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SOME BASIC BILATERAL SUMS AND INTEGRALS

MOURAD E.H. ISMAIL AND MIZAN RAHMAN

By splitting the real line into intervals of unit length a
doubly infinite integral of the form J(^>

ooF{qx)dx, 0 < q < 1,

can clearly be expressed as Jo Σ™--0OϊP(Qx*n)dx, provided F
satisfies the appropriate conditions. This simple idea is used
to prove Ramanujan's integral analogues of his ιφι sum and
give a new proof of Askey and Roy's extent ion of it. Integral
analogues of the well-poised 2^2 sum as well as the very-well-
poised 6̂ 6 sum are also found in a straightforward manner.
An extension to a very-well-poised and balanced 8^8 series is
also given. A direct proof of a recent q-beta integral of Ismail
and Masson is given.

1. Introduction.

The familiar form of the classical beta integral of Euler is

Jo Γ(α + 0)

Re (α, 6) > 0. A less familiar form, obtained by a simple change of variable,

is

ta-i d t

(1.2) B(a,b)=Γτf-
Jo U "

U+6 '

There have been many extensions of both these forms, see, for example,

Askey [2-5], Askey and Roy [6], Gasper [9, 10], Rahman and Suslov [18],

and the references therein. A "curious" extension of (1.2) that was given by

Ramanujan [21] in 1915 is

Jo H;9)
- α ) Γ t(α)Γ t(6)

Γ g (α)Γ,( l-α) Γq{a + b) '

where Re (α, 6) > 0, 0 < q < 1, the g-gamma function Tq(x) is defined by

O f ; 9)oo
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and the infinite products by

(1-5) (a;q)00 = f[(l-aqn).
n=0

The fact that the limit of the formula (1.3) as q -> 1~ is (1.2) follows from
the properties

(1.6) l im Γq(x) = Γ(x), l im ( * f f ^

see [11].

Askey and Roy [6] introduced a third parameter into the formulas and

gave the following extension of (1.3)

,. = r(c)r(i-c)
(1.7)

/•OO / -fs*b'\-C fiCL — C + l /j-.

Jo l (-t^q/t qU Γq(c) Γ 9(l - c) _

which holds for Re (α, 6, c) > 0. In the limit c -> 0+ this becomes

( 1 g ) / °° {-tq\-<la+ιlt\q)oo <h = log?"1 Γq(α)Γg(6)

which restores the symmetry in α and 6 that was there in both (1.1) and
(1.2), but not in (1.3), see Gasper [9-10]. Following [11] we have used the
contracted notation

k

(1.9) ( α i , α 2 , . . . , α f c ;

Hardy [12] gave a proof of (1.3) that Ramanujan did not, and discussed
Ramanujan's general method of evaluating such integrals in [13]. Askey [2]
gave another proof of (1.3). Askey's method is rather close to the Pearson-
type first order difference equation technique that has been used extensively
by the Russian school of Nikiforov, Suslov and Uvarov, see for example,
[17, 23], as well as of Atakishiyev and Suslov [7]. It was pointed out in [18]
and [20] that the origin of both Barnes and Ramanujan-type integrals can
be traced to a Pearson equation on linear, g-linear, quadratic or g-quadratic
lattices with appropriately chosen coefficient functions so that the boundary
conditions can be satisfied in the two cases. In [20] Rahman and Suslov
found what they consider a better way of dealing with the Ramanujan-type
integrals, and evaluated extensions of some of Ramanujan-type formulas
as well as extensions of the summation formulas of Gauss, and, Pfaff and
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Saalschϋtz. The idea is very simple. Suppose that f(x) is continuous on
[α, oo), has no singularities on the real line, and its integral on [α, oo) exists.
Suppose also that Y^=z_oo f(x + n) converges uniformly for x G [α, a + 1].
Then

