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ENTROPY OF A SKEW PRODUCT WITH A Z2-ACTION

KYEWON KOH PARK

We consider the entropy of a dynamical system of a skew
product T on X1XX2 where there is a Z2-action on the fiber X2.
If the Z2-action comes from a Cellular Automaton map, then
the contribution of the fiber to the entropy of the skew prod-
uct is the directional entropy in the direction of the integral
of a skewing function φ from X\ to Z2.

1. Introduction.

J. Milnor has defined the notion of directional entropy in the study of dy-
namics of Cellular Automata [Mil], [Mi2]. When the notion is applied to
a Zn action it is considered to be a generalization of the entropy of non
co-compact subgroups of Zn.

In the case of a Z2-action, we denote the generators of the groups by

{£/, V}. Let P be a generating partition under the Z2-action. We write

P{j = UιViP. If a subgroup is generated by UpVq, then there is a natural

way to compute the entropy of UpVq as a Z-action on the space. Milnor

extended this idea to define the entropy of a vector by embedding Z2 to the

ambient vector space R2 as follows.

V PiJ
(i )£B+\o t)v

Given a vector ΐ7, we let θo be the angle between two vectors v and (1,0).
Let w = tarc3 so that (w,l) is a scalar multiple of the vector v. It is easy to
see that

1 ([ty] \
h{v) = lim lim -H [ \J \/ Pitj ,

yj=O—m+jw<i<m+jw J

where [a] denote the greatest integer < a.
We note that if ΰ ~ (p,q), then h(v) = h(UpVq). And it is easy to see

that directional entropy is a homogeneous function, that is h(cv) — ch(v)
for any c G R.

Directional entropy in the case of a Z2-action generated by a Cellular
Automaton map has been investigated in [Pal, Pa3] and [Si]. D. Lind
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defined a cone entropy, denoted by hc(υ), of a vector v. Given a vector
v = (x, y) and a small angle 0, we consider the vectors vθ — (xe,y) and ΰ_θ =

y y

(x_θ,y) where xθ and x^θ satisfy — — tan(0o + θ) and = tan(#o — θ)
XQ X-θ

respectively. Cone entropy is defined as follows.
i /fry]

hc{v) = lim lim -H V V P< ?

From the definition, it is clear that we have hc(υ) > h(v).
We say that a Z2-action is generated by a Cellular Automaton if one of

the generators of the Z2-action, say V, is a block map (a finite code) of U.
That is, (V(x))i depends only on the coordinates α;_ r,:r_ r+1,... , rrr [He].
We call r the size of the block map V. We will show that in the case of a
Z2-action generated by a Cellular Automaton map, the directional entropy
and the cone entropy are the same (Theorem 1).

Let (XiXx^μ^G) and {X2,ζ2,β2,H) be two ergodic measure preserving
dynamical systems with finite entropy, where G and H denote the respective
group. Given an integrable skewing function φ : Xλ —> H, we define a skew
product G-action T on (Xι x X^Ci x C2? βi χ M2) such that Tg(x,y) =
(T9x,Fφ{χϊy) where Γ denotes the G-action of Xx and F denotes the H-
action on X2. When we have G = H — Z, then the entropy of T has been
extensively studied by many people (e.g. [Ab], [Ad], [Ma, Ne]). It is well
known in this case that h(T) - h(T) 4-1 / φdμ\h(F). The above formula says
that, as we expect, the fiber contribution to the entropy is | / φdμ\h(F).

We investigate the entropy of T when G = Z and H — Z2. Note that
the above formula cannot hold when the acting group on the fiber is a more
general group, say Z2. First of all, / ψdμ is in general a vector. Secondly,
if the skewing function takes a constant value, say (1,1), then the fiber
contribution should come from the entropy of UV, not necessarily from the
whole Z2-action. We prove that if the fiber Z2-action is generated by a
Cellular Automaton map, then we have the analogous theorem (Theorem 2)
to the case when H — Z.

