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COMMUTING CO-COMMUTING SQUARES
AND FINITE DIMENSIONAL KAC ALGEBRAS

TAKASHI SANO

A relationship between finite dimensional Kac algebras
and specified commuting co-commuting squares is discussed.
The Majid's bicrossproduct Kac algebra is explained in our
context.

1. Introduction.

The theory of Kac algebras (Hopf algebras) has been drawing considerable
attention (see [6] for the reference), and in fact many intensive studies have
been made recently. ([1, 18, 19, 34, 35, 36], etc.) On the other hand,
the announcement by A.Ocneanu ([20, 21]) brought us a new aspect in the
theory of Kac algebras : it is his claim (proved in [4, 17] and also [28]) that,
for an irreducible inclusion of factors M D N with finite index and depth =
2, M is described as the crossed product algebra of N by an outer action of
a finite dimensional Kac algebra. Hence, we investigate Kac algebras from
the Jones index theoretical point of view.

The purpose of this paper is to find a finite dimensional Kac algebra via
the index theory : let L D K be an irreducible inclusion of factors with
finite index. Suppose that, for an intermediate subfactor M, both inclusions
L D M and M D K are of depth 2. Although the inclusion L D K does
not always satisfy the depth 2 condition, it can be proved that this pair
is of depth 2 if these factors L,M,K, and another intermediate subfactor
N form a commuting co-commuting square. Details will be explained in
§2 after recalling basic facts on commuting co-commuting squares. Another
criterion for the inclusion L D K to be of depth 2 is also obtained. Examples
are given in §3.

The author would like to express his sincere gratitude to Professor Shigeru
Yamagami for helpful advice (in fact the present work was motivated by
[33]) and to Professor Hideki Kosaki for fruitful discussions and constant
encouragement. He is grateful to the referee for many useful comments.
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2. Main results.

Let
L DM
U U
ND K

be a quadruple of type Πx factors satisfying [L : K] < oo. (For the standard
facts on the index theory, see [8, 11, 23, 25, 26].) It is said to be a commut-
ing square if E^(N) C K, where E^ is the conditional expectation from L
to M. (See [8] for other equivalent conditions.) A quadruple (L,M,N,K)
is said to be a co-commuting square if the quadruple

K1 DM'
u u

N' D L\

or equivalently, that of basic extensions

(L,eL

κ)D(L,eL

M)

U U
(L,<%)D L

on the standard space L2(L) is a commuting square. Here, ej^ejy, and
eL

κ are relevant Jones projections (see [27, 30, 31]). For a commuting co-
commuting square (L,M, TV, if), we have K — M Π N and L = M V N.
(In [27], a quadruple satisfying these equations is called a quadrilateral and,
for a quadrilateral (L,M,JV,ϋΓ), Ang(M,iV) = Op-ang(M,JV) = {|}
corresponds to the commuting co-commuting condition.)

For a commuting square, we have characterization of co-commutativity
([27, Corollary 7.1] and [26, Proposition 1.1.5]).

Proposition 2.1. Let (L,M,N,K) be a commuting square of type Hi
factors satisfying [L : K] < oo. Then the following are equivalent :

(1) (L,M,N,K) is co-commuting.

(2) L = M N = {ΣieF miniΊ F is a finite set, mi G M,nτ G N) .

(3) [L:M] = [N:K].
(4) A Pimsner-Popa basis for N D K is also that for L D M.

Remark that, in [26], a commuting square satisfying (one of) the above
conditions is called "non-degenerate" and (1),(2) of the following proposition
are mentioned in [26, Proposition 1.1.6] (see also [9, Proposition 2.3]). We
will see them for the completeness of this article.
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Proposition 2.2. Let (L,M, JV, K) be a commuting co-commuting square
of type IIχ factors satisfying [L : K] < oo. Then,

(1) (M,ej£) D M is conjugate to (M,e&) D M.

(2) TΛe quadrilateral ((L,e%), (M, ejy) ,L,M) is α/so commuting co-com-
muting,

(3) (L, ejf) is identified with the Jones extension for (L, eĵ ) D (M, e^).

/. (1) While the condition Σiaieκ^i = 0 (α^ft; G M) is equivalent to
Σ* aiE%(bic) = 0 for c G M on L2(M), the condition Σ* fl»4fti = 0 (α Λ G
M) means 0 = Σ<α<^Λr(6i«i) = Σi^E^ib^d = Σiθ>iEκ(bic)d for c E
M, d £ N on L2(L) thanks to Proposition 2.1.(2) and the commuting square
condition. Hence, we may consider the map φ : (M,e^f) —• (M, ejy) defined

by φ(Σiaieκbi) = ΣiaieN^i I* ^s e a s y t o s e e *^a* * ^ s m a P 0 gives an
isomorphism between them and </>|M = id.

