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RIGIDITY OF ISOTROPIC MAPS

FERNANDO CUKIERMAN

We consider a rigidity question for isotropic harmonic maps
from a compact Riemann surface to a complex projective
space. In the case of the projective plane, we prove that
ridigity holds if the degree is small in relation to the genus.
For a projective space of any dimension we obtain coarser
results about rigidity and rigidity up to finitely many choices.

Introduction.

Let f,g:X-*Ψr denote two isotropic harmonic maps from a compact Rie-
mann surface to complex projective space. In this article we study whether
from the isometry of / and g one may conclude their unitary equivalence.

Using Calabi's rigidity theorem, this question may be reduced to one in
the algebraic category, involving certain curves of osculating spaces to a
holomorphic curve. We obtain some rigidity results mostly by analyzing the
quadrics containing those curves.

After recalling some definitions and basic facts, we show in §1 that our
unitary question may be reduced to a projective one. Then in §2 we record
some rigidity statements that follow easily from the use of projective invari-
ants. In §3 and §4 we consider plane curves; we prove in (3.8) and (4.13)
that ridigidy holds, roughly speaking, if the degree is small compared to the
genus, providing a partial answer to a question posed by Quo-Shin Chi [C].

Motivated by the method of proof of Theorem (3.8), in §4 we begin a
study of the ideal of associated curves and of the curves f^(X) introduced
in §1. This is related to some aspects of Brill-Noether theory that we plan
to pursue in another article.

§1.
(1.1) We consider harmonic maps X -> P r from a compact Riemann surface
to complex projective space. One way of constructing such harmonic maps
is the following: start with a holomorphic non-degenerate / : X -* P r

and, using the Pubini-Study metric of P r, construct a Prenet frame / =
/o? fit j /r The maps /$ : X -» P r are harmonic, and, for the purpose of
this paper, harmonic maps obtained by this process will be called isotropic
maps. We refer to [EW] for definitions and details on this construction.
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One of the main problems treated in [EW] is to classify isotropic maps
among all harmonic maps and, in particular, to give conditions that guar-
antee that a given harmonic map is isotropic. Here we take a different route
and, following Chi [C], we consider the rigidity question

(1.2) If two isotropic maps F : X -> P r and F' : X —> P r are isometric, does
it follow that F and F' are unitarily equivalent ?

(1.3) In order to phrase (1.2) in more convenient terms, we introduce some
more notation and discuss a global way of defining the Prenet curves fk (see
[EW]).

Let Tk {k = 1,2,..., r) denote the flag variety

Tk = {(A, B)/A CB}C Grass(A; - l,P r) x Grass(A;,Pr).

For (A, B) E Tk let A1 and B' denote the corresponding k and k + 1 di-
mensional vector subspaces of CΓ + 1 and L = B' Π Alλ~ the (one dimensional)
orthogonal complement of A1 in J3', with respect to the standard hermitian
inner product on C 4 " 1 . Then we have a well defined differentiate map

πk : Tk -> P r

sending (A, B) to L.

(1.4) On the other hand, if / : X -^ P r is holomorphic, let f{k) : X ->
Grass(A;, P r) (k = 0,1,. . . , r - 1) denote the fc-th associated map [ACGH],
sending a point x € X to the osculating fc-plane to / at re. Our / induces
a holomorphic map (/(*~1\/(*)) : X -> Tk and the A -th member fk of the
Prenet frame is obtained as the composition

A

ψr

The harmonicity of fk follows from the fact that πk is a Riemannian sub-
mersion and (f(k~x\f^) is horizontal (see [EW]). It also follows that

(1.5) fk and (f(k~λ\f^) induce the same metric on X.
(Here Tk is given the metric induced by the product metrics of the Grass-

manians, which in turn inherit a metric from their Plucker embeddings.)