We may mention that directional entropy can be also defined in a topo-
logical setting. D. Lind constructed an example whose topological entropy
does not satisfy the analogue of our Theorem 3 [Li]. His example involves
a Z2-action which is not generated by a Cellular Automaton map. It is not
clear that Theorem 3 holds for topological entropy when we have a Z2-action
on the fiber generated by a Cellular Automaton map. Lind's example is not
interesting in the measure theoretic sense because it has the trivial invariant
measure.

We have constructed a counterexample which does not satisfy Theorem 3
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[Pa2]. For the example we explicitly construct the base transformation and
use the Z2-action due to Thouvenot [Th] on the fiber. Both of them are
constructed by cutting and staking method. It would be interesting to find
out how generally Theorem 3 holds. For example, it is unknown if Theorem
3 is true when we have a topological Markov shift which does not satisfy
the condition of Corollary 4. We are more interested in the case when the
topological Markov shift has 0-entropy as a Z2-action.

Although Theorem 2 and 4 are more general than Theorem 1 and 3, we will
prove Theorem 1 and 3 because their proofs are easier and more geometric.
It is also easy to see the proofs of Theorem 2 and 4 from those of Theorem
1 and 3.

We would like to thank Professor D. Ornstein for helpful discussions and
the Referee for many valuable comments.

2. Cone entropy.

Throughout the section we assume that our Z2-action is generated by a
Cellular Automaton map. We denote by Hm(v)

fn-l m+jw

V V
n-»oo γι

Note that Hm(v) is independent of the size of the vector ΰ. Let r denote

H(Po,o).

Lemma 1. Hm(v) = Hm>(v) ifm,m' >2r + w.

Proof. Case 1. v is not a scalar multiple of (1,0).
Suppose m' > m. Clearly from the definition we have Hm' (ΰ) > Hm{υ).

Hence it is enough to show Hm'(v) < Hm(v). Note that

1 (n~ι

Hm{v) = lim -H V V
y j = O — 77iH-,;iί;<i;

1 /

= lim - Σ J 5 Γ I V
—m+jw<i<m+jw

V V
0<k<j -m+kw<i<m+kw
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-m<i<m— —

n - 1

m<i

y
v

π - 1

V V
kw<ι<2m+kw

V V

V V
-2m+jw<i<-2πι+(j-l)w+r

We make the following observations:

(1)

lim -H\ V Pi,o) =0= lim -H I \f Pifi
y-m<z<ra y y—m'<ι<m' j

(2)

V

> H V

v v p^
0<k<j kw<i<2m+kw

V V J
0<k<j kw<i<2m'+kw

because we condition on more information.
(3) By the same reason, we have

H V V V
0<k<j -2m+kw<i<kw

V V i
-2m+itu<i<-2m+(j-l)t/;+r

> i ί | V ^

V V

V V
0<k<j -2m'+kw<i<kw

-2m'
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These observations together with the formula for Hm(ΰ) above shows Hm' (v) <
Hm(v).

Case 2. ΰ — 7/(1,0) for some real η.
We analogously denote by Hm(v)

1 f[nη] m \

lim -H V V PiJ •

We note that

1 /[nη] m+2(m'-m) \

H™\v)= lim-H V; V pij]

Λ ( /[nη] m

= I i m - ί V V Pu

m+2(m'—m)

ίf V V
j=m+l

V
i=0 j=-m

771+2(771'-m)

i = 0

[nη]

i = 0

- m+2(m/-m) / r

- Σ H V V p*j
i=[nη]-r

^ 771+2(771'-m)

<Hm(v)+ lim - V 2r.r

i m 4rr(m'-m)
Π

= Hm(v).

Since we have H™ (v) > Hm(v) by definition, the proof is complete.

Corollary 1. Ifv is not a scalar multiple of (1,0), then we have

fn-l \ Λ ίn-l

V v
ij=0 -71

<l-H{ V no
\m<\i\<m'

< T
2(m' - m)

n

D
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Theorem 1. hc(v) = h(v).

