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NONEXISTENCE AND INSTABILITY IN THE EXTERIOR
DIRICHLET PROBLEM FOR THE MINIMAL SURFACE

EQUATION IN THE PLANE

N. KUTEV AND F. TOMI

In this paper we investigate the Dirichlet problem

(1) M W Ξ ( 1 + \DU\2)ΔU - DiuDjuDijU = 0 in Ω

(2) u = / on dΩ

in a smooth domain fid2 for which M2\Ω is bounded. We
sharpen previous non-existence results for this exterior Dirich-
let problem by showing that even the smallness of the α-
Holder norm, 0 < α < \ is not enough for the classical solvabil-
ity of (1) and (2), not imposing any asymptotical conditions at
infinity upon possible solutions. In particular, we explicitely
exhibit smooth data / of arbitrary small Cα—norm for which
(1), (2) is not solvable in the space C°(Ω)ΠC2(Ω). The key
idea of our proof is to replace the original problem (1), (2)
on a known domain but with unknown boundary conditions
at infinity by the corresponding problem on some unknown
(bounded) domain, but with fixed boundary data. By the
same method we show the instability of the exterior Dirich-
let problem with respect to Ca—small perturbations of the
boundary data, 0 <a < ̂  provided that Ω is the complement
of a strictly convex set.

1. Introduction.

For a bounded domain Ω C l n it is well known that the mean-convexivity
of dΩ is both necessary and sufficient for the unrestricted solvability of the
Dirichlet problem to the n-dimensional minimal surface equation [JS]. In two
dimensions mean-convexivity, of course, agrees with ordinary convexivity.
Existence theorems for unbounded convex domains in arbitrary dimensions
have been proved by Massari & Miranda [MaMi], excluding the case of a
halfspace. The half plane was treated in a recent paper of Collin &; Krust
[C-Kr]. For general bounded, not necessarily mean convex domains one has
various existence theorems for (1), (2) under a smallness condition on the
data /. Already at the beginning of the century, Korn [Ko] and Mύntz [Mϋ]
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applied the method of succesive approximations to (1), (2), requiring small
C2>α—norm for the data /. Jenkins &; Serrin proved a perturbation result
for (1), (2) saying that the boundary data of a given solution of (1) may be
perturbed in the C°—norm, where, however, the admissible bound for the
perturbation also depends on the C2—norm of the perturbed boundary data.
Williams [W] refined this result by showing that for every K E]0,1/y/n — 1[
there is an ε = ε(jRΓ,n, Ω) > 0 such that (1), (2) is solvable for all / of
oscillation smaller than ε and Lipschitz constant not exceeding K. He also
demonstrated that the bound 1/y/n — 1 for K is optimal if the domain is not
mean-convex. This immediately implies that for such domains the Dirichlet
problem is in general unsolvable even for boundary data of arbitrary small
Ca—Holder norm with 0 < a < 1. In the two-dimensional case such a
nonexistence result has been proved by Nitsche [N, §411] for 0 < a < | .

We start the discussion of our actual subject, the exterior Dirichlet prob-
lem, with the fundamental observation that any solution of (1) which is
defined outside some compact subset of the plane has the C1— convergent
asymptotic development

(3)
u(x) = CiXi + c2X2 + Co + cln (\x\2 + {cιxx + C2X2)2) + +O(\x\ ι In \x\)

when |rrr| —> +00 and with appropriate constants Ci,c. We shall consider
these constants as additional unknowns of the Dirichlet problem though, in
order to obtain uniqueness, Ci, c2 and c ought to be treated as data at infinity
[C-Kr]. Krust [Kr] has proved some interesting existence results for (1), (2);
in particular, he was able to carry over the above mentioned perturbation
theorem of Jenkins &; Serrin to exterior domains. The nonexistence results
of Jenkins fe Serrin [JS], Williams [W], and Nitsche [N] for bounded, not
everywhere mean-convex domains make it already very plausible that the
exterior Dirichlet problem is in general unsolvable since, naturally, every
exterior domain fails to be convex somewhere. Their proofs for nonexistence
do, however, not apply to unbounded domains and hence, until very recently,
it was undecided if the Dirichlet problem, say on the exterior of the unit
disc, is always solvable or not. Osserman [O] constructed smooth data /
on the unit circle which do not admit a bounded solution of (1), (2) (i.e.
ci = c2 = c = 0 in (3)) in the exterior of the disc. From one of his existence
theorems Krust [Kr] was able to deduce that in Ossermans example there
are no solutions with horizontal tangent plane at infinity, i.e. C\ — c2 =
0, c arbitrary. Kuwert [Ku2] recently constructed a sequence of smooth
boundary data fj,j E N, whose oscillation tends to infinity and showed by
an indirect argument that the corresponding Dirichlet problem, - irrespective
of the asymptotic behavior (3) - can only be solved for a finite number of
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indices j .
We do not know if it is the C1/2—norm of the boundary data which is

critical for perturbations or rather the C0'1—norm, as suggested by the result
of Williams [W].

