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PARTITIONING PRODUCTS OF P(

OTMAR SPINAS

We generalize the cardinal invariant α to products of
V(ω)/Άn and then sharpen the well-known inequality b < o
by proving b < α(λ) for every λ < ω. Here α(n), for n < α;,
is the least size of an infinite partition of (V(ω)/ϋn)n, α(ω) is
the least size of an uncountable partition of (V(ω)/ fm)ωi and
b is the least size of an unbounded family of functions from
ω to ω ordered by eventual dominance. We also prove the
consistency of b < α(n) for every n < ω.

0. Introduction and notation.

In this paper we generalize the cardinal invariant α to products of V(ω)/ fin,
where V(ω) is the power set of ω and fin the ideal of finite subsets of ω, and
show that Solomon's inequality b < a remains true for these numbers. The
definitions of α and b will be given below.

Throughout the paper by V(ω)/&n we really mean /P(ω)/Άn\{0}1 and
will confuse members of V(ω)/&n with their representatives in [ω]ω, the
set of infinite subsets of ω. For λ an ordinal, by (V(ω)/Άn)λ we denote
the set of all C : λ -> <P(α;)/fin\{0}, ordered coordinatewise. Members of
(<P(α;)/fm)λ will be called λ—dimensional cubes, or just cubes if λ is clear
from the context. As the terminology suggests we will sometimes confuse C
with Yίa<χC(a). Cubes C,D are called compatible, and we write C\\D, if
there exists a cube contained in C and D. Otherwise C, D are incompatible
and we write C i. D. A subset of ('P(α;)/fin)λ is called an antichain if any
two members are incompatible. For Λ C (P(α;)/fin)λ, by Λ\C we denote
the set of cubes in Λ which are compatible with C For F C λ , let pr^^l =
{D\F : D e A}. It is well-known that (^(α;)/fin)λ can be densely embedded
into a complete Boolean algebra which is denoted r.o.('P(α;)/fin)λ. Even
though ('P(u )/fin)λ is not itself a Boolean algebra we use the terminology
of Boolean algebras and call a maximal antichain of (V(ω)/ fin)λ a partition.
Note that the meet in r.o.(P(ω)/fin)λ of a subset of (P(α;)/fin)λ is the
coordinatewise intersection of its members. As usual, we will use the symbol
f\ to denote the meet operation.

The cardinal invariant α is defined as the least size of an infinite partition
of V(ω)/ήiί. It is well-known that α is uncountable and that the axioms of
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ZFC do not determine its value (see [vD] or [K, 2.15 p. 57 and 2.3 p. 256]).
Example 2.1. below will show that there exist partitions of (V(ω)/ίm)x of
size 7 for every cardinal 7 with 0 < 7 < |λ|. This motivates the following
definition.

Definition. For 0 < n < ω let α(n) be the least size of an infinite partition
of (V(ω)/ fin)n. If λ is an infinite cardinal we define α(λ) as the least size
> λ of a partition of (<P(ω)/fin)λ.

In this paper we investigate α(λ) for 0 < λ < ω.
It is easy to see that for any 0 < λ < 7 < α ; w e have 01(7) < α(λ). However

for arbitrary cardinals 0 < λ < 7 this may be false; in a model where CH
fails and α = ω l 5 e.g. in the Cohen model, α < α(α;1).

Most other familiar cardinal invariants such as p, t, f), s can be generalized
to (V(ω)/&ή)x in an obvious way. Straightforward generalizations of the
well-known inequalities p < t < J) < $ (see [vD] and [BS] for the definitions
and proofs) give p(λ) < t(λ) < f)(λ) < s(λ). Moreover it is not difficult to see
that p = p(λ), t = t(λ) and s — s(λ) hold for every λ. However for the f)(λ)
this is not true. In [ShSpl] and [ShSp2] the consistency of f)(n + 1) < i)(n)
has been proved for every n < ω, thus solving an open problem from [BPS].
See also [GRShSp] for another natural situation where the f)(λ) occur.