Proof. It is enough to show that hc(v) — h(v) is small. If v = (x, y) where
y / 0 , then by rescaling, we may assume that v = (a;, 1). Given any ε > 0,
there exists 0 such that if « < 0, then

(i)

lim -H I V V P ' . i I < Λ C ( ^ + ε

n->oo 77, \ v v I
\0<j<n jxκ<ι<jx-κ )

(ii) \x~Q — XΘ\ < 7 where 7 satisfies that ητ < ε. There exists m 0 such that
if 7τι > mo, then

lim iff (V V Piλ=h(υ).
\j=0 -m-\-jx<i<m+jx )

We choose n0 such that if n > n o, then we have

(in)

h{v)-ε<l-H[ V V P

\0<jf'<n—1 —mo-\-jx<.i<.mo-\-jx

(iv)

hc(υ) - 2ε < ̂ H I V V Phj ] < hc(v) + 2ε,
\o<j<n-l jxθ<i<jx-θ )

(v)

\J Pij < ε, where
— mo-f-jx<2<7no+jίc /

(vi)

K — max{j : j\xθ — x\ < mo and j\x-β — x\

and

v v p>Λ~ϊ-n

H[ v v J
^o<j<n jxθ<i<jx-θ ) \θ<j<n -mo+jx<i<m0+jx
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We compute

\hc{ΰ) - h(ΰ

1
V V Pa

o<j<n jxθ<t<jx-θ

1
n V V 3ε

-» v V
\o<j<n n{xβ—x)-\-jx<i<n{x-θ—x)+jx

1
n V 3e

n
V 3ε

0— x)<i<n(x-β— %

< —ηnτ + 3ε.
n

Hence we have

\h{v)-hc(υ)\ <4ε.

In the case of v = (x, o), it is not hard to see that the idea of the second
part of the proof of Lemma 1 combined with the idea of the proof above will
give the desired result. D

P0,iTheorem 2.

Proof. We note that if we choose M so that

V '

V P ϊ 0 I is finite, then we have hc(v) =

m=M — m<i<m

then we get

m — M

Σ
fc=-m+M

V
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for all m > M. Using this, it is easy to see that if ra2 > m\ > M, we have
that for any n,

-i f[ny] -m2+jw \ 1 ί[ny] πiι+jw

n" V . V <••,)<1-" V V+ «.,
\J=0 ι=m24-^ty y \J=0 ι=—mi+jw

where - r comes from the difference between —H I V Pi o )
n n \i=-mi ' /

1 / m2 \
- i ϊ V P<fo).

Hence for a given ε > 0, there exist mo as in Theorem 1 such that for a
sufficiently large n,

\hc(v)-h(v)\

V V i
vo<j<n n{xθ-x)+jx<i<n{x-θ-x)+jx

V V J
\o<j<n —mo+jx<i<mo+jx

- 7 n r 4- 2ε 4- 3ε.
n

D

Corollary 2. // F Z5 a finitary code with finite expected code length, then

hc(v) = h(ΰ).

Proof. It is easy to see that a finitary code with finite expected code length
satisfies the condition of Theorem 2. See [Pa3]. D

3. Main Theorem.

Let λ = μι x μ2. We denote Σ7=o Ψki^z) by φ%(z) for k = 1 or 2 and

2 G Xi Given two partitions, βι and /32, we write βx < β2 if /32 is a finer

partition than βx.

Theorem 3. h(f) = Λ(T) + Λ(i?) w;Λere v = f φ dμ = {f φ1 dμ, f φ2 dμ).

Proof. Since j φ dμ is finite, as in the case of a Z-valued skewing function,
there exists φ' which is bounded and cohomologous to φ. Hence we may
assume that φ is bounded. Let |<Pi(.z)| < L and | ^ 2 ( ^ ) | < L. Suppose
v = J φ dμ = (x, y) where y Φ 0. We let a denote the generating partition
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of the base. Let β denote a partition of X2- Both of the partitions a and β
can be considered in a natural way to be a partition of X\ xX 2 For a given
z E Xi) we denote the set {(z,u) : u E X2} by Iz.

