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THE INVARIANT CONNECTION OF A f-PINCHED
ANOSOV DIFFEOMORPHISM AND RIGIDITY

RENATO FERES

Let / be a C°° Anosov diffeomorphism of a compact man-
ifold M, preserving a smooth measure. If / satisfies the | -
pinching assumption defined below, it must preserve a con-
tinuous affine connection for which the leaves of the Anosov
foliations are totally geodesic, geodesically complete, and flat
(its tangential curvature is defined along individual leaves). If
this connection, which is the unique /-invariant affine connec-
tion on M, is Cr-differentiable, r > 2, then / is conjugate via a
Cr+2-affine diffeomorphism to a hyperbolic automorphism of a
geodesically complete flat manifold. If / preserves a smooth
symplectic form, has C3 Anosov foliations, and satisfies the
2 : 1-nonresonance condition (an assumption that is weaker
than pinching), then / is C°° conjugate to a hyperbolic au-
tomorphism of a complete flat manifold. (In the symplectic
case, the invariant connection is the one previously defined by
Kanai in the context of geodesic flows.) If the foliations are
C2 and the holonomy pseudo-groups satisfy a certain growth
conditipn, the same conclusion holds.

1. Introduction

Let M be a compact C°° manifold and / a C°° diffeomorphism of M. The
diffeomorphism is Anosov if TM decomposes continuously as a direct sum
TM = E+ 0 E~ of invariant subbundles E+ and E~, so that the following
estimate applies: For some (in fact, any) Riemannian metric || ||, there exist
positive constants (7 > 1, e < a < A, such that for all x G M, for all positive
integers n, and for all υ E E±(x),

(1) ^ll«||e-n>1<||T/^u||<C||«||e-»-.

The subbundles E± are the tangent bundles of C° foliations E±, the Anosov
foliations of /, whose leaves are smooth (if / is smooth.)

We say that / satisfies the ^-pinching condition if A < 2a.
In this paper we assume that / leaves invariant a smooth measure λ, which

implies, in particular, that it is ergodic.
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140 RENATO FERES

The following theorem is proved in [BL]:

Theorem 1. Let M be a C°° compact manifold equipped with a C°° affine
connection. Let f be a topologically transitive Anosov diffeomorphism pre-
serving the connection and such that the stable and unstable distributions
E+ and E~ are C°°. Then f is C°° conjugate to a hyperbolic automorphism
of an infranilmanifold.

If / satisfies the ^-pinching condition (more generally, if it satisfies the

non-resonance condition defined below), the conclusion of the above theorem

holds with the infranilmanifold replaced with a flat one, as can be easily

verified.
The main result of the present paper is the following observation:

Theorem 2. Let M be a C°° compact manifold and f a C°° Anosov
diffeomorphism that satisfies the ^-pinching assumption. Then f preserves
a continuous affine connection. This connection is unique among the f-
invariant affine connections, it is torsion-free and, with respect to it, the
leaves of the stable and unstable Anosov foliations are totally geodesic, com-
plete and flat. (The restriction of this connection to the leaves of the stable
and unstable foliations is differentiate, so it makes sense to define its cur-
vature tensor there.) If this connection is Cτ-differentiate, r > 2, then f is
Cr+2 -conjugate to a hyperbolic automorphism of a complete flat manifold.

In [Kanai], M. Kanai defined an affine connection on the unit tangent
bundle of a negatively curved Riemannian manifold, invariant under the
geodesic flow. Essentially the same construction produces an affine connec-
tion that is invariant under symplectic Anosov diίfeomorphisms (or Anosov
diffeomorphisms preserving any other nondegenerate bilinear form) with dif-
ferentiable stable and unstable foliations: one uses the Bott connection to
define the covariant derivative transversely to the Anosov foliations and the
duality obtained from the symplectic form to define a covariant derivative
tangentially (here one uses that the Anosov foliations must be Lagrangian
foliations). In this symplectic case, C Γ + 1 -regularity of the Anosov foliations
is equivalent to the Cr regularity of the invariant connection. Before stating
the next theorem, we define a nonresonance condition for / that is implied
by ^-pinching. Many of the results discussed here require only this weaker
assumption.