/•oo z o+1 °°

(1.10) / f(x)dx= Σ .
J a J a n=0

For integrals on the whole real line the corresponding formula is

1 oo

(1.11) Γ f(x)dx= ί "

provided, of course, that the bilateral sum Σ~<x> f(x+n) converges uniformly
for x G [0,1]. What this method does is to establish a direct correspondence
between the integrals on the left side of (1.10) and (1.11), and the infinite
series on the right. So for the method to be useful we have to be able to
handle the infinite sums so that we can apply this knowledge to compute the
infinite integrals. As is well-known in classical analysis, it is often the case
that an infinite integral over a function is easier to compute than an infinite
sum. So the method described above has a very limited applicability. It is
applicable when the series inside the integrals on the right sides of (1.10)
and (1.11) are summable (meaning that the sum can be evaluated in closed
forms) or at least transformable in a way that the ensuing formulas are
simpler. Such is the case for some hypergeometric and basic hypergeometric
series, bilateral or otherwise.

A basic bilateral series in base q (assumed throughout this paper to satisfy
0 < q < 1), with r numerator and r denominator parameters is defined by

(1.12) rΦr . ,α r

=rΨr(a>u- ,o r;6i, A ςr,*) = 2L, ΎΪΠ 1 \~z '
n ~ o o (&l,t>2, . A ; Q)n

where r
. . . ,α r ; q)n = Π( α i5 ?)n,

(Λ ΛX\ in n\ J 1 ' ifn = 0,

(1.13) (Λi^)» = { π E 1 ( l

The series (1.12) is absolutely convergent in the annulus

(1.14)
. .α r

< \z\ < 1.
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If any one of the denominator parameters equals g, say, br = q, then the first
non-zero term in the series corresponds to n = 0, and the series becomes a
basic generalized hypergeometric series:

(1.15) rΦr-l q,z\=

J
••• ,α r ;6i, ,6r_x;9,z)

( α i , α 2 ) . . . , α r ; q)n n

which is absolutely convergent inside the unit circle \z\ = 1, for further
details see [11].

One of the most important evaluations of a basic bilateral hypergeometric
series is the one due to Ramanujan [13]

(1.16)
6' • z =

(g, *\ g)c

(6, q/a, z, bjaz\ q)c

Many different proofs of this formula have appeared in the literature, but the
ones that are most often quoted and instructive are in [1] and [14]. However,
one runs into trouble with a bilateral series immediately after the ιφι level.
Instead of a nice compact formula like the g-Gauss formula

(1.17) * | C/α6U
c

one has a 2-term formula for the corresponding 2Φ2 sum:

(1.18) Γb

d <?, cd/abq]

a (q/c,q/d,a/a,a/bi q)^

g {q/a,q/b,a/ca/d; qU [

(α, g/α, cd/αςf, αg2 /cd, q, c/a, c/b, d/a, d/b\

aq/a, bq/a
cq/a,

(c/a, aq/c, d/a, aq/d, c, d, q/a, qjb, cd/abq; q)^'

see [11], where a is an arbitary parameter such that no zeros appear in the
denominators. It is clear that this formula reduces to (1.17) when d — q.
This is not a very well-known formula but a special case of it was mentioned
in [3]. As the number of parameters of the summation formulas increases,
one needs to impose more restrictions. The bilateral series that has the most
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desirable structure is the very well-poised one, namely

, v , Γ qa^2,-qa1^2, au

(1.19) r+2</v+2 [ai/2^ai/

y ( l - α g 2 n ) ( α i , α 2 , . . . ,α r; g)w

^ ^ (I - a)(qa/auqa/a2,... ,qa/ar',q)n

The most general summation formula for a basic bilateral series is Bailey's
[8] 6ψ6 sum:

(1.20) 6^6 i/2 1/2 // / / . , ', q,qa2 bcde\

= (g, g/α, og, αg/6c, αg/6rf? ας/fee, αg/crf, αg/ce, αg/de; q)^

(q/b, q/c, q/d, q/e, aq/b, aq/c, aq/d, aq/e, qa2 /bcde ; ? ) « > '

provided that \qa2/bcde\ < 1, see [11]. Clearly, a function f(x) for which
Σ^L-oo / ( ^ + n ) corresponds to the sum on the left side of (1.20) has to be
of interest as far as the applicability of (1.11) is concerned. Accordingly, we
first rewrite this formula in the form:

(1.21) f ) (aqn+1/b,aqn+1/c,aq^ι/d,aqn+1/e; q)^

(qa2/bcde; q)^

This suggests considering an integral of the form

(1.22)
/•OO

J := / (aqx+1/b, aqx+ι/c, aq*+ι/d, aq*+1/e, g'-'/b, qι-*/c, qι-χ/d; q^
J — OO

x tf-'/e; q)Oΰ{l-aq'lx)a2xq^-χω{x)dx

where ω(x) is a bounded continuous unit-periodic function on R, i.e, ω(x±
l)=ω(x).

We shall evaluate this integral, (1.22), in §3 by using (1.11) and (1.21),
and consider an extension of it in §5. In §2, however, we shall deal with
an integral analogue of (1.16) essentially showing that Ramanujan's formula
(1.3) is precisely that analogue. For an integral analogue of (1.18) we refer
the reader to [20]. As a straightforward application of (1.8) we will also show
in §2 how to obtain a q-analogue of an integral of Ramanujan involving a
product of two Bessel functions where the variable is the order and not the
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argument. In §4 we shall consider a case where ω(x) is a unit anti-periodic
function in (1.22), i.e ω(x ± 1) = — ω(x), thereby obtaining a g-analogue of
yet another formula due to Ramanujan.

Ismail and Masson [16] proved that if the g^-Hermite polynomials are
orthogonal with respect to a probability measure dφ then

Y[ (-tjtk/q q)^ /{tit2hUq 3;<?)oo,
ςj<k<4

holds, provided that the integral exists. The corresponding moment problem
has infinitely many solutions so one expects (1.23) to lead to an evaluation
of an infinite family of integrals. Ismail and Masson [16] pointed out that
Bailey's 6φ6 sum is (1.23) with dφ a general extremal measure of the q"1-
Hermite moment problem. Ismail and Masson also observed that Askey's
<?-beta integral (3.4) corresponds to an absolutely continuous dφ and in this
sense (3.4) is a continuous analogue of the 6φ6 sum of (1.20). Ismail and
Masson [16] proved that the g~1-Hermite polynomials are orthogonal with
respect to the absolutely continuous measure dμ(x;η), where

a OΛ\ arί\'LyΊ) e bill ί/2 iΛJDll ί/i ̂ (/, (/e , qc jv/yoolW^ ?*//oo|

x = sinhξ, η = ηx + iη2-

This and (1.23) led Ismail and Masson to the q-beta integral

=

sin 772 cosh ηx (q, Ut2t3t4q-3, -qe2^, -qe~2^ ^ | (qe2*"* q)^ | 2 '

In Section 3 we shall give a direct proof of (1.25) and show that this q-beta
integral is another continuous analogue og the βψβ sum.

2. The Askey-Roy Integral and an Application.

In this section we give new evaluations of (1.7) and (1.8) and also give some
applications of them. Let us first rewrite (1.16) in the form

(2.1) f
n= —

_ (q,b/a,az,q/az;
,,,,

( . r , \o/d\

{z,b/az; q)^
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This suggests that we consider the integral

(2.2) I := Γilxfrf-'/a; q)ooqφ-1)/2(az)x e*ix ω(x)dx,
J — OO

where ω(x ± 1) = ω{x). For 0 < q < 1, \b/a\ < \z\ < 1 and continuous
bounded functions ω(x), it is clear that the integral exists.
Proof of (1.8). By (1.11) and (1.16) we have

(2.3)/ = j\bq\ q1-*/^ q)^ q<x'^2{az)x e*** ω(x) q, z] dx

,b/az;

It is easy to see that the integrand in the last line above is unit periodic, so
it can be absorbed in ω. Set

which when substituted in (2.2) and (2.3), gives the formula

( 2 5 ) Γ ( ^ - / α ; g ) τ dχ = M/α; ) ^
v ' Loo (aztfrf—laz; q)^ ' (z,b/az;(Zjb/az; q)oo Jo

Assuming that p(x) is independent of α, b and z, let us now replace α, 6, z by
- q r α , -<?6, -<f in (2.5) to get

(2.6) /
-oo v H •> H ? y ; o o

)oo(q,qa+b',q)c ί1p(χ)dx = (i-g)-ίΓl{(;)Γ:(V fP{x)dx.
Jo lq{a + b) Jo{qa,qbm, q)oo JU ± q\

Setting p(x) = 1 and changing the variable by qx — ί, we establish (1.8) and
the proof is complete.