(1.6) Denote φk the projective embedding of Tk obtained by composing the

Segre with the Plucker embeddings

Tk C Grass(Jfc - l,P r) x Grass(fc,Pr)

C Ψ{Akσ^) x P(ΛΛ+1C r+1) C P(A*C+ 1 ® Ak+1σ+1) = Fk
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and for / : X -> P r holomorphic let us define

so we may rephrase (1.5) as

(1.7) fk and f^ induce the same metric on X.

(1.8) Now suppose that F and F' are as in (1.2), so that there are holo-
morphic / and / ' such that F = fh, F' = f'k and such that fh and f'k are
isometric. By (1.7), /W and / ' ^ are isometric, and by Calabi's rigidity
theorem, they are unitarily equivalent. Hence, the basic question (1.2) is
equivalent to

(1.9) Suppose that / : X -> P r and / ' : X -> P r are holomorphic and such
that /W is unitarily equivalent to / ' ^ for some h and k. Does it follow
that / is unitarily equivalent to / ' ? This method of reduction, using the
lifting map f^ plus Calabi rigidity, is borrowed from [C]. Now we have a
question in the holomorphic, or algebraic, category and we will approach it
by translating into the language of linear series.

(1.10) Remark. If / : X -» P r is holomorphic non-degenerate and 0 <

h < r then fh is isometric to f^Sh- This follows from (1.5) and the relation
= f(r-l-h) ( s e

The next Proposition will allow us to relate projective and unitary equiva-
lence.

(1.11) Proposition. Let V denote a finite dimensional complex vector
space with hermitian inner product (, ). Fix 0 < k < dim V and consider
V' = AkV Θ Λk+ιV C V" = V®2k+X with their naturally induced hermitian
inner products (, ) ; and (, }". Denote the groups of projective (i.e. modulo
scalars) linear automorphisms G = Aut(y), H = Aut(V, (, )), with similar
meaning for G' and H1. We consider G as a subgroup of G' in the natural
way. Then GΠHf = H.

Proof For g : V —> V linear, denote g* the adjoint of g with respect to (,).
Also, denote g' and g" the induced endomorphisms of V and V" respectively.
It is easy to check that (#*)" = (#")*. Since g' = g"\v. and (,)' = ( , ) ' V , it
follows that (g*)1 = (#')* also. Now suppose that / G GΠH', that is, f — gf

with g G G and /* = / - 1 . Then, (<?*)' = ((?')* - (oT1 = (ff"1)', which
easily implies g* — g" 1, as wanted.

(1.12) Corollary. In the situation of (1.9), i/£Λe isometry between ^>
/ ' ^ ' 25 induced by a projective automorphism σ ofψr then σ is unitary.

(1.13) Corollary. Also in the situation of (1.9), and assuming that
does not have projective automorphisms (this happens in particular if X does
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not have automorphisms) then f and f are unitarily equivalent if and only
if they are projectively equivalent

§2.

(2.1) In order to fix notation we recall some definitions from [H] or [GH]. If
X is a compact Riemann surface, a linear series on X is a pair (L, V) where
L is a line bundle on X and V C H°(X, L) is a linear subspace of the space
of global sections of L. We denote e : Vx -» L the induced bundle map from
the trivial vector bundle on X with fiber V, obtained by composing with the
natural bundle map H°(X,L)X ->- L. We assume that e is surjective (the
linear series does not have base points).

If / : X —> Ψr is holomorphic then / induces a linear series on X by taking
L = f*O(l) (0(1) is the line bundle on P r defined by a hyperplane) and as
V the image of the pull-back map H°(Fr, (9(1)) -> H°{X, L).

Conversely, from the linear series V C H°(X,L) we may reconstruct /
up to a projective equivalence since we may construct a holomorphic map
/ : X -> Ψ(V*) by sending x E X to the hyperplane in V consisting of
sections vanishing at x.

Two linear series (L,V) and (L',V) are said to be isomorphic (written
(L,V) = (I/, V9)) if there exists an isomorphism φ : L -» U such that
H°(φ)(V) = V. Equivalently, the induced maps to projective space are
projectively equivalent.