Since

j /n-l \ . /n-l \ 1 /n-l n-l

iff V^ία V β) ] = - ^ I V f i« + - # V f ^
n Vi=o v / n l i lo J n Kilo

and

we have

1.
n

/„_!

i=o

n - l

i=o

. /n-l \

7 n \t=o /

, /n-i \

sup/i ff ,αv/3) = sup lim -H \Jfi(a/β)

= h (f, a) + sup lim / -H ( \/ T'β^lΛ dμ

/

, /n-l \

-Hi X/TβrnllΛ dμ,
ΐi \ . I

m L-l

where βm denote the partition V V -F»,j
ι=-mj=O

We denote lim^oo -H Γyf'β^lλ by hz (f,βm) .

As in Lemma 1, it is not hard to see that for sufficiently large m and ra',
we have

hz(τ,βm)=hz(τ,βm,).

We will show that for sufficiently large ra,

1 /n-i^ \

- i ϊ \jT^m\Iz -> Λ(tO as n -^ 00, for a.e. ^ € Xx.
n Vi=o /

We denote by Xι the x-intercept of a line in R2 passing through ^(2:) with
the same slope as v. Let

sn = max{a;i,... ,xn} and

tn = min{xi,... ,xn}.

Given ε > 0, let fco be the integer such that if k > ko, then we have
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(i)
f[ny] k+jw

h(v) - lim -H V V Pij
0 i=-k+jw

< ε.

Given any δ > 0 and ε > 0, there exists no such that if n > no, then we
have
(ϋ)

(iii)

(iv)

μE1 = μ\z : φ dμ φn{z) < δ > > 1 - ε,

* < * > - = * Y . y. p '
I j—Oi—-ko+jw

1 / n - 1 \

-- i/ ί \JTβko\lΛ <ε\>l-ε,

2
and
(vi) | 5 n - t n | <2nδ.

We choose δ < ε2 and choose no satisfying (ii)-(vi) above. We fix m0 such
that ko < (ε/2)no < mo < εno. For notational convenience, we write m and
n instead of m0 and no respectively. We note that

n - l

\/fjβmonIz

3=0

on Ix

<P2~Ύ(z)+L-l sn+m+jw

< V V Pi,jθnlz.
j=0 i=tn~m-\-jw

Since tn and sn satisfy that

|(ίn + m) - {sn - m)\ = |2m + ίn - sn | > |2m -

and

- (tn -m)\ < εn,
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if z E Eλ, then by our Corollary and (ii), we have

ko+jW

V1 v "v n, -ii
j=0 i=tn—m+jw ) \j=0 i= — ko+jw

sn+m+jw

V J
U=gi ι=tn—m+jw\i=tn-m

-rεn + -(92 —
ΐl Tί

2r)

where gi = min{[ny], φ^~ι

Hence we have

— 1} and q2 = max{[ra/], φ%~ι{z) + L —

Λ (n-\ \ 1 /[ny] Λo+jti; \

-H \\JT βm\Iz I - - i f V V i i j I

(z)-\-L — 1 5n-|_ί7ι-j-^ιt;

V V i

τ(ε + ί(tt; + 2r)) + ε.

Is
n

^[ny] ko+jw

V V J
j=0 i= — ko+jw

Let E = Eι Π JB2. If z E E, then by our choice of m and Corollary 1, we have

n

<

i=o

, βm)

+ ifΓ (n\Jf̂ k\Iz\ - hz (f, /?,) + |Λ, (f, ft) - Λ, (f,
\i=0 /

< ε + ε + -πiT < ε{2 + r).
n

Since φx and ̂ ?2 are bounded, it is easy to see that there exists ω such

that hz ί ί , β) < α; for all /3 and all z. We may also assume that h(ΰ) is
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bounded above by ω. Now we compute

sup f hz (f, /?) dμ - h(υ)

< J \hz (f, βm) - Λ(v)

< ί hz (f,

(f, /?) - h(υ)\ dμ + ε

+ sup/ hJf, β)-h(υ) dμ

< ε(2 + r) + τ(ε + ί(iϋ + 2r)) + ε +

< ε(4 + 2τ + τ(w + 2r) + 4ω).