The proof of (1.7) is based on a different choice of ω. Instead of (2.4),
choose

q-χ(χ-i)/2pίχ\

Proof of (1.7). The choice (2.7) gives

j_oo (-g x,-g1-χ; g)oo

(z,b/az; qU Jo (~qx, -qx~x\
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where we may assume that p(x) is independent of α, b and z. Let us now
replace α, 6, z by — g~α, — g6, — gα+c in (2.5), respectively. Then (2.8) can be
written as

^ ( V ^ - ά ) p{x)dx

(g,ςfo+6; q)^ f1 (-gc+ίC,-V ° x\ q)c

—qxi—qi q)oo

with Re (α + c) > 0 and Re (b — c) > 0. Setting p(x) = 1 and denoting the
integral on the right side by g(c) we may rewrite (2.9) in the form

(2 io) g(c) = {9T:£JJ)C

Tq(a + c)Tq(b — c) Jo (—t,—q/t\ q)^

assuming, without loss of generality, that 0 < Re c < 1.
Since the left hand side is independent of α, 6, we can set whatever values

of α, b we wish, subject to the restriction mentioned above, to compute g(c).
The simplest choice of α, b is a = 0, b = 1. Then

(2 11) 0 M - 1-1- Γ«W Γ t-1 ("*g ;

( 2 U ) 5 ( C ) ~ log 9-i Γ f (c)Γt(l - c) Jo * (-t;

= 1-g Γ(c)Γ(l-c)

since 0̂0 ί_+/r n) r°° tc~ι
r°° tc~ι

= Tϊt Λ = Γ(c)Γ(l-c).
0̂ 1 + 1

So, by (2.9) and (2.11) we have

qcΛ " " \
{-qx,-qχ-χ\ q)oo

_ Γ(c)Γ(l - c)Yq{a + c)Tq(b - c)

Γq(c)Γq(l-c)Γq(a + b) *

Substituting qx = ton the left and changing α, b to a—c and &+c, respectively,
we get (1.7).

It is also clear that setting a = 0 in (2.12) gives Ramanujan's formula
(1.3).

We now explore a special choice for p(x). We set b = qa, a = q1 &, z =
-qβ~1/2, p(x) = 1 in (2.5), getting

(2.13)
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Re (a+β— 1) > 0, which is a g-analogue of yet another formula of Ramanujan
[22]:

(2-14)
dx

(α + x) Γ(β -x) Γ(a + β - l ) '

Using (2.13) one can show in a straightforward manner that

2;q)c
(2-15) dx

2φl

|α/2| < 1, where

(2.16)

oo

= Σ ; 9)0

are the two g-Bessel functions of Jackson, see [15]. Formula (2.15) is a

ςr-analogue of the following formula

due to Ramanujan in [21].

3. An integral Analogue of Bailey's 6ip6 Sum.

An application of (1.11) to (1.22) gives

(3.1)

J= f (1 - aq2x)(aqx+1/b,aqx+1/c,aqx+1/d,aqx+1/e; q^
Jo

• (q1-'/b,qi-'/cqi-x/d,g1-'/e; q ^ q ^ ω i x )

• 6 ^

ιaιl2,-qx+1a}l2, bqx, cqx, dqx, eq qa*
qxa1/2,-qxa1/2,aqx+1/b,aqx+1/c,agx+ι/d,agx+1/e ' 9 ) bcde

