ h(rz) € 0Q, z € ID (a.e.).
Consequently we have:

LEMMA 1. The function

f=hloFoh
15 a well defined inner function of D into D.

Now f is a well defined analytic map of the unit disk into itself.
So we have only to check that f is inner. If not there is a subset E
of the circle with A(E') > 0 and

11_1}} f(rz) e D,z € E (a.e.).

Then the radial limits

G= h(E()), /\(E — E()) = 0,

is a subset of Q2 but F(G) C Q! This of course is impossible.

Notice that f is bilinear if and only if F' is conformal on 2. Using
the complete classification of dynamical behaviour this happens only
if there is a bilinear mapping T of the disk onto itself so that f =
T o goT~! where

g(z) = €'z,

where t/m is irrational. Thus f is ergodic, i.e. fixes no nontrivial
set of positive length on OD.

Now if F fixes a point w of 2 then by the principle of harmonic
measure the measure dw(w, z,?) is F' invariant. A simple argument
shows that f is ergodic with respect to this finite measure.

Doering and Mané [6] considered the case for parabolic basins
of rational functions and proved the corresponding f is ergodic on
the unit circle even though there is no invariant finite measure.
Their proof only depends on the following sufficient condition due
to Aaronson [1]:

LEMMA A. An inner function f : D — D is ergodic provided



80 DAVID H. HAMILTON

f_’i} (1~ /(O] = co.

REMARK. Actually, see [7], this is equivalent to f is recurrent,
i.e. for any subset A of positive measure and for all z € A (a.e.)
f™(z) € A for infinitely many positive integers n. (The relationship
between recurrence and ergodicity of inner functions is not what
one would expect, see Doering and Mané.)

Let €2 be a parabolic domain with attractive boundary point w
(i.e. Denjoy-Wolff point). By the classical description of the petals
we see that at w the domain () is asymptotic to a sector of angle
27 /k, where we can assume (without loss of generality, see Beardon
2, p. 116-122))

F(2) =w+ (z —w) — (z — w) 1 + O((z — w)**1).

Supposing that the conformal mapping h maps 1 to w then

h(Z) =w+a1(z—1)k/2+... .
Thus by a simple computation for any a > 1/2 for large enough n:

n 1
- 1fO)] > o

Thus as in [6] we obtain from Lemma A the first part of:

LEMMA 2. Let § be a foreward invariant simply connected com-
ponent of set of normality of a meromorphic function F with finite
Denjoy-Wolff point. Then the corresponding inner function f is
ergodic. Furthermore for any set E C dD with f(E) C E (a.e.) we
have \(E) =0 (a.e.) or E = JD (a.e.).

To prove the last part of this lemma we define for fixed positive
integer m
G={2€dD-FE: f™(2) € E}.

Now if A(E) > 0 then f*¥(z) € E, which is disjoint from G, for
k > m —1 as f is recurrent A\(G) = 0, for all m. Therefore E is
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backwards as well as foreward invariant. Hence as f is ergodic we
have the result required.

In order to prove our theorems we use conformal pullback to pro-
duce inner functions f; and f;. The unit circle has subsets E and
G both of positive length and there is a (mutually) absolutely con-
tinuous bijection ¢ : E — G so that on G

fa=dofiog

Our basic tool is the following result proved in [8],

THEOREM H1. Suppose that fi, fo are ergodic inner (rational)
functions. Now suppose there is an absolutely continuous homeo-
morphism (bijection) ¢ : ID — 0D so that

fa=¢ofrog™!
on OD (a.e.). Then there is a Mébius transformation T of the disk
onto itself:

6="T.

REMARK. Notice that our result is somewhat stronger for finite
Blaschke products. This will be used in the proof of Theorem 4.

3. Boundary values of conformal mappings. In this section
we collect some basic ideas on the boundary behaviour of conformal
maps h : D — Q. A full account may be found in Pommerenke [13].