Finally we want to remark that the exterior Plateau problem can be solved
for quite general boundaries, allowing as solutions more general surfaces than
graphs [Kul, Ί\ T-Y].

2. Non-existence.

For our comparison argument below we are going to use a special minimal
surface which was already applied by Osserman in his non-existence proof.
We shall therefore call it "Osserman's surface". In parametric form it is
given by

(4)
1 1-3

άIX2 = +

z ά
x3 = -2Rez

where z = u + iv E C and (?i, v) are conformal coordinates for this surface.
We are interested in the part of the surface corresponding to \z\ < 1. It is
easily seen from (4) that this part has a non-parametric representation x3 =
<?(#!,:r2) where g is defined in the closure D of the unbounded component
of the complement of the Jordan curve \ + |f3, \z\ = 1.

This curve is shown in Figure 2.1 and is smooth except at the points
p± :~ (0, ±2/3) where it has spikes.

Figure 2.1.
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The function g is a solution of (1) with the following properties:

(5) geC°(D)ncω(b),
(6) Iff I < 2, sign^(x) = — signrrx, g(x) -» 0 /or \x\ -> +oo,

(7) ^ =

where v denotes the interior (with respect to D) unit normal of dD\{p+,p~}.
It is essential for our method to use the homothetical images of Osserman's
surface, i.e. the minimal graphs

#3 = 5ε(^l?^2)5 ffe : = £ff ( ~ # ) 5 £ > 0.

Clearly gε is defined o n l ) e := εD and has the corresponding properties (5),

(6), (7), moreover \gε\ < 2ε.

We can prove

Theorem 2.1. Suppose that Ω C IR2 is a domain of class C2 which is the
complement of a compact set or which is bounded and has a boundary point
where dΩ is negatively curved. Then there exist smooth data f with arbitrary
small Ca—norm, 0 < a < | , for which ΌirichleVs problem (1), (2) has no
classical solution.

Proof. Let ε be a positive parameter. We may suppose that pε := (ε/2,0) E
dΩ, that the tangent vector of dΩ at pε points in the x2 — direction and that
the curvature of dΩ at pε is negative. Letting Bε := R2\Dε we choose ε > 0
so small that dΩ Π Bε C {x E Be\xχ > 0}, the curvature k(x) of dΩ Π Bε is
negative, 0 < — k(x) < 1/ε, and the function d(x) := dist(x,5Ω) is of class
C2(Ω Π Bε). Let us now divide dΩ Π Bε into four arcs S Ί , . . . , S4 of equal
length and let us choose the following boundary data on 5Ω, depending on
ε (see Figure 2.2):

Λ = 0 on dΩ\Bε,

fε < 0 in 5i U 5 3 , inf fε = -5ε - - arccos e~κε, (j = 1,3),
Sj AC

0 0 \

fε > 0 in S2 U £4, sup fε = 5ε + - arccos e~κ ε, (jί = 2,4)

with K = ±'mf{\k(x)\ : x E dΩ Π Bε}. Since £ arccos e~^ = y/ϊ/2κει/2 +
o(ε1/2) for ε —>> 0 the data / e can be chosen to have arbitrary small Ca—norm,
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Figure 2.2.

0 < a < 1/2, and bounded C ^ - n o r m when ε -» 0, but the Cβ—norm for

β G]l/2,1] will blow up. Let us now suppose that problem (1), (2) with

f = fε has a solution u G C°(Ω) Π C2(Ω). We denote by Ωj the connected
o

component of the set {x G Ω\u(x) Φ 0} containing £,, j = 1,... ,4. Here we
do not exclude that some Ω̂  coincide. We want to show that there exists
some subdomain Ωo of Ω such that 9Ω0 contains at least one of the arcs
Sά, u|0Ωo\(£i U . . . U 54) = 0 and u(x) -> 0 when \x\ -» +oo, x G Ωo. If all
the constants c, Co,cχ,c2 in (3) are zero, then we may take Ωo = Ωχ In all
other cases each of the sets {x G Ω|w(α;) > 0} and {a; G Ω|ϊ/(rz;) < 0} has
at most one unbounded component, as is readily seen from (3). Therefore,
if Ωx φ Ω3 then at least one of these components will be bounded and we
choose a bounded one as our Ωo. If however Ωi = Ω3 then there is a Jordan

o o

arc in Ωi = Ω3 joining a point pλ G5i with a point p3 GS3. This arc together

with a suitable subarc of 9Ω joining px and p3 encloses Ω2 or Ω4. Therefore,

Ω2 or Ω4 are bounded and we define Ωo := Ω2 or Ωo := Ω4. In all cases u

does not change sign in Ωo and it is therefore no restriction to assume that

u(x) < 0 for x E Ωo.

We may thus replace our original problem (1), (2) with unknown data at

infinity by the following problem with complete data, but on an unknown

domain Ωo:

(8) Mu = 0 in Ωo, u < 0,

u = fε on c?Ω0 Π J5e,

u = 0 on dΩ0\Bεj

u(x) —ϊ 0 (|rr:I —> 00, x G Ωo) if Ωo is unbounded.