(ag/bc, ag/bd, ag/be, ag/cd, ag/ce, ag/de; g)^

dx

^ 0

{qa2/bcde;
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after we apply (1.20). Replacing a by a2 and q/b, q/c, q/d, q/e by a/a, 6/α,
c/α, d/a, respectively, and taking

we establish the relationship

(3.3)
(otaqx,aq x/ <y.,otbqx ,bq x/θί,θίcqx,cq x/ θL,θίdqx ,dq x/ot\ q)c

(g, ab/q, ae/q, ad/q, bc/q, bd/q, cd/q; q)Z
1
 , * ,

/ Py
χ
)
άx
->(abedIV; q)oo Λ

where \abcd/q3\ < 1. In order to avoid singularities we also need to assume
that argα2 φ 2kπ, k = 0, ±1, ±2, When p(s) = 1 and a = i we obtain
Askey's formula [4]:

h(i sinhn; a,b,c,d)
(3.4) /

J—c
du

h(i sinhw; q1/2, — q1/2, q, —q)
^-i v (ab/q, ac/q, ad/q, bc/q, bd/q, cd/q, q; q)^

(abed/q3', q)^

where
oo

(3.5) h(x; o) = J I (1 - 2axqn + a2q2n),
n=o ^ τ

h(x; a\, α 2 , . . . , ar) = M h(x', α^).
A ; = l

Askey's formula (3.4) was obtained from (3.3) by taking a. — i and spe-
cializing the unit periodic function p(x) to be equal to 1. But this is not the
only case that we can evalute exactly. We will show now that the integral
Jo P(X) dx can be evaluated even in the complicated case when a = i and

(3.6)

p(x) =

where Im /, Im g and Im (f/g) are not 0(mod 2π) and Im (fg) φ π(mod 2π).
This will lead in a very natural way to the Ismail-Masson q-beta integral
(1.25). It can be easily verified that p(x ± 1) = p(x) Use of (3.3) then gives

(abed/q3; q)^
(3.7) η(f,g) =

(q,ab/q,ac/q,ad/q,bc/q,bd/q,cd/q; q)^

(iaqx, —iaq~x,ibqx, —ibq~x,icqx, —icq~x,idqx, —idq~x\

-oo (fq-χ,qx+1/f,-fqx,-q1-χ/f,gq-χ,qx+1/g,-gqx,-q1-χ/g; q)oo

•{q-χ+qx)dx,
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where

(3.8) η(f,g) =

Jo

(-q2x+1, -q'-^ qU (q~x + qx) dx

Observe that η(f, g) is independent of α, 6, c, d, so the expression on the right
hand side of (3.7) must have the same property. For the purpose of (3.7) we
then set

(3.9) ab = q2 = cd, a = —iq/f , c — iq

to get

(3.10) η(f,g) =
(q, q, g/f, fq2/g, -fg, -q2/fg;

r f(qx - q~x) - /2][i - q/g(qx - q~x) - q2/g2}'

Substituting q~x — qx = u, the integral on the right side of (3.10) becomes

(3.Π, ' ' "_oo (1 - P - fu)(l - ρ

2 /0 2 + qu/g)
1 2 τ r i

/ logq-1 (1 -

Formula (3.11) can be proved by either using a partial fraction decomposition
or by a simple contour integration. Thus

(3.12) η(f,g) =
/ log q-χ (q, q, g/f, qf/g, -fg, -q/fg; q)^'

Combining (3.3), (3.7), (3.8) and (3.12) we find that

(3.13)
(iaqx,-iaq x,ibqx,-ibq x,icqx,-icq x,idqx,-idq x;q)0O{q~

(fq-*,q*+i/f, -fq*, -q1—/f,gg-',q'+1/^ -9qx,-Q1~x/9; Q)
2πi (ab/q,qc/q,ad/q,bc/q,bd/q,cd/q; q)

OO

oo

/ log q~ι (<?, g/f, qf/g, -fg, -q/fg, abcd/q* q)^'

This is the same as (1.25) which was established in [16] by an entirely dif-
ferent method.