For a point w € dD which is the endpoint of an open Jordan arc «
contained inside {2 there is a point z € 0D so that z is the endpoint
of h™'(a) and h has radial limit w at z. We want to consider more
complicated geometric behaviour. We say that w is accessible in a
sector if there is an open triangle in 2 with w as one vertice. The
set of points on 92 which are sectorial limits is denoted by S. By a
theorem of McMillan the harmonic measure dw and length d\ are
mutually absolutely continuous on S. Also on S, except for a set
of measure zero, every point has a “one sided tangent”. There may
also be a nontrivial set R complementary to S, where up to a set of
zero harmonic measure every point w = h(z) is a twist point. This
means that arg(h(rz) —w) is unbounded above and below as r — 1.
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Next we need to consider disjoint simply connected domains €2,
and {2, with harmonic measures dw; and dws. We make use of a
basic result of Bishop, Carleson, Garnett and Jones [3] who prove

THEOREM B. The combined boundary 0Q, U 0y has a partition
into disjoint sets S; NSy, By and By where w;(B2) = wq(B;) = 0.
The set S1NSy consists of all boundary points which are accessible in
a sector from simultaneously both Q; and Q. Furthermore almost
all (harmonic measure or dX it does not matter) points of Sy N Sy
are points where the two domains are mutually tangent.

We are now ready to apply these concepts to ergodic inner func-
tions. First we allow our domains 2; and €2, to be foreward invariant
simply connected domains of the region of normality of a meromor-
phic function F. Now, except for a countable number of points, F
and its iterates are locally conformal. Thus the set S;NS; is foreward
and hence by Lemma 2 backward invariant. When we pullback to
the inner functions f; we obtain invariant sets E; = hj‘l(Sl NS,). By
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the previous section our inner functions are ergodic and have non-
trivial invariant sets. Thus the sets S; N S, have harmonic measure
1 or 0 in both domains. Furthermore if the two harmonic measures
are not singular then, by Theorem B, we have that S; N S, has
harmonic measure 1 in both domains. From this we construct the

mapping

¢=h;'oh

defined first on a subset of positive measure on the unit disk. Thus
¢ may be extended to an absolutely continuous bijection defined on
the unit circle (a.e). Finally by simple topology, as order is pre-
served, ¢ extends continuously to an absolutely continuous homeo-
morphism of the unit circle. Thus from the conjugation

fj = hJ_l oFo hj
we have proved

LEMMA 3. If §; NSy has positive measure then there is an abso-
lutely continuous homeomorphism ¢ : 0D — 0D so that

fa=¢o fiop~! (a.e. on ID).

4. Proof of Theorems 1-3. From previous results we have first
to prove Theorem 3. Assuming that harmonic measure is not singu-
lar then by applying Theorem H1 to Lemma 3 we obtain a Mo6bius
map T : 0D — 0D so that

hyoT = hy (a.e. on ID).

Up till now we had some freedom in our normalization of the Rie-
mann maps. These may now be normalised so that we can assert
that T = z or T = Z. Consider the first case. Thus the conformal
maps agree (a.e.) on the unit circle. Hence they have the same
Laurent coefficients for the expansions in the powers of z. In other
words h, is the analytic continuation of h;. So there is a bilinear
mapping h so that h;(z) = h(z) and he(2) = h(z) for |2| > 1. In
particular the domains have mutual boundary which is a circle/line.
In the second case T' must be antilinear. Consequently

ha (%) = hy(2) (a.e. on OD).
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By comparison of Laurent coefficients again we have

ha (%) = hy(z) for all |2| # 1.

This implies that €2; = (2, contrary to our assumption. This com-
pletes the proof of Theorem 3. Theorem 2 immediately follows as
by using a bilinear conjugation we can always assume any Denjoy-
Wolff points of a rational function can be made finite. We complete
the proof of Theorem 1 in the next section.

5. dim(J) > 1. Decker and Urbanski [5] define a rational map
F to be parabolic on J if there are no critical points on J but
there exist at least one rationally indifferent periodic point. Now
set 6 = dim(J). They generalise a result of Sullivan by proving that
there is a unique - conformal probability measure dy on J, i.e.