(2) follows from [8, Corollary 4.2.3], [11, Proposition 3.1.7], and Proposi-
tion 2.1.

(3) Since the commuting square condition means e^e^ = e^, we have
((L,eL

N) ,eL

M) = {L,eL

κ). We will show that <L,e£) - ((L,eL

N) ,eL

M) is the
Jones extension for (L, ejy) D (M, e^ ). The commuting square condition
implies [e^,x] = 0 for a; G (M, e^). And for the conditional expectation

get the conclusion by [24, Proposition 1.2.(2)]. D

Thus, we have extensions of a commuting co-commuting square (L, M,
iV, ΛΓ) in compatible ways.

For an irreducible inclusion, we have a refined estimation of the dimension
of relative commutant algebras as in [8, Theorem 4.6.3] (cf. [11, Corollary
2.2.3]). We will see this in terms of sectors ([10, 12, 14, 15, 16]).

Lemma 2.1. For an irreducible inclusion M D N of type Hi factors
satisfying [M : N] < oo,

dim(MkΠN') <[M :N]k,

where N C M = Mo C M1 C is the Jones tower.

Proof We only treat the case k = 2 since a similar proof will work for any
k. We may assume that M and N are properly infinite and isomorphic
(by [16, Lemma 2.3]) and denote N by p{M) for an endomorphism p G
End(M). Consider the irreducible decompositions : pp — ΣjmjajiPPP —
Σj,krnjnjkβk (ajP — Σkn3kβk) > where p is the conjugate sector of p. By
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the Frobenius reciprocity, we have βkp > Σjnjk&ji&jp > m j P Combining
these, we get

[M : ^ ] 2 = {[M : N]2

0 =) d(p)4 =

thanks to the additivity and the multiplicativity of the statistical dimension
d. D

As a corollary of [8, Theorem 4.6.3], we have the following ([10, Proposi-
tion 4.2]) :

Corollary 2.1. Let M D N be an irreducible inclusion of type Hi factors

with finite index. Then the following are equivalent :

(1) The inclusion M D N is of depth 2.

(2) dim(M1ΠiV/) = [M :iV].

(3) M 2 Π N' is a factor.

We give another lemma to prove main results.

L e m m a 2.2. Let (P, Q,i2, C) be a commuting square of finite dimensional
algebras. Then we have

d i m P > dimQ • dimiϊ.

Proof Let us take a linear basis {sci,^?*" ,^m} f°Γ R a n d a Pimsner-
Popa basis {λi,λ2, * ,λn} for Q D C with respect to the conditional
expectation E from P to R (m := dimi?,n := dimQ). Then Xiλ*{^ 0)
are linearly independent suppose that J ^ aijXiλ*j = 0 for α^ G C. Since

0 = (Σij ciijXiλ*) λk = E feu aijXiλ^λk) = Σij VijXiE (λ*λΛ) = Σι <*ikXi

for any k, we have aik = 0. Hence, we get d i m P > nm. D

For a given commuting co-commuting square, we can get a kind of tiling
by double sequences {Jlίii}i,i=o,i,2,- of subfactors (see [22, 32]). By looking
at a tiling, we have two criteria for an irreducible inclusion L D K to be of
depth 2 :
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Theorem 2.1. Let (L,M,N,K) be a commuting co-commuting square of
type IIχ factors satisfying [L : K] < oo and L Π K' — C. // both inclusions
L D M and M D K are of depth 2, then so is the inclusion L D K.

Proof. Let us denote extensions by {M^}2)j=0,i,
 s u c h that

(M1UM1O1MOUMOO) = (L,M,7V,K),M2 2

M 3 0 = (M 2 0 , β?2), and so on.

Here, e^ means the Jones projection for the inclusion M^ D Mki.

^ 0 3

^ 0 2

^01

^ 0 0

*13

M-12

M-11

Λf110

^ 2 3

* 2 2

^21

^ 2 0

^ 3 3

M,32

*31

M,30

Figure 1.

Clearly, we have M 2 2 Π MQ 0 D M 2 0 Π Mό0, M 1 2 Π M[ o . But it can be shown
that

M 2 2 n M'oo = (M 2 0 n Λς,) (M 1 2 n Mί 0 ) .