Definition 3. Let / be a diffeomorphism of a compact manifold M. Define

for v G TMx\{0} the numbers

p
n-»±oo Π
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We say that / satifies the 2 : 1-nonresonance condition if for all x £ M there
do not exist vectors ^1,̂ 2,̂ 3 G TMx\{0} such that

Theorem 4. Let M be a C°° compact manifold and f a C°° Anosoυ
diffeomorphism preserving a C°° symplectic form, whose Anosov foliations
are C3. Assume moreover that f satifies the 2 : 1-nonresonance condition.
Then f is C°° conjugate to a hyperbolic automorphism of a complete flat
manifold.

It is interesting to note that in [Llave] de la Llave constructed, for every r,
examples of C°° Anosov diίfeomorphisms on the torus that are Cr conjugate,
but not C r + 1 conjugate to a linear automorphism of the torus. We note,
however, that under the assumption that / be symplectic, C1 conjugacy
implies C°° conjugacy.1

For systems satisfying the ^-pinching assumption we show that the invari-
ant connection can be defined without recourse to a symplectic structure. In
this case it can be shown (as we do later; in fact, avoiding a 2 : 1-resonance,
rather than ^-pinching, is sufficient for this) that the distributions E+ and
E" are parallel, so assuming Cr regularity of the connection implies C r + 1 -
regularity of those distributions. For symplectic systems the converse can be
easily verified. Such is not always the case, however, for nonsymplectic sys-
tems, due again to de la Llave's examples. In fact, if/ is Ck (but not Cfc+1)
conjugate to a hyperbolic linear automorphism of a torus, by pulling back
the Euclidian connection under the conjugating diffeomorphism we obtain a
Ck~2 invariant connection, which cannot be Ck~x (due to a simple argument
used in the last section of this paper, which shows that the conjugacy is two
units more differentiable than the pulled-back connection). But the Anosov
foliations must be Ck since they are preserved by the conjugacy.

The conjugacy claimed in Theorem 1 was obtained with the help of a
general result due to M. Gromov [Gr] concerning transformation groups of
rigid geometric structures. (An example of such structure is a (differen-
tiable) affine connection.) Gromov's theorem was used there to show that
the pseudo-group of local transformations preserving a C°° connection and
the (C°°) distributions E+ and E~ is a Lie pseudo-group that acts transi-^
tively on an open dense /-invariant set. The proof of Theorem 2 does not
rely on Gromov's theorem and uses instead a more direct argument that

*We thank R. de la Llave for pointing this out.
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requires much less differentiability. We show here that the pseudo-group re-
ferred to above acts transitively on M by proving that the curvature of the
/-invariant connection is parallel and using classical results on affine locally
symmetric connections.

It is conjectured that the conclusion of the previous theorem should still
hold for systems whose Anosov foliations are only C2 (the connection being
Cι). The place where we use more regularity is at showing that the invariant
connection is locally symmetric (there we need to work with the covariant
derivative of the curvature tensor). If by other means one shows that the
connection is flat, the same conclusion will hold with the optimal degree of
smoothness. The next two results illustrate this point.

By allowing the leaves of the Anosov foliations to spread apart only very
slowly, as in the definition below, we obtain the theorem that follows next.

Definition 5. Let T be a C2 foliation of codimension q. Given a differen-
tiable path 7 : [0,1] -> M in a leaf of T and smooth cross-sections Σ o , Σi
of dimension q transversal to T at 7(0) and 7(1), we may consider the cor-
responding element of the holonomy pseudogroup of (germs of) transverse
maps. By making the cross-sections sufficiently small, we may describe this
element as a C 2 diffeomorphism HΊ : Σ o -+ Σ x . Let || • | | ( 1 ) be a C 1 norm
defined on such maps as y £ Σ o —> (THΊ)y and assume that

KJengthif)-' < | |TW 7 | |% < K2length(Ί)
δ

for positive constants Kι,K2,δ that are independent of 7. In this case we

say that the foliation T spreads more slowly than power lδ.