It is an open problem how to construct a model for α(n + 1) < α(n).
In this paper we are concerned with the following problem. From the

equalities and inequalities stated above it follows that t is a lower bound for
all the f)(λ). Hence clearly Martin's axiom implies f)(λ) = c, where c is the
cardinality of the continuum.

For α(λ) obvious lower bounds are missing, and it is not trivial to show
that Martin's axiom implies a(ω) = c; moreover we do not know whether
MA implies α(λ) = c for ωι < λ < c1.

One way to show that Martin's axiom implies α = c is by using the
inequality b < α which is due to Solomon and can be found in [vD, 3.1(a)].
Here the bounding number b is defined as the least size of an unbounded
family in (ωω, <*), where ωω is the set of all functions from ω to ω and <*
is eventual dominance.

In Sections 1 and 2 we sharpen this inequality by proving b < α(λ) for
every 0 < λ < ω.

In Section 3 we sketch the proof of the consistency of b < α(n) for every
n < ω. We only sketch it since it is a variation of Shelah's consistency proof
of b < α in [Shi]. We do not know how to construct a model for b < α(ω).

Our notation is the standard set-theoretic one. A function is identified
with its graph, i.e. it is a set of pairs. The concatenation of two functions

1 Stefan Grieder has shown that the answer is yes for λ = ω\.
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/, <7 is denoted by f~g. By XY we denote the set of all functions from X to
Y. Given a set X and a cardinal K, then [X]* ([X]-κ) denotes the set of all
subsets of X of cardinality K (at most «).

Acknowledgment. In a preliminary version of this paper we had proved
only α(α ) > min{b, cov(Λ4)}, where M is the ideal of meagre subsets of the
real line and cov(Λί) is the least size of a subset of Λi whose union is R.
The only occurrence of cov(M) was in the proof of Proposition 2.9. The
referee observed that cov(jM) can be eliminated by proving Lemma 2.10.

1. Infinite partitions of finite products of V(ω)/fin.

Lemma 1.1. Suppose n* < ω and A is an infinite partition of {V{ω)/ fin)n*.
Let F C n* be maximal (with respect to C) such that there exists T G [Λ]ω

with the property that {p\F : p G J7} has the finite intersection property (i.e.
finite subsets have a lower bound). Then \F\ = n* — 1.

Proof. Suppose |π* \ F\ > 2. Let C be a lower bound of {p\F : p G T}. Fix
i* En*\ F, and let F* = F U {i*}.

By assumption we may choose finite T^Q. A such that p r ^ * ^ ) has the
finite intersection property, Λί^f^ '• P € ^o} AC Φ 0 and "ptn*\F*T^ is
a partition of (V(ω)/fin)n*\F*. Let Co = f\{p\F : p e To} l\ C, and let

Suppose ( ^ : i < n), (Ci : i < n) and (Ui : i < n) have been constructed.
Suppose U { P ( O : p G f o U " Ufn_i} 7̂ * ω. By assumption we may choose
finite Tn C A such that prjp({(7n_i}U.7Γ

n) has the finite intersection property,
f){p(i*) : ? G f n } \ U{p(i*) : p e f 0 U U . F ^ } is infinite and p r n Λ F ^ n

is a partition of (?(w)/fin)n*\Γ. Let Cn = /\{p\F : p G Tn) Λ Cn_i and

Suppose that in this way we can define f n,(7 n, Un for every n < ω. Then
Fn Π ̂ m = 0 for distinct m,n, and U M ^ 1 P ^ U{̂ "n * n < ω}} has the
finite intersection property. Let U be an ultrafilter on the Boolean algebra
r.o.(7:>(a;)/fin)rl^F*. Since {p\n* \F* :p G Tn) is a finite partition we can
choose uniquepn G Tn such that pn\n*\F* G U. But then {pnN*\{^*} n <
ω} has the finite intersection property, and hence we obtain a contradiction
to the maximal choice of F.