Let us think of the following commuting square (for the conditional expec-

tations of the restriction of the canonical trace on M 2 2) :

M 2 2 n MK

EU

M20 Π ML D

M 1 2 Π M[[o

oo

U

c.
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Here, we remark that ( M 2 2 , M 2 0 , M 1 2 , M 1 0 ) forms a commuting square. It
follows from Corollary 2.1 that dim(M2 0 Π MQ0) = [M : K](=: m) and
dim(M12ΠM[0) = [L : M](—: n). Applying Lemma 2.2 to this square, we get
dim(M2 2 Π MQ0) > mn — [L : K\. Combining this with Lemma 2.1, we have
that dim(M2 2 Π M^) = [L : K] and M 2 2 Π M ^ - (M 2 0 Π M^) • (M 1 2 Π M^o).
Therefore, we get the conclusion by Corollary 2.1. D

Theorem 2.2. Lei (L, M, TV, if) be a commuting co-commuting square of
type Hi factors satisfying [L : K] < oo and L Π if7 = C. // both inclusions
M D K and N D K(or L D M and L D N) are of depth 2, then so is the
inclusion L D K.

Proof. Let us keep the same notation as in the proof of Theorem 2.1. It is
sufficient to consider the case that M D K and N D K are of depth 2 since
another case can be proved by looking at the extension (M 2 2, M 2i, M12, Mn).
For the commuting square (M2 2 Π MQ 0, Λf22 Π M^, M 2 0 Π MQ 0 , C), we remark
that

M 2 2 n M'2Q ^ M 0 2 n M'm

by Proposition 2.2.(3) and Takesaki duality between M 2 i D M 2 0 and Mox D
MQO, which follows from a similar argument in [23, Proposition 1.5] about
a common Pimsner-Popa basis for M10 D M o o and Mn D MOi. Applying
Lemma 2.2 and 2.1 to the commuting square (M 2 2 Π M Q 0 , M 2 2 Π M'^^M^ Π
Mό o,C), we get that M2 2ΠMoO = {M22^M!lo)'(M2o^M'm), and dim (M22^
MQ 0 ) = [L : K]. Therefore, we get the theorem by Corollary 2.1. D

R e m a r k . Let (L,M,N,K) — (M 1 1,M l o,Moi,MOo) be a commuting co-
commuting square as in Theorem 2.2. The Majid's bicrossproduct method
corresponds to looking at the quadruple (M2uM20,MιUM10) and the rela-
tive commutant algebra M 3 2 Π M[o.

3. Examples.

In this section, we will explain two examples. The first one is considered in
[33, Proposition].

(1) Let G be a finite group with two subgroups A,B satisfying G — AB
and A Π B — {e}. Let 7 be an outer action of G on a type IIχ factor P.
Then we have

Proposition 3.1. The inclusion of crossed product algebras

(L :=)(P ® Γ{G/B)) xGDPx A{=: K)
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is irreducible and of depth 2, where the action of G on 1°°{G/B) is induced
by the left translation.

Proof. Let us consider the commuting co-commuting square

((P ® l°°(G/B)) *G,{P® l°°(G/B)) x A =: M, P x G =: iV, P x A).

Since (P ® l°°(G/B)) x G Π (P x A)' - l°°(G/B)A, the assumption G -
A£? corresponds to the irreducibility of the inclusion L D if. Considering
Takesaki duality between L D M and P x B D P as in the proof of Theorem
2.1, and Proposition 2.2.(1) for M D if (D P ) , we also see that L D M
and M D K are of depth 2. Hence, applying Theorem 2.1 to this square
(L, M, JV, if), we get the conclusion. D

Remark. The Jones tower and the tower of relative commutant algebras
can be explicitly written down as in [3, 13, 29] the Jones tower is

if = P x A c ( P ® Γ(G/B)) xG = L

C (P ® B{12(G/B)) ® Γ(G/A)) x G =: U

C (P ® B(12(G/B)) 0 l°°(G/B) ® 5(/2(G/Λ))) x G =: L2

And the tower of relative commutant algebras is

c = J K ' n i Γ c L n J K ' / = Γ(G/B)Λ = c

C Lx Π if7 - (B(12(G/B)) ® / ° A

C L2 Π if' = {B(12(G/B)) ® Γ(G/B)

Hence, we also see that the depth of L D if is 2. Next we recall the
matched pair ([18, 19]) because of the uniqueness of the decomposition of
an element in G = AS — J5A, we can represent ab for a E A, 6 G B as

The associative law implies

Qίαα'(&) = aa(aa/{b)),aa{bbf) = αα

A6'(α) = βh(βb>(a)),βb(aa') = ^ (
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for α, a1 E A, 6, bι E B. Therefore, the matched pair (A, B, α, β) in [18, Theo-
rem 2.3] appears. (Here, we remark that if we write ab = rγa(b~1)~1δb-ι (a)(E
BA), then the matched pair of another type (A, J9,7, δ) in [19] is obtained,
but in this article we would like to treat the former one for our purpose.)