Theorem 6. Assume that f is a C°° Anosov diffeomorphism of a compact

manifold M, whose Anosov foliations are C2 and spread more slowly than

power 1~^Λ % for some e > 0. Then

1. // / is 7;-pinched, the f -invariant connection V is flat and f is C3

conjugate to an automorphism of a complete flat manifold.

2. // / is symplectic, the Kanai connection is flat and f is C°° conjugate

to an automorphism of a complete flat manifold.

It is interesting to note what happens in dimension 2. In this case, it
is well known that if the Anosov foliations of a volume preserving Anosov
diffeomorphism of a compact manifold M are C2 differentiate, they are
automatically C°° and the diffeomorphism is smoothly conjugate to a linear
automorphism of the 2-torus. (For a precise description of the threshold
of regularity where rigidity occurs in this case, see [HK]. We also refer to
that paper for historical and bibliographical information concerning these
questions.) We give below a geometric proof of this fact.
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Theorem 7. Let f be a C°° volume preserving Anosov diffeomorphism of
a compact 2-dimensional manifold whose Anosov foliations are C2. Then
these foliations are C°° and f is smoothly conjugate to a linear hyperbolic
automorphism of the 2-torus.

2. Existence of an invariant affine connection

Our first concern is the question of existence of invariant connections under
the Anosov diffeomorphism. In this section we show the first part of Theorem
2:

Proposition 8. Let M be a C°° compact manifold and f a C°° Anosov
diffeomorphism. If f avoids a 2 : 1-resonance, it must preserve a unique
Borel connection on TM. Suppose now the stronger condition that f satisfies
the \-pinching assumption {in particular, the Anosov distributions E± are
C1, according to [Ha].) Then f preserves a continuous affine connection.
With respect to this connection the Anosov distributions E± are parallel; its
restriction to the leaves of the stable and unstable foliations is differentiate,
so it makes sense to define its (tangential) curvature tensor. The connection
is torsion-free and the leaves of the Anosov foliations are totally geadesic,
complete and flat.

We begin with a few basic comments about invariant connnections.
Let p : F -» M be a Cr vector bundle over M. Let Jx (F) denote the vector

bundle over M consisting of first jets of germs of differentiate sections of
F. The following short sequence of vector bundles is exact ([KS]):

A connection on F can be described as a splitting of this exact sequence:
σ : F -» Ji (F), πoσ = Id/?. Such splitting defines a covariant derivative map
V : ΓX(F) -> Γ°(T*M ® F), where Γ r(F) denotes the space of Cr-sections
of F, as follows: For X e Tι(F), and denoting jxX G Γ^J^F)) the first jet
of X, set: VX = (Id -σ o π)jλX.

We now assume that (/, /) is a Cr automorphism of p : F —> M (so that
p o / = / op), from which we obtain automorphisms of Jλ(F) and T*M <&F
as follows: For jλX(x) e Ji(f%, f jiX(x) = ji(fX o /"^(/(z)) and for
a ® X e T*MX ® Fx, f{a ® X) = fa ® fX, where fa = ao Tf'1\TMHxy

With these definitions, the diagram
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commutes.
An /-invariant Cr-connection V : Γ r + 1(F) -> Yr(T*M ® F) can be de-

scribed as a Cr-splitting σ of the last diagram, for which σof\F = / | JX(F) oσ.
Equivalently, it can be described as an /-equivariant Cr subbundle in Ji(-F),
complementary to i(T*M ® F).

Let p : E —» M be a smooth vector bundle over M and (/, /) a bundle
automorphism, so that f o p = p o f. In the following theorem (adapted
from [Margulis, Mane, Wa]) B denotes the σ-algebra of Borel subsets of
M and M(M,f) the set of all /-invariant probability measures on /?, for a
diffeomorphism / of M.