We would like to mention that formula (3.3) is valid even when a is real,
provided the integral on the left is interpreted as a principal-value integral.
For a detailed discussion of this point, see [18].
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We should like to point out that if we denote

,a/at,<*bt,b/at,act,c/at,otdt,d/at; q)c

then (1.20) and (3.3) state that

(3.15) Γf{t)dt = Γ (λ°Λ

gq ) fit)dqt
Jo Jo \ 1 — q J

_ iq,ab/q,ac/q,ad/q,bc/q,bd/q,cd/q; q)^

iabcd/q3', q)^

where

(3.16) Γg(t)dqt = (l-q) £ g(q»)q»

is a g-integral defined by Jackson, see [11]. This is an example where an
absolutely continuous measure and a purely discrete measure on the real line
have the same total weight, indicating an indeterminate moment problem.
Ismail and Masson [16] have recently found two systems of rational func-
tions which are biorthogonal with respect to the weight function given in the
integral (1.23). In earlier unpublished work, Rahman proved the biorthogo-
nality of the same rational functions with respect to the weight function in
the Askey integral (3.4). Further properties of these rational functions, their
Rodrigues formulas, the ^-difference equations etc. will be discussed in a
subsequent paper. For a different system of biorthogonal rational functions
on [-1,1], see [19].

4. Case of an anti-unit-periodic function.

We shall now derive a q-analogue of Ramanujan's formula [22]:

( 4 1 ) /-co Γ(c* + x)Γ(β - a:)Γ(7 + x)T(δ - x)

Γ(α + /?/2)Γ(7 + ί/2)Γ(α + δ - 1)'

where p(x ± 1) = -p(x), a + δ = β + 7 and Re (a + β + 7 + δ) > 2. Let
us first write down the 2̂ 2 summation formula [11, (5.3.4)] in the following
form:

(4.2) £
n = — 00

= }aq/bΐ q)T {q\aq,qlaWlb\aqηc* 9

2 ) O O , \aq/bc\
{-aq/bc; 9)00



SUMS AND INTEGRALS 509

Let ω(x) be a bounded continuous function on R such that ω(x±l) = — ω(x).
Then it can be shown that

(4.3) Γ (aq*+1/b, α<f+1/c, qι~*/b, q^/c; 9 ) ^
J — OO

dx

76,

ί1 (aq2*+\ q'-^/a; q2Ua2q*2 ω(x) dx.
./o

Replacing α, 6, c by g0*"̂ , ς'1"^, 91"*5, respectively, and assuming the a + δ =
β + 7, this can be written as

(4.4) / (qa+x ,qβ~x,qΊ+x,qδ~x\ q)ooq{a~β)x+x ω(x)dx
J-oo

\ q)

In terms of the g-gamma function this can be written in the form

f qχ+χ2ω{x) dx

oo Γρ(α + x)Γq(β - x)Γq(Ί + x)Γq(δ - x)

(—g; ) r ^ ( | )
(l+g)α+i-2 ^ (

7o Γ,2(^f±

where

( 4 ' 6 )

α + ί = β + 7 and Re (a + β + 7 + δ) > 2. It is easy to see that in the limit
q —» 1~ formula (4.5) approaches (4.1).
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5. An integral analogue of the 8^8 sum.

It is clear from (1.11) that we can associate a general rψr series with a doubly
infinite integral of the type considered in §3. However, there are no known
summation formulas for a very-well-poised rψr for r > 6, only transformation
formulas. One could use these transformation formulas, see [11, chapter 5],
to express such integrals in terms of a string of basic hypergeometric series,
but the exercise does not seem to have a purpose, except for the case r = 8.
The results that we shall obtain in this section will, hopefully, convince the
reader that the case of 8^8 series has some interesting features.