Consequently, the construction above stops at some stage n, because
\J{p(i*) -P€ ^oU U^n} =* ω. The family JF witnesses that A\nΛF{ω}~Cn

is infinite. Hence there exist n0 < n and p0 G Tno such that
Λ\{(i%po(i*))} U n Λ F Φ{ω}ΛCn is infinite. Hence there exists j G n* \ F*
such that >U{(i*,P6(i*)), O',α;\po(j))}Un*\^\^»{α;}Λσn is infinite. Define
cube Ko = {(i ,Λ(t )>, 0 > \ Λ U ) » U n*\^^'»{ω}ΛCn. So Ko ± p0 and
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K0\F*<p0\F*.
Now we repeat the above construction inside Ko for Λ\K0. By the same

argument as above it must stop after finitely many steps, and hence we obtain
Pi€A and cube Kx < Ko such that pi||ϋΓ0) Pi -J- Ku Kλ \F* < Pl \F* and
Λ\Kι is infinite. Then clearly p0 Φ p\. Proceeding similarly we construct
a descending chain of cubes (Kn : n < ω) and family (pn : n < ω) in A
such that pn+ι\\Kn, pn J_ Kn, Kn\F* < pn\F* and A\Kn is infinite for every
n < ω. Then clearly pn φ pm for distinct n, ra, and {pn \F* : n G ω} has the
finite intersection property. This contradicts the maximality of F. D

Theorem 1.2. b < α(n) holds for every n < ω.

Proof. Let n* be fixed and let A be an infinite partition of (V(ω)/ fin)n*. Let
F C n* be of maximal size such that there exists T G [A]ω with the property
that {p\F : p G J7} has the finite intersection property. By Lemma 1.1, F
has size n* — 1. Let n*\F = {i} and choose cube C such that C < p|\F for
every p E J7. Certainly {p(i) : p G J7} is almost disjoint. For p G f choose
Ap G [pίi)]" such that Λp Π Ag = 0 for distinct p,q^T. We claim that the
set

A' = {peA:Vqe F(\P(i) n Aq\ < ώ)}

has size > b. Otherwise, for p G A! define gp G τω by pp(g) = max(p(i)ΠAg),
and choose # G τω such that for allp G *4\ #(#) > 9P(^) for almost all g G T.
Let A G [ω]ω be such that \A Π Ap| = |AΠ (Ap \ g(p))| = 1 for all p e T.
By the maximality of A, there exists p € A which is compatible with the
cube {(i, A)}UC. Certainly p £T and p\F\\q\F for every g E f , and hence
p E A'. But this is impossible. D

A simple application of Ramsey's Theorem shows that given an infinite
partition of (P(o;)/fin)n*, there exists i < n* such that pr^Λ, contains an
infinite almost disjoint family. As a corollary of the proof of Lemma 1.1 we
obtain the stronger result that for some i < n*, pr{i}*A even contains an
almost disjoint family of size t.

Corollary 1.3. Suppose A is an infinite partition of (V(ω)/&n)n*. There
exists i < n* such that pΓ{i\ (<A) contains an almost disjoint family of size t.

Proof. By Lemma 1.1 there exist ^Ό £ [A]ω and ί < n* such that
has a lower bound, say cube Co. Hence p r φ Fo ιs countable and almost
disjoint.

Suppose that for 7 < t, (Ta : a < 7) and (Ca : α < 7) have been
constructed such that (Ta : a < 7) is a C —increasing chain in [A\<1, (Ca :
a < 7) is a decreasing chain of cubes in (P(ω)/ fin)n*\^ and Ca <p\n*\ {i}
for every p G f α .
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Let 7 be a successor ordinal. Note that {p(i) : p G Fy-i} is an almost
disjoint family. As t < α, it is not maximal. Choose A G [ω]ω such that
I-A Πp(i)\ < ω for every p G TΊ~\. Find p e A which is compatible with
{(i, A)} U C7_i. Let JF7 = J F ^ U {p} and C7 = C7_i Apfn* \ {i}.