We shall show that problem (8) has no classical solution so that (1), (2) has
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no classical solution either.

Let us remark that the arguments of Jenkins & Serrin [JS] and Williams
[W] for non-existence are not applicable in the present situation since we
have no information on the geometry of Ωo away from SΊ U . . . U S$.

Our proof consists of two steps. In the first step we apply the comparison
principle [G-T, Thm. 14.10] to the functions u and v = gε — 2ε in the set

o o

Ωo Π Dε. Since u and v are solutions of (1) in Ωo Π Dε, u = 0 on dΩ0 Π Dε,

v < 0 in jDe, u(x) ->> 0 for \x\ -» +oo, v(x) -> —2ε for \x\ -» +oo, and,

finally, | | j j | < +cx), |jj = +oo on Ωo Π dDε, where v is the unit normal

pointing into Dε, it follows that u>υ throughout Ωo Π Dε and hence

(9) u > -4ε on Ω 0 Π D ε .

In the second step we compare u with the function

w(x) = - arccos e~κd^ — 4ε arccos e~Λε

K K

in Ωo Π Bε where β ε = R 2\i? ε as above and d(x) is the distance of x to <9Ω.
Writing u>(x) = α;(d(x)), the function ω has the following properties: ω1 > 0,
ω" < 0, ω;(0) = +oo, ω" + κω'{l + ω'2) = 0. Observing that d{x) < ε for
x £ ΩΓ\Bε and sufficiently small ε we therefore see that w < — 4ε in Ω Π B ε

and | ^ = +oo on <9Ω Π jBε. Furthermore, w satisfies the inequality

= (l + \ω'Dd\2){ω"\Dd\2 + ω'Ad) -

- w'2DidDjd(ω"DidDjd + ω'Diόd)

' 2 i 3 ( n i 3 ^

= ω" ^ — u/(l + ω'2) > ω" - £ω'(l + ω'2) > 0 = M(u)
1 — fad Δ

where λ denotes a unit tangent vector of <?Ω and v, λ, and k are to be taken
at the point y(x) 6 <9Ω nearest to x (cf. [G-T, 14.6]). Since u = 0 > w on
9Ω0\9Ω and u > tϋ on Ωo Π 3£?ε by (9) we therefore conclude that u > w
throughout Ω 0 Π B ε , in particular

(10) u > ~4ε arccose~κε on 9Ω0 Π 9Ω,

which contradicts the choice of boundary values fε above. D

R e m a r k . Since we have not assumed any differentiability of u up to
the boundary we must, strictly speaking, apply the comparison principle in
{x e Ωo Π Bε\d(x) > δ} to u and the function ωδ(x) = \ arccos e~

K<<d<<x)-5) -
- arccos e~κ{ε~δ) - 4ε and then let δ -* 0.
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3. Instability.

By a slight modification of the above arguments we may prove the follow-
ing instability theorem for exterior domains Ω with connected and strictly
concave boundary.

Theorem 3.1. Let ί l c l 2 be a domain of class C2 such that M2\Ω is
strictly convex and let u0 € C°(Ω) Π C2(Ω) be a solution of the minimal
surface equation in Ω with boundary values / 0 which are at least of class
C1 / / 2(dΩ). Then there exist boundary data f such that f — f0 6 C2(dΩ)j
/ = /o outside a set of arbitrary small diameter, and the Ca—norm of f — f0

is arbitrary small for 0 < a < 1/2, but the Dirichlet problem with data f has
no solution in Ω.

Proof. We may choose our coordinate system in such a way that pε =
(ε/2,0) G c?Ω, the boundary values / 0 attain their minimal value in p ε ,
fo(Pε) — 0, and the tangent vector of dΩ at pε points in x2-direction. By
assumption there is a constant L such that

(11) 0 < /o < Lε1'2 on dΩ Π Bε.

We now construct boundary values / = / 0 + fε in the following way, similar
to Section 2; we divide dΩ Π Bε into four parts 5 Ί , . . . ,S± of equal length
and choose the function fe together with suitable points g* E Si such that

/ e = 0 o n dΩ\Bε

o o ijηn

fε < 0 in Si U S3, inf fε = fε(qi) = ~5ε arccos e~κε(i = 1,3)
Si K

f€ > 0 in 52 U 54 , sup / e = / e (^ ) = 5ε + - arccos e" κ ε ( i = 2,4)
Si K

where 2κ is the minimal length of the curvature vector of dΩ and the constant
m will be chosen large enough (depending only on L in (11) and κ;, for
example m > 1 + L\/2κ) so that

(12) f{qi) < -5ε - - arccos e""**, * = 1,3.

The inequality

(13) /(ft) > 5ε + - arccos e~*ε,i = 2,4

is trivially satisfied. Assuming the existence of a solution of (1), (2) with the
above / we define the sets Ω̂  as the connected components of {x G Ω|w(α;) Φ
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0} containing the points gi? i = 1,... , 4. The rest of the proof is the same as
before in Section 2: after eventually if necessary replacing u by — u we end
up with inequality (10) in one of the components Ωj which contradicts (12)
or (13). D
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