Theorem 9 (Multiplicative ergodic theorem). Let E -» M be a smooth,
real vector bundle of rank q over a compact manifold M and (/, /) a bundle
automorphism. Then there exist:

1. a set Ae B such that μ(A) = 1 for all μ G M(M, f) and /(A) = A,

2. measurable, f -invariant functions s : A —> {1, , q}, χι : A —> K (1 <
i < s) satisfying χx < < χs, and

3. a measurable, f-invariant decomposition E\\ = Eγ φ θ Es (the
Oseledec decomposition for j) such that for all v G Ei(x)\{0},

exists and the convergence is uniform over the vectors of unit norm in

Edx).
For all x e A and all υ G E(x)\{0}, the limits

χ+(f,υ)d^ lim -log||/»ϋ||, χ~(/» d= lim - log ||/"«||
n > + o o γι n—too γι

also exist. χ + (/ , v) > χ~(/,υ) and we have χ + (/ , v) — χ~(f,v) if and only
ifυe Ei(x)\{0} for some i.

If L is a smooth, f-invariant (vector) subbundle of E with projection π :
E —» F = E/L, let F = Fλ φ © Fs> be the decomposition of F associated
with characteristic exponents χ\ < < χ's, (s' and χ'j being measurable
functions on A). Then, for each j (1 < j < s') there is i(j), 1 < i(j) < s,
such that χ'j — χ^j) and Fj = π(Ei^) on A. Moreover L\\ = φs

i=ι(LΠEi).

Definition 10. We will refer to A = Λ# as the set of regular points of (/, / ) .
The measurable decomposition E = 0 E{ is the Oseledec decomposition of
E and χ; are the Lyapunov exponents.
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Lemma 11. Let E -» M and (/,/) be as above and consider the vector
bundle

F = E* ® ® E\ ® JE ® • - ® E.

TΛen F Λαs α measurable, f-invariant decomposition F = φ 7 jEj^, where

I = ( i i , Λ ) , « / = ( J I Γ j j β

so that for every f -invariant Borel probability measure μ, μ-a.e. x G M,
and v e JB/

Proof. We first show that the Lyapunov exponents on the dual bundle E*
are the negative of those on E. Denoting by ( , •) the pairing between E*
and Ei, we have: for any 0 Φ η* G E*(x) there exists 77 G JE?»(X) such that
(τ/ ,τ/) φO and

0 < const. = \(η\η)\ = \(fnη*Jnη)\ < ||/V!I WFvl

Therefore, for n > 0,

- l n | | / V l l > --ln | |/ n ?? | | + -const.

Let a: G AE Π Λβ*, where ΛF is the set of regular points defined in the
previous theorem. For such points we may take limits and conclude:

lim ±ln|l/VI! >-*(*)•

Similarly,

lim I
n-> —oo γι

It now follows from Theorem 9 (3) that

In a similar way, one shows that given vι G Fi(x)\{0}, i = 1,2, where
Fj is a tensor product of subbundles chosen among the Ej and E*, and
assuming that linv+ioo Mn | |/n^i| | = u^ then for w = V\ ® υ2 we have

^ In | | / n ^ | | = ^i + i^ The claim now follows. D
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Denote by π/ j : F -> EJJ the natural (measurable) /-invariant projec-
tions. It follows from the above remark that:

Lemma 12. Ifτ is f-invariant and πi,jτ φ 0 on a set of positive μ-measure
for an f -invariant Borel probability measure μ, then for μ-almost every x in
that set,

-Xn (x) Xir ix) + Xh (x) + '"+ Xis (x) = 0.

Proof. Let Ω denote the /-invariant set of positive measure consisting of
regular points at which τx φ 0. Then for every e > 0, there exists a set
Ωe C Ω and a constant L > 1 such that μ(Ω\Ωe) < e and ||τa.|| < L for
all x G Ω€. On the other hand, according to Poincare's recurrence theorem,
for a.e. x E Ωe we can find a biinfinite sequence {nf : i E Z} such that
fnt (x) E Ω€. For any x with this property, let ξ — vι ® ®vr ®aχ ® Θas

be in EJJ(X) so that {τx,ξ) φ 0. Since τ is /-invariant, we have:

0 < \ { τ x , v λ ® - - ® a s ) \ = \(f n i r r ι ( x h V ι ® ® α β > |

<Lf[\\Γvp\\f[\\raq\\.
p=l q=l

After taking In, dividing by rii and passing to the limit as i —> oo and
z -> — oo, the claim follows. D

Lemma 13. /// is a diffeomorphism of a compact manifold M preserving
a Borel connection V and such that it avoids a 2 : 1-resonance, then V is
the unique f -invariant affine connection on TM and its torsion vanishes
identically. If f is Anosov with C1 distributions £?±

; then E+ and E~ are
parallel.