If 7 is a limit let TΊ — \S{Ta : a < 7} and choose C7 such that C7 < Ca

for every α < 7. Such CΊ can be found as 7 < t. Then the inductive
assumption is easily verified.

Finally let T± — \]{Ta : a < t}. Given distinct p, q G ̂ t, by construc-
tion pfn* \ {i},gίn* \ {i} are compatible, and hence p(i)>q(i) are almost
disjoint. D

2. Uncountable partitions of countable products of P(ω)/fin.

Partitions of (/P(α;)/fin)λ, for λ > ω, are considerably more difficult to
understand than those of finite products. First note that there always exist
partitions of every size < λ, as is shown by the following example.

In order to have a simple notation for defining cubes, if A, B are sets and
B has one element, in the sequel we will identify the (one-element) set AB
with its member.

Example 2.1. Let 7 < λ. Choose A G [ω]ω such that -A G [ω]ω. For a < 7
set

pa = -Aα x A x α/\ ( α + 1 ) ,

and let T — {pa : a < 7}. Moreover, set </ = —A7 x u/^7 and 4̂ = T U {g}.
Given cube p which is incompatible with </, there exists minimal a < 7

such that p(α) C* A. Then clearly p| |pα. It is easily seen that A is pairwise
incompatible. Hence A is a partition of ('P(α;)/fin)λ.

The main result of this section is the following.

Theorem 2.2. a(ω) > b.

A simple observation is that the analogue of Corollary 1.3 badly fails in
general for infinite products.

Example 2.3. Let A G [ω]ω with -A G [ω]ω. Then A = X{A,-A} is a
partition of (^(α;)/fin)λ.

However there exist partitions of (V(ω)/ fin)^ which resemble ones of fi-
nite products, and to these we will often reduce more difficult situations
during the proof of Theorem 2.2 later. Then we will apply the following
generalizations of Lemma 1.1 and Theorem 1.2.

L e m m a 2.4. Suppose λ > ω and A is a partition of (V(ω)/ fin)λ with the
property that there exist F C λ and T G [A]ω such that λ\F is finite and
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{p\F : p G J7} has the finite intersection property. If F is maximal (with

respect to C) such that there is T as stated, then X\F has one element.

Proof. The proof is completely analogous to the one of Lemma 1.1. In-
stead of a descending chain of finite-dimensional cubes Cn in (V(ω)/Άή)F

we construct one of infinite-dimensional cubes. The family T ensures that
A\χ\F{ω}"Cn is infinite always, and hence that the construction yields in-
finitely many cubes Kn and pn G A- D

By a similar modification of the proof of Theorem 1.2 we obtain the fol-
lowing.

Proposition 2.5. Suppose that A is as in Lemma 2.4. Then \A\ > b.

Consider another example, which will motivate the definition to follow.

Example 2.6. Let σ G n2, and i < 2. Define cube pσji as follows. For j < n
let

if σ(j) = 1.

Moreover

( if i = 0

if ί = 1.

For j > 2n + 2 let pσΛ{j) = ω. Set J7 = {pσ* : σ G < ω 2, i < 2} . Clearly T is
pairwise incompatible. For x Eω2 define cube qx by

if z(j) = 0

if x(j) = 1

for all j < ω.
Now it is easy to see that FU {qx : x e ω2} is a partition of (V(ω)/&n)ω.

Moreover, if A is any partition of (P(ω)/ fiτι)ω with T C 4̂, then for every
p G , A \ f there exists x G "2 such that p < qx. Hence A has size c.

Definition 2.7. Given cubes C0,CuC2 G (P(ω)/fin)ω we say that Co

separates Cι,C2, if Co _L Cx and Co J- C2 and every cube which is com-
patible with both C\ and C2 is compatible with Co. If Λ is a partition of
(V(ω)/Άή)ω we say that Co A—separates C\,C2 if Co separates Ci,C2 and

is countable, but both A\C\ and ΛfC2 are uncountable. Given cube
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C, we say "A has no separation (below C)" if there exist no cubes Co, CΊ, C2

(below C) such that Co *A—separates CΊ,C2.