For the matched pair (A, B, α, /?), we have a finite dimensional Kac algebra
of Majid's type ([19]) the bicrossproduct Kac algebra consists of the crossed
product algebra Q := l°°(B) xiα A on 12{B) ® I2(A) (and others, see below)
generated by mf ® 1 (simply denoted by /® 1 = /) for / E l°°(B) and ua®\a

(simply denoted by λα) for α G i , where rrif is the pointwise multiplication
operator on 12(B), the action a of A on l°°(B) is induced by the action a
of A on B aa(f)(b) = f(aa-i(b)) for / E Z°°(J3), ϊ/α is the implementing
unitary on 12(B) such that (uaξ)(b) = ξ{aa-i(b)) for ξ E Z2(S), and λα is the
left regular translation; (λαξ)(α') = ^ ( U Γ V ) for ξ E ί2(A).

We know the Kac algebra structure of this crossed product algebra and its
dual Kac algebra ([19]) for the crossed product algebra Q — l°°(B) xα A,
the comultiplication Γ, the antipode K, and the Haar weight φ are described
by:

b'b"=b

for fa E 1°°{B), and χ6 is the characteristic function onb E B. And we have

where the right-hand side is generated by l®/(/ E /°°(τ4)) and λb®vb (b E S)
on P{B) ® P(A)((vbξ)(a) = ξ(βb-.(a)), ξ G /2(A)).

The above Kac algebra K = {l°°(B) xa A(= Q),Γ,κ,ψ) has a left action
([5]) on the factor K = P xi7 A let us write two generators π(p)(p 6 P)

\'a(a e A) of P »7 A :

), (Kξ)(a') =

for ξ El2 (A, L2{P)).
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Lemma 3.1. The following map δκ : K —> K ®Q gives a left action of the
Kac algebra K on K = P xi A :

This lemma follows from direct computation, hence the author leaves its
proof to the reader.

So far, we are now ready to give the theorem.

Theorem 3.1. The factor (P ® l°°(G/B)) x\ G is described as the crossed
product algebra of P xi A by the left action 5χ in Lemma 3.1 of the Majid's
bicrossproduct algebra K — (l°°(B) x A,Γ,ft,ψ).

Proof. We may think that three kinds of generators π(p) {p G P),π(/) (/ G
l°°(G/B)), and λ̂  (g G G) of the crossed product algebra (P®l°°{G/B)) xi G
look like

(π(p)ξ)(aB,g') =Ίgl-r(p)ξ(aB,g'),

for ξ G 12(G/B x G,L2{P)). Identifing G/B x G with AxBxAby

(a'B,g = ba) <-» (α,6,α'),

we may write these generators acting on L2(P) ® I2(A) ® ί2(β) ® ̂ 2(̂ 4) such

as

(π (p) ξ) (a, b, a') = 7(6β)-i (p) ξ (α, 6, α'),

(π(f)ξ)(a,b,a') = f(a')ξ(a,b,a'),

(λ-aξ) (a, b, a') = e (A-. (α)"1 a, αa-i (6), ό" 1 ^) ,

for / G l°°(A),a G A,S G B and ξ G /2(>l x 5 x i4,L2(P)). On the other
hand, the crossed product algebra of N by the (outer) action δκ of l°°(B)» A
is generated by δκ{K) V 1 ® (Z°°(B) x ^ ) " = ^ ( K ) V l ® ( ΰ κ /°°(A)). (See
[5].) It is easy to see that δκ(π(p)) = τr(p),5iί(λ'α) = λα, 1 <g> λj, = Xt, and
1 <g> / = π(/). Therefore, we are done. D
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(2) Let M D TV be an irreducible inclusion of type IIχ factors satisfying
[M : N] < oo and depth 2, and G be a finite group with an outer action
7 on both M and N. Moreover, suppose that (M xi G) Π N' = C. (This
condition is equivalent to strong outerness of the action 7 for M D N.)
Then we have the depth 2 inclusion (M <g> /oo(Gί)) x G D N xi G. In fact,
this inclusion is contained in the commuting co-commutig square ((M ®
Z°°(G)) x G,(iV ® Z°°(G)) x G,M x G,iV x G). Similar argument as in
Proposition 3.1 implies that the assumption in Theorem 2.1 for the inclusions
(M 0 l°°(G)) x G D (N ® /°°(G)) x G(= M D TV by Takesaki duality) and
(N <g> /°°(G)) x G D TV x G holds, hence we have the conclusion. (Cf. the
orbifold construction [3, 7] and also [2].)
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