Proof. If V' is another /-invariant continuous connection, V — V is an /-
invariant tensor field. If it is not zero, it produces 2 : 1-resonance as in-
dicated in Lemma 12. More generally, if r is an /-invariant measurable
tensor field of type (r, s) for r + s — 3, then if r φ 0 it would produce a
2 : 1-resonance, contradicting the assumption. Other tensors of this type
are the torsion of V and the covariant derivatives of the (C1) projections
Π^3 : TM -> E±. Therefore V is torsion-free and the Anosov subbundles
E± are parallel. D

By the uniqueness property obtained in the previous lemma, the covariant
derivative of vector fields tangent to one Anosov foliation along a vector
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tangent to the complementary foliation can be characterized as follows: If
X e Γ^E^.Y E Γ 1 ^ ) , VXY = U*[X,Y] (the Bott connection for the
foliations f*).

Before we establish the existence of the invariant connection for a general
|-pinched Anosov diffeomorphism, we recall for later use how the connec-
tion can be defined in the presence of an invariant symplectic form ω. The
construction is due to Kanai. Define the involution a : E+ φ E~ —>> E+ © E~~
given by t>+ + υ~ —>• v+ — υ~. Then the bilinear form g(- , •) = ω(- , a •)
is symmetric and nondegenerate. In general g is only continuous, but it
is clearly differentiate if the subbundles E± are differentiate. If such is
the case, one obtains the continuous Levi-Civita connection associated to
this pseudo-Riemannian C1 metric. That the connection defined in this way
agrees with the previously constructed one is a consequence of the uniqueness
property established in Lemma 13.

Definition 14. We refer to the invariant symplectic connection defined
above as the Kanai connection. It is immediate from the definition that the
connection is Cr if and only if the foliations are C r + 1 .

Lemma 15. Let f be a ^-pinched Anosov diffeomorphism of a compact
manifold. Then f preserves a continuous affine connection V. The leaves of
the stable and unstable foliations S~ and £ + are totally geodesic with respect
to V and the restriction of V to individual leaves is differentiate.

Proof. Let V ^ be a smooth affine connection on M. Define VXY =
Π+V^Π+F + i r V ^ Π - F , a C°-connection. Note that the restriction of
V' to the leaves of S+ and E~ is C1. Define Θ(n) = V ' r - V;, a C° sec-
tion of T*M ® T*M ® TM, neZ. Here, we denote Vlf

xY = f~ιVf.xf*Y.
Note that the component of θ(n) in E±* ® E±if ® E±, which we denote
Θ±(n), is differentiate along leaves of S±. θ satisfies the cocycle property:
θ(n + l) = θ(l) + / θ(n), where/ Θ = /-1Θ(Λ ,Λ ) We have: θ(0) = 0,
θ ( - l ) = -f-1 θ(l), θ(n) = ΣΓ=o fι' θ(l) .

To obtain a C° connection preserved under /, we need to verify that
the cohomology class represented by θ, over the Z-action defined by /, is
trivial; i.e., there exists a continuous section Φ of T*M ® T*M ® TM such
that θ(l) = Φ - / Φ;in that case V = V + Φ will be preserved under /.
Also note that it suffices to solve for Φ± in θ ± ( l ) = Φ* - / Φ*, where Φ^1

is now a C° section of E±* ® E±* ® E±. In fact, if V(+) and V(~} define
continuous families of connections on the leaves of £ + and £~, we obtain
a connection on TM as follows: For C1 vector fields X and F, with (C1)
decomposition X = X+ + X~ and 7 = y + - f 7 " ,
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If a solution to Φ* = Θ±(l) + / Φ* exists, it must satisfy