Proposition 2.8. Let A be an uncountable partition of (V{ω)/&Ώ)ω, and
suppose that for every cube C such that A\C is uncountable there exist cubes
CO,Ci,C2 < C such that Co A—separates C\, C2. Then A has size c.

Proof. By hypothesis it is trivial to construct two families of cubes, {Cs : s E
<ω2) and (Ds : s E <α;2), such that for all 5 G <ω2 the following properties
hold:

(1) C0 = C;
(2) sCt=ϊD8<Cs and C< < C s;

(3) D s Λ-separates Cs - {0> > C* * (1)
Let Cs = A\DS and C = \J{Ca : 5 G < ω 2}. So C is countable. For xeω2 let

C x be a cube with C x < Cx\n for every n < ω. Suppose x, y G ω2 are distinct,
and let s = α; Π y. Choose px,py G ̂ l such that ParllCΌj a n ( i PyllCy Since
Ds separates Cx,Cy, if px = py then px E Cs. Hence, in order to finish the
proof it suffices to modify the construction of (C8 : s G <ω2), (Ds : s G <ω2)
to make sure that Cx ± p for every x eω2 and p G C . For this we need the
following simple claim.

Claim . Suppose A\C is uncountable andp G A. There exists cube Co < C

such that Co _L p and A\Co is uncountable.

Proof It is obvious that every q G A\C \ {p} is compatible with {(n, C(n) \
p(n))}\JC\ω\{n}, for some n. Hence there exists n* such that A\{(n*, C(n*)\
p(n*))}UC\ω\{n*} is uncountable. So let Co = {(n*,C(n*)\p{n*))}UC\ω\

κ>. •
Using the Claim and a suitable bookkeeping it is easy to construct (Cs :

5 G <ω2), {Ds : s G <ω2) with (1) - (3) such that for every 5 G <ω2 and
p eCs there exists n > ίh(s) so that for every t G n 2 we have C* J_ p. By the
observation above, this is enough to ensure px Φ py for distinct x,y G "2,
and hence to conclude |*4| = c. Π

By Proposition 2.8 we may assume that there exists cube C such that
A\C is uncountable and A has no separation below C. By replacing A with
{p Λ C : p G *AfC}, without loss of generality we may assume C(n) = ω for
all n < CJ and so that A has no separation.

Examples 2.1 and 2.6 show that given a partition A, the set T of p G A
with p(n) =* ω for almost all n essentially affects the size and shape of A.
If T is uncountable, then A has size > b by Proposition 2.5. If .F is empty,
then \A\ > b by the following proposition. For its proof we do not make use
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of our assumption that A has no separation. This will only be used later in
the case that T is countable and not empty.

Proposition 2.9. Let A be an uncountable partition of (P(ω)/fin)α;, and
suppose that there exists cube Co such that for every p G A, either p _L Co

or there exist infinitely many n < ω with the property that CQ{Π) \p{n) is
infinite. Then \A\ > b.

Proof. Choose p0 G A\C0 such that |po(^) Π C0(n)\ = ω for almost all n.
Such p0 exists by maximality of A. Suppose that (pa : a < 7), (Ca : a <
7) have been constructed. If 7 is a successor let CΊ < C7_i be defined
by setting CΊ{n) = C7_i(n) Πp7_i(n) if this intersection is infinite, and
CΊ(n) — C7_i(n) otherwise. Moreover, choose pΊ G A\Co \ {pa ' a < 7}>
if possible, such that \pΊ{n) Π C7(n)| = ω for almost all n. If 7 is a limit
choose cube (77, if possible, such that CΊ < Ca for all a < 7, and then choose
pΊ G A\C0 \ {pa : a < 7}, if possible, as in the successor case.