F(A))= [ |F')°d
u(F(4) = [ 1F'Pdy
for all A in J upon which F is 1: 1. They prove:

LEMMA D. If § = 1 then there is a positive finite constant c so
that du = cd.

Let us now consider the case that J is a Jordan curve. There
can be no critical points on J, as these would cause branching. If
neither of the attractive points lie on J then F' is expanding. So
this is the Sullivan case. In the other case any attractive point on
J must necessarily be rationally indifferent, in fact must be a petal
of order 1 or 2. This is the parabolic case. Now by Lemma D and
Theorem 2 we deduce that § = 1 only in the trivial case that J is a
circle/line. This also completes the proof of Theorem 1.

This argument will not hold for Jordan arcs or dendrites which
in general contain critical points.

6. Multiply connected case. It is natural to ask in what sense
do these results generalise to nonsimply connected domains. That is
we suppose we have a rational function F with two disjoint foreward
invariant components €2; on the set of normality, one of which at
least is multiply connected.

First we fix one such domain which we call 2. One sees that
Lemma 1 and 2 generalise without any problem. For as 0f2 has at
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least 3 points there is a conformal mapping h of the unit disk D
onto the universal covering of €2. Furthermore as 02 in fact has
positive logarithmic capacity a result of Nevanlinna for functions of
bounded characteristic implies

11_r)r% h(rz) € 02 (z € ID a.e.).

Thus as before f = h™! o F o h will be inner.

The simplest case of a nonsimply connected domain is when 2,
say is a Herman ring. This is the only other finitely connected
case. Then F' acting on €2, is conformally conjugate to an irrational
rotation f; of an annullus D; = {r < |z] < 1}:

fi=hitoFoh

where h, : D; — §; is the conformal mapping which maps the
boundary component JdD to the outside of the boundary compo-
nent 9p€);. Note that F' leaves the boundary components of 9
invariant so that the pullback to the unit disk f cannot be ergodic.
Now without loss of generality the other invariant domain is in the
unbounded component of C — €2;.
There are several possibilities:
(i) € is simply connected (and contains 00).
(ii) Qg is doubly connected.

(iii) € is infinitely connected.

First we assume that {2, is simply connected. Case (iii) shall be
dealt with later. For case (i) we pullback Qs to Dy = {1 < |2}
by conformal mapping hy : Dy — €, taking D to the boundary
component 0€);. So we obtain “inner functions” f; : D; — D; as
usual.

In this section we considerably weaken the hypothesis that the
harmonic measures are nonsingular. All we require is that

wj((')le N an) > 0, fOI‘j =1 and 2.

Now as 0y§2; N 02, is foreward invariant under F' by Lemma 2

U.)Q(aoﬂl N 692) =1.
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Also as f; is an irrational rotation there are no nontrivial foreward
invariant sets. Thus

wh (3091 N 392) =w (6091)

Thus in particular §p€2; = 9€2, although this alone does not imply
that there may be other components of the set of normality which
lie between the two invariant domains. Under these circumstances
it is easy to construct the bijection ¢ giving the conjugation from
f1 to fo on OD. First observe that for any continua K in 9of?; there
is a unique subarc I; C JD corresponding to K under h; in the
prime-end topology. Now by the above result on harmonic measure

wi1(K) > 0 <= wy(K) > 0.

Thus in mapping I; to I, there is no collapsing of arcs to points
or vice-versa. Consequently, as by simple topology order is pre-
served, the bijection ¢ is defined, however we do not have that it is
nonsingular merely that it is a homeomorphism.

Now as f; is just an irrational rotation we must have that its con-
jugate f, is 1:1 and is therefore a rotation too. By the classification
of invariant domains in this case €2, is also a Herman ring. As this
was the second case we now assume it. So we deal with case (ii).
In this case we pullback Q, to D, = {1 < |z| < s} by conformal
mapping hy : Dy — Q, taking dD to the inner boundary component
0i{}2. So we obtain “inner functions” f; : D; — D; which are now
irrational rotations:

f j= e“’f z.
Now as above we have the dichotomy

w;j(Gpfh NON) =0, for j =1or 2,

or
w;(0§ NOQ) =1, for j =1or 2. .