Φ± = Θ±(l) + / Θ±(l) + • + Γ " 1 θ±(l) + fn Φ±

Φ± = θ ± (- l ) + f'1 - Θ±(-l) + -- + / " n + 1 θ ± ( - l ) + f~n

We are thus led to define Φ" = ΣZof+i ' Θ " ( ! ) (respectively, Φ+ =
Σ S o f~ι ' θ + ( l ) ) To see that this series actually defines a continuous sec-
tion Φ~, we set η = Θ~(l) (a similar discussion will apply to Φ+) and note
that for any vectors X, Y in E~(x),

\\Γ.ηx{X,Y)\\ =

<c'enA\\τf:x\\ \\τf;γ\\
<C"e-n{2a-A)\\X\\ \\Y\\.

Therefore we are justified in writing the uniformly convergent series defined
above. Note that each term fι ηoί this series is differentiate along the
leaves of E~. We show next that the series consisting of derivatives of /* η
also converges uniformly.

By considering a sufficiently high power of / rather than / itself, we may
assume instead of (1) that for any α', A1 for which 0<a'<a<A<A',

(1) \\v\\e-«A' < \\Tf^v\\ < \\v\\e-™\ v e E*(x).

(Note that if V is preserved by /*, then V = £ Σ i J o ί / * ) * ^ i s preserved by

/. If A < 2α, a' and A' can be chosen so that A' < 2a'. Therefore, there is

no loss in generality to assume, as we do from now on, that C = 1, in (1).)

Let U C ε~{x) be an open neighborhood of x1 in 8~(x). Consider the

neighborhoods ZY, /(W), , fs(U), , where fs(U) is a neighborhood of

fs(xf) in ε~(fs(x)). We may assume that each open set fs{U) is contained

in a coordinate neighborhood (note that their diameters are decreasing).

Denote the coordinate vector fields: e^ = f̂-|/*(w) We write Tf^e^ =

A\f(x)e(js+n\ where A\? are functions defined on IJ^o /*(W). Let A{j =

$. Then the following relations are satisfied:

A^(x) = A(x)A(f(x))- -A(r~1(x))

and e~A < \\A(x)\\ < e~a, e° < ^ ( - ^ ( a ; ) ! < eA for all x. Also set
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so that

r,s,k

A simple computation shows:

(2)

We also have:

dx, H <κie-
na.

a
dx,

Aof

d

ButΣΓ=iΊ|Λ ( ί > ) H^

(3)

Also:

< Σ7=oe-pa < «>, s o

I—
\dxu

< K2e~na.

dx,,

d

dxu

(A(~ι) o fn • • • A('1} o / )

d

p = l

So

(4)

It follows from (3), (4) and (5) that

d .„

dxu

< Const. e~
n{2a-A\



150 RENATO FERES

which establishes the claim. •

Once the restriction of V to individual leaves of £± is differentiate, we
may consider its curvature. Using Lemma 12 we conclude that this (tangen-
tial) curvature tensor vanishes.

To show that V is complete along the leaves of the stable and unstable
foliations, one just has to note the following. Since M is compact, there
exists an open set U C TM containing all vectors υ of norm ||i>|| < α, for
some positive constant α, where the exponential map of V is defined. But
as the connection is /-invariant, it follows that U contains the stable and
unstable subbundles. With this, the proof of Proposition 8 is complete.

If V is C^differentiable, the foliations £ + and £~ are of class C2, and
it makes sense to ask whether V is projectable transversely to these folia-
tions. If such is the case, it would follow immediately that V is flat and the
main theorem would hold under the optimal regularity assumption on the
connection. The question of projectability of V can be related to growth
properties of the holonomy pseudogroup of the Anosov foliations. We make
that precise below.

Lemma 16. Assume that f : M —» M is an Anosov diffeomorphism with
A < 2a, whose Anosov foliations spread more slowly than power l~^ e for
some e > 0. Then the f -invariant connection V is projectable tranversely to
the Anosov foliations. In particular, the curvature tensor of V vanishes.

Proof. Given a path 7 as in the above definition, define aΊ — VΉΊ — V. Then

Tfnay = α Λ θ 7 ( Γ / n , Tfn ).