A similar construction applies for maps into Grassmanians: if V is a finite
dimensional vector space, morphisms / : X -> Grass(fc, V*) correspond to
surjective bundle maps e : Vx -> E where E is a vector bundle on X of
rank k. Notice that e determines and is determined by the vector space map
H°(e) :V->H°(X,E).

(2.2) Consider a linear series V C H°(X, L) on X corresponding to / : X ->
P(F*), with r + 1 = dim(F). Let Pk(L) denote the bundle of jets of order k
of sections of L ([Gl, G2, P]) and

th:Vx->Pk{L)

the composition Vx -> H°(X, L)x -> P*(L) of the inclusion with the natural
(truncated Taylor expansion) maps. For 0 < k < r — 1, denote by Pk

the image of tk\ Pk is a locally free subsheaf of Pk(L) of the same rank
k + 1, and the cokernel of £& is supported on the hyperosculation points of
/ (see (2.6), [P], [ACGH]). The fc-th associated map /<*> : X -> Grass(fc +
1,F*) corresponds to i* : Vx -> P* and the composition with the Plucker
embedding of the Grassmanian corresponds to

Λk+1(h) : Λk+ιVx -
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and hence the map /W : X -* Pfc of §1 is given by the linear series
where V^ is the image of the composition

(2.3) ΛkV®Λk+1V -> H0(ΛkPk~1)®H0(Λk+1Pk) -> H°(ΛkPk-1®Λk+ιPk)

and LVtk = Λ^P*"1 ® Λ*+1P*.
Now suppose that / : X -» P r and /' : X -» PΓ are as in (1.9). Let

V C H°(X,L) and V1 C H°(X,L') be the corresponding linear series. It
follows from (2.3) that if / ^ is projectively equivalent to / ' ' ' then we have
an isomorphism (2.1) of the corresponding linear series

(2-4)

Prom the projective -rather than unitary- viewpoint, question (1.9) may be
formulated as

(2.5) If (2.4) is satisfied, to what extend does it follow that

(2.6) The line bundle Ly^ of (2.3) may be expressed in terms of ramification
indices: one has an exact sequence

0 -> Pk -> Pk(L) -* Coker(t*) -> 0

and by [ACGH], page 39, Coker(^) is the structure sheaf of the divisor

β f e = Σ Σ OLj(x).X
xexo<j<k

where ctj(x) is the j-th ramification index of (L, V) at x. We obtain

Λfc+1Pfc(L) = Λk+ιPk ® Ox(Rk).

(2.7) Prom the standard exact sequences

0 -> ΩΘfc ® L -> PΛ(L) -> P * - 1 ^ ) -> 0

where Ω denotes the sheaf of 1-forms on X, we obtain

Λk+1Pk(L) = Λ*P*~1(L) Θ ΩΘΛ ® L.

Multipliying these equalities we find AkPk~x(L) = ΩΘva) ® i®Λ and hence
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(2.8) If, for instance, / does not have hyperosculation points of order k
(i.e. Rk = 0) then LVik = Lk does not depend on V and f^ : X -» Fk

corresponds to the linear series (1^, V^) where V^ is the image of

AkV <g> Λk+1V -> H°

(2.9) Proposition. Let X be a Riemann surface of genus g > 0. Consider

holomorphic maps f : X -» P r and f : X —> P r . Let d denote the degree of

f and rk = deg(Rk), with similar primed notation for / ' . Suppose that f^

is protectively equivalent to f1^ . Then

2(g - ΐ)h2 + d(2h + 1) - rh_λ - rh = 2(g - ΐ)k2 + d!(2k + 1) - r'k_t - r'k.

Proof. If/ (resp. /') corresponds to (L, V) (resp. (L',V)) then f^ pro-
jectively equivalent to f'^k' implies, by (2.4) and (2.7), that

0 Qxi-Rh^ - Rh) S

Taking degree we obtain the Proposition.