Once again we concentrate on the second case and produce a home-
omorphism ¢ of the circle onto itself so that

€%p(2) = p(e? 2), z € D,
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where ¢,/ is irrational. Let ¢ have Fourier expansion

+00
S apdF, |z = 1.
Thus for each k:

e%2q, = ¢*0iq, .
Therefore a;, = 0 or kf; — 60y = 27m,;,. But as 6,/ is irrational there
is at most one k for which a; # 0. But as ¢ is a homeomorphism
this implies that it is Mobius. Since we still have choice in the
normalization of the conformal maps we may take ¢(z) = z. Thus
the conformal maps h; satisfy

h1(z) = ha(2) on ID (a.e.).

Therefore by classical Laurent series hs is the analytic continuation
of h;. This implies that the common boundary B of the Herman
rings is the conformal image of OD. Hence the “Herman Rings” are
infact rings of a larger Herman Ring obtained by pasting across an
analytic curve B. But then B cannot possibly be part of the set
of nonnormality! Thus in all cases the harmonic measure of the
common boundary must be zero.

Finally we have to deal with the case where 2 = {2 is infinitely
connected. Now F will have a (super) attractive point in 2 we
see that the corresponding f may be assumed to fix 0. Then f
will be ergodic and recurrent. We shall now prove that either the
boundary components of C — €2 each have harmonic measure zero
or the boundary components of of C — ) are all points (and there
will be only one invariant domain). Consider any components K of
C — Q. Suppose that the harmonic measure w(K) > 0. Now let
the pullback of 0K under h be the set E. As f is recurrent there
is a set By C E with A(Ep) > 0 and a number n so that f™(Ey) is
contained in E. But this means, as F' maps components of C— 2 to
components of C — Q, that F™*(K) = K. Without loss of generality
n = 1. Thus F is foreward invariant under f. But as f fixes 0 we
see A(f~1(E)) = M(F) and therefore f~!(E) = E (a.e.). So as f is
ergodic w(K) = 1. Thus the other components of C — Q2 are points.
Now at least one of these components, () say, is mapped by F' onto
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K otherwise f is normal on C— K. But then () must be a continuum
too which is a contradiction. Therefore all components have zero
harmonic measure. Thus we proved the multiply connected case is
trivial for harmonic measures.

THEOREM 5. If §; are disjoint foreward invariant domains at
least one of which is multiply connected then 0 = w;(0Q; N Q) =
w2(891 N 892)

7. Dendrites.

e

It is known, see [2, p. 257|, that if F' is a polynomial then J
is the interval [—1,1] if and only if F is one of the Tchebyshev
polynomials T,, (or —7,) where T,(cos(t)) = cos(nt). In general a
rational function F' has Julia set [—1,1] if and only if

1
F=hofoh™, whereh:%<z+—z—),

where f is an ergodic and symmetric finite Blaschke product. Now,
in general but not if F' is a polynomial (by Hubbard’s “Ecale” con-
struction), the Teichmiiller space of such rational functions is non-
trivial. This means there is a quasiconformal mapping & : C — C
so that
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F*=®oFod!

is a rational function not conjugate to F' by any bilinear mapping.
Consequently F™* has Julia set J* = ®(J) which in general is not an
interval.

Actually we shall deal with more general objects then an open
Jordan arc. Assuming that J and C — J are connected we have a
single foreward invariant simply connected domain 2. In analogy
to before we define S to be the set of points ( € S so that there
exists r > 0 and directions ¢;, j = 1 and 2, so that there are disjoint
sectors
Yi={z:]z = <rarg((z - e ) < 0;}, of width 20; > /3,
belonging to different components of QN {z : |z — (| < r}. Now
there are at most two such sectors at each point. If J has (locally)
finite length then almost all points of J belong to S. Notice that
S is F invariant (a.e.). As the conformal pullback f is ergodic
then either w(S) = 0 or w(S) = 1. In the latter case we define a
bijection ¢ : D — JID (a.e.) as the pullback of the map swapping
points in adjacent sectors - the identity, i.e. ¢ = h™! o I o h which
gives an involution (a.e.). By MacMillan’s theorem ¢ is absolutely
continuous. But as f =h o Foh

pofopl=htolohohloFohohtoloh
=hloloFoloh
=hloFoh={,
i.e. ¢ conjugates f to itself. Consequently Theorem H1 shows that