Assume the connection is not projectable transversely to the stable foliation.
Then there are vectors X and Y such that aΊ(X,Y) -φ 0. It follows that

e-"A\\aΊ(X,Y)\\<\\Tra,(X,Y)\\

= \\af^(TrX,TfnY)\\
< \\afnoy\\ \\TfnX\\ \\TfnY\\

Therefore

(5)

On the other hand

The contradiction establishes that aΊ should vanish. D
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3. Establishing that V is locally symmetric

In this section we show:

Proposition 17. Let f be a C°° Anosov diffeomorphism of a compact
manifold M that preserves a Cr affine connection V, r > 2. Assume that f
avoids 2 : 1-resonances. Denoting by M the universal cover of M and £/ the
Anosov distributions pulled-back to M, then the group G of diffeomorphisms
of M that preserve E+ and E~ is a Lie group which acts transitively on M
and the action is Cr.

The conclusion of the above proposition is the starting point of [BL],
where Theorem 1 is proved. Since we are assuming the nonresonance condi-
tion, the infranilmanifods obtained in that theorem can only be flat. There-
fore, once we establish the proposition, it will follow from [BL]:

Proposition 18. Assume the same conditions of Proposition 17. Then f is
conjugate via an affine Cr diffeomorphism to a hyperbolic automorphism of
a complete flat manifold.

We proceed as follows: In this section we show that under the condi-
tions of the proposition, Vi? = 0. It then follows from classical results in
differential geometry [KN] that the peudogroup of local affine diffeomor-
phisms preserving E± is a Lie pseudogroup that acts transitively on M.
Due to [BFL, Lemma 3.4.4] (see also [FK, Proposition 3]), the invariant
connection is complete. Therefore the local affine diffeomorphisms induce
diffeomorphisms of M, establishing the proposition.

Lemma 19. Assume τ is a f -invariant C1 tensor field and V an f-
invariant affine connection where f is an Anosov diffeomorphism that avoids
2 : 1-resonances and has C1-differentiate Anosov foliations. Also assume
that f leaves invariant a smooth measure λ. Then Vr = 0.

Proof. Without loss of generality we assume that

r e Γ^E61* 0 0 E€r* 0 Eδl 0 0 E6').

Assume Vr φ 0 . Then, by ergodicity, there exists a set of full measure A
where Vr φ 0 and r φθ. For every point in A we can find

vι 0 0 υr 0 αi 0 0 as e E\l*{x) 0 0 E£*(x) 0 E]\ (X) 0 0 E]\ (X)

and vo E E^(x) such that (V^r,^ 0 0 as) φ 0. It follows from Lemma
12 that

(1) eoχio(x) + '" + erχir(x) - δλχh(x) δsχjs(x) = 0.



152 RENATO FERES

Let ϋi, , άs be C 1 extensions of vλ, , as such that ίĴ  E i? e ΐ, , ά3 E
Eδj*. We can write:

- ( r , Vvot5i ® ® a.) (r, υλ ® ® V v o ά s ) .

We claim that (r, VυoVι ® ® α s ) , , (r, Ϊ I ® ® V υ o ά s ) vanish. Suppose
that is not so, say:

(r, vi ® ® VVQvk Θ - - ® as) Φ 0.

It follows, again by Lemma 12,

ôXio 0*0 + +e rXi r (a:) - ίiXji (a;)

*.Xi. (a?) ~ eoXi0 (a?) - ^Xifc Or) + ekχ'(x) = 0.

Together with the previous equation (7) it yields

Similarly, if
(r, vi ® • ® Vυoάk ® ® as) φ 0.

We obtain

Therefore, due to the nonresonance condition,

(Vυoτ, vi ® ® αβ) = vo(τ, ϋι ® ® ά s )

at a; for almost every x e M and arbitrary extensions of v1? , as.
Let p : N = E€l* ® ® £7^ ->• R be the C1 function defined by pairing

with r. Locally, iV ~ M x V where V is a vector space and p : M xV -^R
is linear in the second argument. If X G TN^X^ = TMX ®TVξ we can write
X = vo + η. Let X = j ^ o C ° 7 where Y(0) = v0 and | = ϋλ ® ® ά s .
Note that X projects onto v0. We have

TpiXtξ)(ϋ0

But at x, p(x, •) 7̂  0. Therefore there exists η eV such that
77) = 0. This contradicts (Vυoτ, vx ® ® a8) φ 0. Therefore the lemma.