(2.10) For the rest of this §, we restrict our attention to holomorphic maps

/ : X —> Ψr without special hyperosculation points, that is, we assume

Rr.λ = 0.

(2.11) Corollary. Using the notation in (2.9), suppose that d — d' and

h φ k. Then fh is not isometric to f'k, except that fh may be isometric to

fd-h when 3 = 0.

Proof, when d = d' the equality in (2.9) may be written as (g — l)(h — k)(h +

k) = -d{h-k).

(2.12) Remark. Regarding the case g = 0, fix an hermitian inner product
on ^ ( P 1 , © ^ ) ) and consider the cf-tuple Veronese embedding / : F 1 -> Ψd

defined by an orthonormal basis of H°(Ψ\O(d)) = Symmd(iί0(P1,(9(l))).
Then fh and fd-h are isometric but not unitarily equivalent, since they have
different Kahler angle (see [BJRW], Theorem (5.2)).

(2.13) Proposition. // / : X -> P r and f : X -> P r are such that /(/ι> is

projectively equivalent to f'{h) then L Θ 2 Λ + 1 ^ L'®2h+1.

Proof Follows from (2.4) and (2.7).

(2.14) For a linear series (L, V) on a curve X of genus g > 0, let us denote
deg(L) = d, dim(y) = r + 1. The series (L, V) is said to be complete if
V = H°(X, L). We remark that if d > 2g - 1 and r > d - g then it follows
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from Riemann-Roch that (L, V) is complete and r = d — g. Hence, a non-
degenerate map / : X -» Ψd~9 with d > 2g — 1 determines and is determined
(up to projective equivalence) by a line bundle L on X of degree d.

(2.15) Proposition. Suppose f : X -> P r is a non-degenerate holomorphic
map of degree d > 2g — \, with r = d — g, and fix 0 < h < r. Then, up to uni-
tary equivalence, there exist at most (2h + l)2g non-degenerate holomorphic
maps / ' : X -» P r such that f'h is isometric to fh.

Proof. By (2.14), / (resp. /') corresponds to a complete linear series with
line bundle L (resp. I/). Suppose that f'h is isometric to fh and that / ' is not
isometric to /. We claim that L is not isomorphic to V: otherwise / and / '
would be projectively equivalent and hence, by (1.12), unitarily equivalent,
contrary to our assumption. On the other hand, according to (2.13), we have
£$2/1+1 = |y®2/ι+i a n ( j hence the possible choices for V correspond to the
(2/i + I)29 points of (2h + l)-torsion in the group Pic°(X) of isomorphism
classes of line bundles of degree zero on X.

(2.16) Remark, using the notation of (2.15), there are at most D2g maps

/ ' such that fh is isometric to f'h and fk is isometric to /^, where D is the

greatest common divisor of 2h + 1 and 2k + 1. The argument is the same as

in (2.15).

(2.17) Proposition. Suppose f : X —» P2 maps X birationally onto a curve

Y = f(X) of degree d with δ < d — 3 nodes as only singularities. Then /i is

rigid (among maps as in (2.10)).
More precisely, if f : X -» P2 is such that f[ is isometric to /i and f

does not have cusps (i.e. R[ = 0) then f is unitarily equivalent to f.

Proof. Let / (resp. /') be given by the linear series (£, V) (resp. (I/, V')).
It follows from (2.7) that Z,®3 ^ L'®3 and hence d = d1. It is known (see
[ACGH], page 56) that (L, V) is the unique linear series on X with deg(L) =
d and dim(F) > 3. It follows that / and / ' are projectively equivalent and
hence, by (1-12), they are unitarily equivalent.

(2.18) Remark. A similar proposition holds for maps / : X —> P r such

that the corresponding linear series is unique with the given degree and

dimension. See [CL] for examples of this situation.

(2.19) Remark. A stronger result than (2.17) will be proved in (3.8) using

a different method.
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§3.