Suppose that this construction does not stop at any stage 7 < ωu so we
construct (pa : a < c^), (Ca : α < <Ji). Then by construction, for every
a < ωλ there exists minimal na G ω such that Cβ(n) C* pα(n), for all β > a
and n > na. Find {ak : k < ω} e [ωχ]ω such that (nak : k < ω) is constant,
and let α* = sup{α* + 1 : k < ω}. But then Cα*, {pαfc : A: < ω} are as in
Proposition 2.5, and hence we conclude \A\ > b.

Otherwise the construction stops at some 7 < ω\. So we get (Ca : α < 7),
(pa : a < 7) and by σ—closedness of (V(ω)/β.n)ω also C7, but we cannot
find pΊ as desired, i.e.

(1) Vp G ΛrCΌ \ {pa : α < 7}3°°n < α; (p(n) Π CΊ{n) =* 0).

Define cube D by D(n) = C0{n) \ CΊ(n) if this set is infinite, and D{n) =
C0(n) otherwise. By hypothesis and construction we know

(2) Vα < 73°°n < ω (\D(n) \ pa(n)\ = ω).

Enumerate {pa : a < 7} by (qn : n < ω). Define the following sets

(3) Xm = {n<ω:\D(n)\qm(n)\=ω}

(4) Yp = {n < ω : p(n) Π C7(n) =• 0} .

By (1) and (2) we conclude that each Xm and Yp for p G -4fC0 \ {pα α <
7} is infinite.

Lemma 2.10. For any {Xn : n < ω}, {yα : α < K} sete 0/ infinite subsets
of ω where K < b there exists an increasing sequence (kn : n < ω) such that



PARTITIONING PRODUCTS OF P(ω)/fin 257

kn G Xn for every n, and for each a < n, for almost all n, Ya Π (kn, kn+x) is
nonempty.

Proof. For a < K let fa G ωω be defined by

fa(n) = min{m eYa :m> n} .

Since K < b we may find a strictly increasing / G ωω which eventually
dominates every fa. Let /' be the iterate of/, defined by /'(O) = /(0), f'(n+
1) = /(/'(n)). Then /' has the property that for every a < ft, for almost all
*> (/'(*),/'(n + 1)) Π r α ^ 0. In fact, if /(n) > /α(n) for all n > k and if
f'(n) > k then /'(n + 1) = /(/'(n)) > /β(/'(n)) > /'(n).

Now define (fcn : n < ω) as follows: k0 = min(X0)7 ^n+i is the minimum
element of Xn+i such that for some i, kn < f'(ϊ) < f'{i + 1) < k. Then
(kn : n < ω) is as desired. D

If \Λ\ < b, find (kn : n < ω) as in Lemma 2.10 for {Xm : m < ω}, {Yp :
p G Λ\C0 \ {pa '• α < 7}} as defined in (3), (4). Define cube C as follows:
C(kn) = ,D(fcn) \ gn(fcn), C(n) = CΊ(n) if n^{fcn : n < α;}. Then using (1)
and (2) we easily see that C is incompatible with every member of Λ, a
contradiction. Hence |̂ 4| > b. D

By Proposition 2.9 we may assume that for every cube Co there exists
p G Λ\C0 such that C0(n) C* p{n) for almost all n < ω. Note that Λ in
Example 2.6 has this property. The following lemma will be crucial in this
case.

Lemma 2.11. Let Λ be a partition of (V(ω)/fiΏ.)ω. Suppose that Λ has no
separation, cube C is such that Λ \C is uncountable, and p G Λ is such that
p\\C and C(n) C* p(n) for almost all n. Then there exists n* < ω such that
A\{(n*,C(n*) Πp(n*))} UC\ω\ {n*} is countable.

Proof. Let A = {n < ω : \C(n) \p{n)\ = ω}. By assumption Aφ§ and A
is finite. For B C A let Cβ be the cube defined by CB(Π) = C(n) \p(n) if
n G J5, and Cβ(n) = p(n)ΠC(n) otherwise. Moreover let T = {C# : B C A},
and for k < \A\ let ̂  = {CB ' \B\ = k}. Clearly T is a finite partition of C
and hence there exists a minimal k* < \A\ such that for some q G T^ , Λ\q
is uncountable. Clearly k* > 0.