4ωε

In the case when v = f φ = η(l,0) for some real number 77, we need
to argue differently. We may assume η > 0. We construct φ' which is
cohomologous to φ as follows. Let φ' = (φ[^ φ'2).

(i) φ[ takes the values [7/] — 1, [η] and [77] + 1
ψ'2 takes the values —1,0,1.

(ii) In an orbit of a point, φ'2 value, 1 or -1, follows its value 0.

(iii) We use the ergodic theorem to construct φ'2 so that it takes the value
0 for all z's except a set of small measure.

Hence we may assume that ψ satisfies these properties.
\n] m

We let βm = V V Pij- Recall that r denote the size of the block map.

As in the previous case,we choose mo so that if m > mo, then

(i) mo > lOr,

(ii) \h(v)-H™(v)\<ε,

(iii) μ [z : |suP/3 / hz (f, β) - hz (f, βm) I < ε} > 1 - ε.
We fix 77i > mo. We choose no so that if n > n0, then

(iv)

(v) μ{
dand

- hz (f ,

< ε ) > 1 - ε,

(vi) μ I
n

< ε for all 0 < k < > 1-ε.

Let £? denote the set satisfying the above conditions, (iii), (iv), (v) and
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(vi). We have μE > 1 - 4ε. Let z G E.

Let

I 2=0 J

and

v = mmlγ^φ2(Ti(z)) : k = 0,1,... ,n - 1 [ .
I 2=0 J

Since 77 > 0, there exists io = max{fc : φ\(z) < i} for a.e. z G X±. We

denote by Φ ^ ^ )

max < V ψ2 {Tζ{z)) : 0 < k < i0, i - [η] < φ\(z) <

Now we compute

U \j=-m i=

m+u-! / m+u

= nH[ V

<i« V V
vΐ(z) ™+

V V fij + 2 - 2 ( ε n ) . r - r
)

1 (n~ι

-Hly

The second to the last inequality is clear because by the condition (i) on m0

we have

u+m

H[\/ V P»
i=0 j = _

V V p«
i=0 j=-

(n+m r-1 u+m Ψ\(z)

V V^. v V V
j=m z=0 j=v+m i=φ1f(z)—r



240 KYEWON KOH PARK

< u r r + (u — υ) r r.

Since the following inequality is also true

1
- I f
n

Λ"1

t = o

1 / rn-f-u ψ\ \*<)

<-Hl V V*
n \ = _ v *
1 fm+u-v Ψi(z)

1 / m vΓW \

m+u

V

we have

1 /n-1 \ -, / m+u Ψι(z)

lH[\]Tβm\Λ-l-H[ V V ^
U \»=0 / n \-m+u ϊ =0

< 4εrτ.

We note that

-H[ V1 v

n k—m+u i=0 n
Vv

converges to h(v).
As in the case of ΰ = / (/? d/i = (x, y) where y 7̂  0, it is now clear that

sup / hz (f, /3) cίμ - h{v)

can be made arbitraily small.

Similarly we can prove the following theorem.

D

Theorems P0Λ
V P ι ? 0 I is finite, then we have h(T) =

h(T) + h(v) where v = / ψ dμ — (/ φ1 dμ, J φ2 dμ).

The following Corollaries are also almost immediate from the proof of

Theorem 3.
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V V Pί,j I is finite for some k,Corollary 3. // Σ ~ = o # ( P0,i
— ra<2<m

then we have h(T) = h(T) + h(v) where v is given as above.

Corol lary 4. // a fiber Z2-action, F, satisfies the condition of Corollary

3 after a linear transformation by a matrix A in SL(2,Z), that is, AoF

satisfies the condition, then we have the above formula in Corollary 3 for the

entropy.
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