(3.1) In this section we specialize to the case of plane curves. We consider a
holomorphic map / : X —> P2 from a compact Riemann surface X of genus
g > 0. We assume that / maps X birationally onto a curve Y — f(X) of
degree d.

(3.2) As in §2, fx is isometric to / ( 1 ) I - ^ ^ c P 8 . Identifying F 2 with
its dual, we may think of T = T\ as

T = {(x,y)/xoyo + χ\Vi + x2y2 = 0} c P2 x P2 C P8.

(3.3) As in (1.10), let us notice that if fW denotes the first associated (or
dual) curve of / then /i is isometric to fι . In fact, if r is the unitary

automorphism of P8 defined by r(x ® y) = (y® x) then the known biduality
j(i)(i) = f m e a n s t h a t τf(i) = f(i)(i)m

(3.4) We will say that / x is rigid if it is true that given a map / ' : X —> P2

as in (3.1), with degree d\ such that /2 and f[ are isometric, it follows that
/ ' is unitarily equivalent to / or to fW.

(3.5) Since P2 x P2 C P8 is cut out by quadrics and T is a hyperplane section
of P2 x P2, T is equal to the intersection of the quadrics containing it. For
a variety Z in projective space, let us denote I2{Z) the space of quadrics
containing Z.

Clearly we have I2{F) C I2{fW(X)).

(3.6) Proposition. If I2{T) = I2(f{1)(X)) then ft is rigid.

Proof. If fι is isometric to f[ then, as in §2, there exists a unitary linear iso-
morphism σ : P8 -> P8 such that σ(fw(X)) = ft{1)(X). Then σ transforms
the quadrics containing f^(X) into the quadrics containing f'^(X). Using
our hypothesis it follows that σ(/2(JΓ)) = hi?7)- Since T is an intersection
of quadrics, we obtain that σ(T) = J7. But Aut(^") is the direct product of
Aut(P2) (acting by g{x,y) — {g{x),g(y))) and the subgroup generated by r
(as in (3.3)), and hence it follows that either σ or rσ is induced from P2.
It follows from (1.11) that the automorphism of P2 is in fact unitary. This
proves the Proposition.

(3.7) Remark. A proposition similar to (3.6) holds for maps / : X —> P r

due to the fact that Tk (as in §2) is also an intersection of quadrics. In fact,
Grass(fc - l,P r) x Grass(fc,Pr) C P* (as in (1.6)) is the intersection of the
Grassmann and the Segre quadrics, and T^ is a linear section of the product
of the Grassmannians (see [D], page 184).

(3.8) Theorem. Let f : X —> P 2 be a holomorphic map as in (3.1). Denote
r x = degίJRx) the total number of cusps of f, as in (2.6). If3d<2g — 2 — r1

then /i is rigid.
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Proof. We will prove that I2(F) = I2(fw(X)). The result then follows from
(3.6). Suppose that there exists a quadric Q c F containing f^(X) and
not containing T. Denote Z = (f(X) x F2) Π Q Π T C P 2 x P 2 C P 8 . We
claim that all components of Z have dimension one. Let h and k denote
the pull-backs to T of the hyperplane classes in P2, so that h and k form
a basis of Pic(.F). The claim follows by observing that no component of
the divisor Q Π ^ , with class 2h + 2&, could contain the irreducible divisor
(f(X) x P 2 ) Π f with class dh, because d > 2.

Since f{1)(X) C Z, we must have deg(f^(X)) < deg(Z). Computing in
Pic(P2 x P2), deg(Z) = dh.{2h + 2k).(h + k).(h + k) = 6rf. On the other
hand, we obtain from (2.7) deg(/^>(X)) = deg(Ω ® L®3 ® Oχ(-Λi)) =
2g — 2 + 3d — ri, so that the existence of Q implies 2g — 2 — rλ < 3d. This
contradiction proves the Theorem.

(3.9) Corollary. Suppose for instance that the only singularities of f(X)
are δ nodes and K = rλ ordinary cusps. If2δ + 3κ < d(d — 6) then fλ is rigid.