Let us consider the integral

/•OO

(5.1) K:= (1 - aq2x)(aqx+1/b, aqx+1/c, aqx+1/d, aq*+ι/e, aqx+1/f; qU
J — OO

(q1"/b1q
1"/ciq

ι"/diq
1-*/e,q1"/fi qU ,,»_, 2x. ^ ^ q a ω ^ j dx ,

where ω(x) has the same properties as mentioned in §3. Notice that we
have taken a pair of infinite products in the denominator also, which makes
the structure of K slightly different from that of the integral J defined in
(1.22) and (3.1). By exploiting the unit-periodic property of ω(x) we could
avoid this difference but we believe the form of the integrand in (5.1) is
more instructive. It is obvious that when g equals any one of the parameters
6, c, d, e, / in the numerator then K will reduce to J. We will assume that

bcdef

which ensures the convergence of the integral. An application of (1.11) then
gives

(5.3) K= [
o

(qι-'/b, ql-*jc, qi-'/d, q^/e, q

•8
cq*, dq\ eq*, fqx,aqx+1/g

i, -qxaK aqx+1/b, aqx+1/c, aqx+1/d, aqx+1/e, , gqx
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Using the transformation formula [11, (5.6.2)] we get, for the sψg series above

(5.4) 8 ^ 8 [ ] =

(g> °>q/bf, aq/cf, αq/df, αq/ef, qf/b, qf/c, qf/d, qf/e; q)^
f2/α\ q)oo(αqx+1/b,αqx+1/c,αqx+1/d,αq*+1/e; q)^

(αq^/f, q^'/b, q^/c, q^/d, q^/e, q^/f; q)^

-8W7(f2/α; bf/α,cf/α,df/α,ef/α,gf/α; q,qgα2/bcdf)

(q, αq2/bg, αq2/cg, αq2/dg, αq2/eg, g/b, g/c, g/d, g/e; q)^
q*/g2; q)oo(αq*+1/b,αq*+1/c,αq*+1/d,αqx+1/e; q)^

(9qx,9q-χ/α, q^/b, q^/c, qι~x/d, q^/e; q)^

sW7(αq2/g2; bq/g,cq/g,dq/g,eq/g,fq/g; q,qgα2/bcdf),

where

(5.5) 8 W

Choosing

(5.6)

b,c,d,e,f; q,z)
I 1 7 7 /•

qa2 ,—qa2, o, c, a, e, j

s, —a^,aq/b,aq/c,aq/d,aq/e,aq/f

ω(s) =
r,s-2«'!

Λ-2

p(s±ί) =p(s),

in (5.3) we obtain the following identity

(aqx+1/b, aqx+ι/c, aq^/d, aqx+λ/e, aqx+λ/f; q)c(5.7) /
J-c

-'/b, qι-*/c, qι~*/d, q^-'/e, qι~x/f; q)cp(x) dx
{aqx^/g,qχ-χ/g; q)^

= (g> Q ^/ f t / 7 ^ / c / ?

 Q<?/rf/> Q g / e / ? ^// &

7 g / / c

7 g / / r f

7 g//e; g)oo

{aq/fg,qflg,qP/a; q)^

*W7{f2/a; bf/a,cf/a,df/a,ef/a,gf/a; q,qga2/bcdf) / p(x)cte

, (q,g/b,g/c,g/d,g/e,aq2/bg,aq2/cg,aq2/dg,aq2/eg; q)^
(fg/αq,αq3/g2,qf/g; q)^

sW7{αq2/g2; bq/g,cq/g,dq/g,eq/g, fq/g; q,qgα2 /bcdf)

s: •p(x)dx,
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provided argα and argg are neither 0 nor multiples of 2τr.
Replacing a by a2 and q/b, q/c, q/d, q/e, q/f, q/g by a/a, b/a, c/a,d/a,e/a

and f/a, respectively, we obtain

(5.8) Γ
(aaqx,aq x/a,baqx,bq x/a,caqx,cq x/a,daqx,dq x/a; q)c

(eaq*,eq-χ/a;qUp{χ)dχ

(faqx,fq~x/a; q)