D
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4. Bootstrap of regularity in the symplectic case

In this section we show the following:

Proposition 20. Let f be a C°° Anosov diffeomorphism of a compact
C°° manifold M. Suppose that f leaves invariant a flat torsion-free Cr

connection V (r > 1). Also assume that the tangent distribution to the
Anosov foliations are differentiate and parallel with respect to V. Then these
distributions are C r + 2 . If f is a symplectic Anosov diffeomorphism with C2

foliations and the Kanai connection V is flat, then the Anosov foliations and
the connection are C°°.

Proof. Let M be a C°° manifold equipped with a Cr affine connection V,
r > 1. Assume that V is symmetric and flat, that is its curvature and torsion
tensors vanish identically. For each x £ M and any basis a = {eu , en} of
TMX consider the local parallel fields Xx, , Xn that agree with ex, , en

at #. In a C°° coordinate system we may write X{ = ]Γ^ ai3;g~. The equation
describing parallel transport is a system of ordinary differential equations
with Cr coefficients given by the Christoffel symbols. By the theorem on
Cr dependence of solutions of O.D.E.s on parameters, X{ are Cr. In fact,
as VXi = 0, the coefficients ai3- of X{ should satisfy dkai3 = — Σ/ an^iι f°Γ

all k,i,j. Since the right hand side is C r, the functions ai3 must be C r + 1 ,
so that the vector fields are CΓ + 1 . As V is symmetric (T = 0), these vector
fields commute, and so do their local flows φf1, , φ*n. For x G M, define

Φ(ί i ,

for tu , tn sufficiently small. Φ defines a local C r + 1 affine diffeomorphism
between an open set V c R n containing 0 (W1 is equipped with the Euclidian
affine structure) and an open set U C M such that Φ(0) = x.

We claim that Φ (which is the exponential map of V at x) is C r + 2 . To
see that, consider the locally defined pulled-back connection Vφ on V. With
respect to the (normal) coordinate vector fields τ~, , ̂ - , the Christoffel
symbols of Vφ vanish, so that

Denoting by Φj, Φ^ the partial derivatives of the Zth component of Φ, it
follows:

k,r

The right hand side of this equation is C r, so that Φ is C r + 2 .
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If E+ and E~ are two complementary subbundles parallel under V, then
by choosing the basis {βi, ,en} at x so that {eu - ,ek] spans E+{x)
and {eΛ+1, ,en} spans E~(x), we obtain that E+ and J5~ are locally
the tangent bundles of coordinate planes associated to the C r + 2 normal
coordinates defined before. Therefore the foliations 6+ and S~ that integrate
E+ and E- are C r+2.

If V is the Kanai connection associated to a symplectic Anosov diffeomor-
phism, having C r + 2 Anosov foliations implies that the connection is C r + 1 .
Note that we started with a Cr connection and concluded that it is C r + 1 .
Since r was arbitrary, this yields that V is C°°. Since E± are parallel, it
also follows that the distributions are C°°. Therefore, the conjugacy is also
smooth. D

Theorems 2 and 4 follow now from Propositions 20, 18 and 8. Theorem 6
follows from Lemma 16 and Proposition 20.

Proof of Theorem 7. Under that regularity assumption, the curvature tensor
R of the invariant connection V is continuous (in fact, to carry out this
proof it seems to be sufficient that the curvature be measurable. Such is
the case if the foliations have measurable transversal second derivative). On
the other hand, we can write R — hω ® /, where ω is the invariant volume
form and h is a continuous /-invariant function. But / is ergodic, so h is
constant and R must coincide with a constant multiple of the volume form.
Therefore R is smooth and we can consider its covariant derivative VR. It
follows from Lemma 12 that such tensor vanishes, so that by classifying the
possible homogeneous structures that arise (as done in [FK]) one obtains
that R = 0. The result now follows from Proposition 20. D
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