Proof. Follows from (3.8) and the formula g = (d~1) — δ — K.

§4.

(4.1) In view of (3.7) and (3.8), it seems interesting to determine the equa-
tions of the projective curves fW(X) and f^(X) for a given / : X -» P r .

We remark that the space of hyperplanes containing f^(X) is the kernel
of the higher Gauss map Λk+xV -> J3Γ°(Λ*+1P*), with notation as in (2.2).
When this map is onto, the ideal of fW (X) is generated by quadrics since the
degree of /\k+ιpk is large (see [G]); also, these quadrics may be represented
as two by two minors of a certain matrix of linear forms [EKS]. We leave a
more detailed study of this situation for a future paper.

Now we start by looking at the hyperplanes containing f^(X) for a given
/ : X -> P 2.

(4.2) Proposition. Let f : X —» P2 be a holomorphic immersion given by
the linear series (L, V) of dimension 3 and degree d, and consider f^ : X —>•
P 8 as in (3.2). Denote by E the hyperplane E = {(x,y)/xoyo + Xiyι + 2̂2/2 =
0} C P 8 . Then the following holds

(a) if g = g(X) > 0 then Y = f{1){X) C E is non-degenerate,

(b) if X = P1 then Y C E is degenerate if and only if f is given {up to
projective transformations) by f(t) — ( l , ί n ,£ m ) for some m , n G N .

Proof. Let the plane curve f{X) C P2 be given by the equation F = 0, so
that

Y = {(x,y)/F(x) = 0,y = ΔF} C P 2 x P2 C P 8
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where we set Δ F = (F0,Fι,F2) and the subindices indicate partial deriva-
tives. In these terms, a hyperplane H C P 8 with equation £ a^ Xi ® yj
containing Y is the same as a relation

(4.3) ^2Li(x)Fi(x) = 0 mod F

where the Li are linear in x. When (L0,Zα,L2) ~ Ô OJ #15^2)1 H is £?, and
the idea is that when H ψ E then (4.3) implies the existence of a non-zero
regular vector field on X. In fact, an (L0,Lι,L2) as in (4.3) is the same as
an element in the kernel of ΔF o β in the diagram

(4.4)

H°(X,L)3 - ^ 4 H°{X,L®d)

where the vertical maps are pull-back of sections. Consider the diagram

0

t
- TX(D) f*TP — f*OP{d) =

I
(4.5) L3 '

Oy

0

where φ = (FQ,Fι,F2), the column is the pull-back to X of the Euler se-
quence on P = P2 and the row is the normal bundle sequence of / (D is
the divisor of zeroes of the differential df and the normal bundle Nf is re-
alized as a subbundle of f*Op(d) via ψ). Taking global sections in (4.5) we
see that if H°(X,TX(D)) = 0 then ker(ΔF) is one-dimensional, and hence
dim(ker(ΔF o β)) = 1, as wanted. The condition H°(X,TX(D)) = 0 is
satisfied if deg(jD) < 2g — 2; in particular, it is satisfied if / is an immersion
(JD = 0) and g > 2.

It remains to analyze the case g = 1. Suppose that X is an elliptic curve,
represented as the complex plane modulo a lattice. We may assume that
/ : X —> P2 is given by f(z) = {I,fi{z),f2(z)) where /i and f2 are elliptic
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functions with 0 < ord(/χ) < ord(/2); here ord denotes order of pole at the
origin. As before, denote by F = 0 the equation of /(X), so that we have
F(l,/χ(2)5/2(2)) = 0 for all z. Differentiating this, we obtain the second of
the equalities below. The other two are the Euler relation and (4.3).

It follows that (L0,Lι,L2) — α(l,/χ,/2) + 6(0,/ί,/2) for some constants a
and 6. We get a contradiction by looking at orders of pole at the origin.