(q, aq/e, bq/e, cq/e, dq/e, ae/q, be/q, ce/q, dejq\ q)
CO

Λ " Λ co

(ef/q,qf/e,q3/e2; q)™

•8W7(q2/e2; q2/ae, q2/be, q2/ce, q2/de, qf/e; q, abcde/fq3) I p(x) dx

(q, af, bf, cf, df, q/f, b/f, c/f, d/f; q)ooI

(q/ef,qf/e,qf2; q)™
•sW7(f2; qf/a,qf/b,qf/c,qf/d,qf/e; q,abcde/fq3)

f

' Jo

1 (aqx+1/e,eq-χ/a,aeqx+1,q-χ/ae;
o (aq*+yf, fq-χ/a, afq*+\q-χ/af; { ' '

where the parameters a and / are such that no zeros occur in any denomi-
nator. Recall the transformation formula [11, (2.11.1)],

(5.9) 8W7(q2/e2; qf/e, q2/ae, q2/be, q2/ce, q2/de; q,abcde/fq3)

= (<?3/e2, cd/q,ac/q, ad/q, bq/d, bq/a, ef/q, fq3/ade; q)^

(aq/e, cq/e, dq/e, be/q, acde/q3, bq3/ade, fq/d, fq/a; q)^

'8W7{bq2/ade; b/f,bc/q,q2/ad,q2/de,q2/ae; qjq/c)

(«?3/e2, ef/q,bf,cf,df,α/,q2/ae,q2/ce,q2/de, b/f,acd/fq2; q)^

(aq/e, bq/e, cq/e, dq/e, be/q, fq/a, fq/c, fq/d, acde/q3, q4/acde; q)^

Note that the last sWγ series on the right is the same as that on the right
side of (5.8). This enables us to rewrite (5.8) in the form

(5.10) Γ
J - c

(aaqx,aq x/a,baqx,bq x/a,caqx,cq x/a,
(a2q2x+ι,qι-2x/a2,
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daqx,dq-χ/a,eaqx,eq-χ/a',q)oo
: r Ό(X)aX

fq-χla;q) Fy }

(q, ac/q, ad/q, cd/q, ae/q, ce/q, de/q, bq/a, bq/d, bq/e, fq3 /ade; q)^

{qf/a,qf/d,qf/e,bq3/ade,acde/q3; q)^

'SW7(bq2/ade; b/f,bc/q,q2/ad,q2/de,q2/ae; q,fq/c) / p(x)dx
Jo

+ sW7(f2; qf/a,qf/b,qf/c,qf/d,qf/e; q,abcde/fq3)

(q, a/f, b/f, c/f, d/f, af, bf, cf, df; q)^

(q, af, bf, cf, df, b/f, ae/q, ce/q, de/q, q2/ae, q2/ce, q2/de;

, q/ef, qf2, fq/a, fq/c, fq/d; q)

{acd/fq2,fq3/acd; q)

OO

OO

(acde/q3,q4/acde;

where
1 (aqx+1/e,eq-χ/a,aeqx+1,q-χ/ae;

J p{x)dx\ ,

The special case / = abcde/q4 is of particular interest because it gives an
overall balance of the parameters inside the integral on the left side while
reducing the first SW7 series on the right to a very-well-poised 6</>5, which is
summable by use of [11, (2.7.1)]. This leads to the formula

(5.12) f
J — c

(aaqx, aq~x/a, baqx, bq~x/a, caqx, cq~xja\

X/a''q)o°p(x)dx
(aabcdeqx~4,abcdeq-χ-A/a; q)

, ab/q, ac/q, aά/q, Qe/g, bc/q, bd/q, be/q, cd/q, ce/q, de/q; q)^ f1 .
(qf/a, qf/b, qf/c, qf/d, qf/e; qU Jo P[ '

_

| (q,af,bf,cf,df,a/f,b/f,c/f,d/f;
(qf2,q/ef,qf/e; q)^

(ae/q, be/q, ce/q, de/q, g2/ae, q2/be, q2/ce, g2/de;

(a/f,b/f,c/f,d/f,qf/a,qf/c,qf/c,qf/d; q)^

•J p(x)dx} 8W7(f2; qf/a,qf/b,qf/c,qf/d,qf/e; q,q),

with

(5.13) / = abcde/q4 .

This formula is essentially the same as the one found in [18].
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