¢ is Mobius. After a trivial renormalisation, if necessary, we see
that we may assume

Therefore from above

f(2) = f(2) and h(z) = h(z).
This implies that J is symmetric with respect to the real axis. If J
is not a subinterval of the real line there will be a subset of positive



90 DAVID H. HAMILTON

harmonic measure where the bijection is not defined. This completes
the proof of Theorem 4.

8. Counterexample. We use quasi-conformal deformation (see
Beardon [2]) to prove

THEOREM 6. There ezists a meromorphic function F with Julia
set J a Jordan curve trough oo and with two foreward invariant
components ; and Qy of C — J so that the harmonic measures
satisfy dwy ~ dws, indeed dA > dwj.

We begin with the functions

Gs(z) = sz +tan(z),s > 0.

It is easy to see that for s > 1 these have Julia set J equal to the
real line and the upper and lower half planes are invariant. Also by
[6] for s > 1 the pullback to the disk, f, is not ergodic. Now in [8]
we proved

THEOREM H2. If G, : H — H is inner but not ergodic there
exists a quasiconformal mapping

®.C—C

preserving the upper half plane so that
(i) Hs;=®o0G,0d! is meromorphic, inner on H,

(ii) Hi#ToGs0T ! (a.e. onR) for all Mobius T.
Also the restriction of ® to the real azxis is absolutely continuous.

Actually we do not use the last unadorned fact but the part of the
construction that lies underneath it. Let ® have complex dilatation

o0d
u(z) = 9%
By (i) the dilatation u is G invariant, i.e.

and as the real line is mapped to the real line

u(z) = u(2).
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The important property of u is that it is supported by a set A which
only has nontangential cluster points on a set E on the real axis with
A(E) = 0, proved in [8]. Recall that z is a nontangential cluster
point of A if there is an angle 6, 0 < § < 7/2 with Stolz angle

Y ={Im(z) >0:|2| < |Arg(z — z)| < 0}.

So there is a sequence 2z, € YN A, z, — x.
We now define a second quasiconformal mapping

p:C—C

as a homeomorphic solution of the Beltrami equation

oy o, otherwise,

which fixes infinity, see [11].
As above 1 has a G, invariant dilatation and therefore as in Bear-
don
(ili) Fy =1 oGs09~! is meromorphic.
We note
(iv) Fy# T oGsoT! for all Mobius 7.

o _ {mz), Im(2) > 0,

Otherwise as the restriction of % to the lower half plane is confor-
mal we see that 1 will be bilinear on the lower half plane. But then
by the usual Bers theory of universal Teichmuller space the dilata-
tion p is trivial, and ® will be bilinear on the real line, contradicting
(ii).

The image of the real line under % is a Jordan curve J through
infinity. Furthermore as G, has Julia set equal to the real line, Fj
has Julia set equal to J. Thus there are two foreward invariant
components €2; and 2 of C — J with the harmonic measures dw;,
dw,. By suitable choice of the conformal mappings

hl : {Im(z) > 0} — Ql
hy : {Im(2) < 0} — £

we see that on R

q):hz—lohl.



92

DAVID H. HAMILTON

Thus the harmonic measures are mutually absolutely continuous.
The second part of Theorem 6 is an application of the main the-
orem of [10] which with the above notation is:

THEOREM H3. Suppose that the complex dilatation of ¥ is sup-
ported by a set A which only has nontangential cluster points on a
set E on the real azis with \(E) = 0 then

d\y o> dg.

This concludes the proof of Theorem 6.
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