For (b) consider the exact diagram of sheaves on X

0 > Oχ > Oχ(l)

I
Oχ{d

Using coordinates x0 and X\ on X = P1, a syzygy as in (4.3) may be repre-
sented by an element (L0,Zq) G H°(OX(1)2) such that

(4.6) Jac(/).(L0,£i) e V3 C H°(X,L)*.

Considering the differential operator δ : H°{X,Ox(d)) -> H°{X,Ox(d))
defined by δ = Lo ^~ + Lλ ^|-, we see that (4.6) is equivalent to the condition
δ(V) C V. Now, Aut(Px) acts on the space of vector fields on P1 with two
orbits, so we may assume after a change of variables that δ — X\ g~ (a vector
field with a double zero) or that δ — Xo^~ (& vector field with two simple
zeroes). Denote ef = ij^ί" 1 the standard basis of H°(X, Ox(d)). In the
first case, we have δ(βi) = i.e^i and we see that δ is nilpotent and its only
three-dimensional invariant subspace is the one generated by eo,ei,e2. In
the second case we have δfa) = i.e^ so that the ê  are eigenvectors with
different eigenvalues, and the three-dimensional ^-invariant subspaces are
the ones generated by three of the e/s. Prom this, (b) easily follows in both
cases.

Now we consider the quadrics containing Y = f^(X) for a given / : X —>
P2 with linear system (V,L). We maintain the notation introduced above.
It is easy to see that such a quadric is the same as a relation

= 0 m o d F
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where the Qij are homogeneous polynomials of degree two. In other words,
such a quadric corresponds to an element

(4.7) q e S2(H°(P, Op{ΐ)f) such that S2(AF)(q) = 0

using notation as in (4.4); S2 denotes second symmetric power.

Let us recall (see [H], Exercise (5.16)) that for each exact sequence 0 —>
A—>B->C->0of locally free sheaves, with A of rank one, one has a
natural exact sequence

(4.8) 0 -> A ® B -> S2(B) -* S2(C) -» 0.

Applying (4.8) twice to (4.5) (assuming D = 0) we obtain the exact diagram
(4.9)

0 0

0 0

Taking cohomology in (4.9) we find that

(4.10) H° (kerS2 (φ)) /H° {L3) Si ker (H° (f*TP ® TX) -»• H1 (L3)).

On the other hand, considering the natural maps

it follows that the space of quadrics containing Y modulo those containing
P 2 x P 2 is a subspace of H° (ker S2 (φ)). The quadrics that are multiples of
the Euler relation are represented by elements in H°(L3) and, therefore, the
space of quadrics containing Y modulo those containing T may be identified
with a subspace of ker(J5T°(/*TP ® TX) -> H^L3)).

Combining this with Proposition (3.6) we obtain
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(4.11) Proposition. If the space in (4.10) is zero (for instance, ifH°(f*TP®

TX) = 0) then fx is rigid.

Now we assume g > 2 and turn our attention to £Γ°(J3), where we set

B = f*TP <g> TX. Let us remark first that the Euler characteristic of B

is 3(d - (2g - 2)), so lϊo(JB) = 0 is possible only if d < 2g - 2. Tensoring

the Euler sequence 0 -» Ox -> F* ® L -> /*TP -> 0 by TX and taking

cohomology, we obtain an exact sequence

0 -> F* ® H°(L ® TX) -> F°(B) -» f ί^TX) -> F* ® Hι(L ® TX)

where the last map is Serre-dual to the multiplication map

μ : V ® H0(2ίr - L) -^ J °

(here ί ί denotes a canonical divisor and, as it is customary, we use additive

notation).

Hence,

(4.12) For d<2g-2, H°(B) = 0 if and only if μ is onto.

By the H° Lemma ([G], (4.e.l)), μ is onto if h1(2K - 2L) < 1. Since this

condition is satisfied if d < g — 1, we obtain

(4.13) Proposition. // g(X) > 2 and f : X -* Ψ2 is an immersion of

degree d < g — 1 then fι is rigid.
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