If A;* = 1 choose n* € A such that A\C{n*} is uncountable. But p separates
C{n*}, g for every g G f \{p} with g(n*) = p{n*) Π C(n*). Hence Λ\q is
countable for all these q, and hence ^4f{(n*, C(n*) Dp(n*))} U Cfω \ {n*} is
countable.

If fc* > 1, choose J5 C A of size A;* such that Λ\Cβ is uncountable. Let
n* G J5 be arbitrary. We claim that Λ\{(n\ C(n*) Πp(n*))} U C\ω \ {n*} is
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countable. Otherwise there exists B1 C A such that A\CB> is uncountable
and n* 0 Bf. Then \B'\ > k* and hence B'\B φ%. Consequently CBfΛB>
separates CB, Cβ>> But \B Π B'\ < k*, and so Λ\CBΠB' is countable. This
contradicts the hypothesis. •

Note that if in Lemma 2.11 we let Co = {(n*,C(n*) \p(n*))}UC\ω\{n*}
and C = A\{{n,C(n*) Π p(n*))} U Cfω \ {n*}, then clearly Co ± p, C is
countable, and for every q G A\C \ C, we have q AC < Co.

Proposition 2.12. Lei *4 be an uncountable partition of {V(ω)j fm)ω which
has no separation. Then A has size at least b.

Proof. Let FQ = {p G A : V°°n (ω C* p(n))}. If T§ is empty, by Proposition
2.9 we conclude |*4| > b. If TQ is uncountable, then by an easy application
of Proposition 2.5 we conclude |*A| > b. Hence we may assume that T$ is
nonempty and countable. Then by applying Lemma 2.11 ω times we can
construct a descending chain (Ci : i < ω) of cubes and a sequence (Ci : i < ω)
of countable subsets of A such that for every pG^Ό there exists i < ω such
that p A. Cii and moreover for every q G A, either q < Ci for alii < ω, or
else q e Ci where i is minimal with q jC d.

Now suppose that for some limit ordinal 7 < CJI, (Ca : α < 7), (Ca :
a < 7) and (J7^ : α G lim(7)) have been constructed such that the following
properties are satisfied:
(1) (CQ : a < 7) is a descending chain of cubes;

(2) Cβeμp;
(3) VpGΛ(pGU{Cα:«<7} V V α < 7 ( p < C α ) ) ;

(4) fα = {p e A\Ca : V°°n (Cα(n) C* p(n))}, ^*α is nonempty and count-
able, and Vp G Ta3i <ω(p ± C α + i ).

Set C7 = U{Cα : « < 7}. Clearly C7 is countable. If \A\ < b, we define
cube CΊ as follows. In case (Ca(n) : a < 7) is eventually constant, let CΊ(n)
be this constant value. Otherwise, (Ca(n) : a < 7) contains a cofinal C*-
decreasing subsequence of length ω. Moreover, by (3), q(n) C* Ca(n) holds
for all q e A\CΊ and α < 7. By Rothberger's characterization of b (see
[vD, Theorem 3.3, p. 117]), there exists X G [ω]ω such that q(n) C* X C*
Cα(ή) holds for all g G ̂ 4 \ C7 and α < 7. Set C7(n) = X.

Consequently, we have constructed cube CΊ such that q < CΊ for all
q G A \ C7, and moreover C7 < Cα for every α < 7 and, by (4), C7 _L p for
all p £ Fα where α G lim(7). Especially A\Cω is uncountable.

If now no p G ̂ 4fC7 satisfies CΊ(n) C* p(n) for almost all n < ω, by
Proposition 2.9 we conclude |Λ| > b. Otherwise let

^ 7 = {pe Λ\CΊ : V°°n (C7(n) C* p(n))} .



PARTITIONING PRODUCTS OF P(ω)/fin 259

So TΊ Φ 0. By Proposition 2.5 we may assume that TΊ is countable. Note
that TΊ and T^ are disjoint for any a < 7. Since by assumption A has
no separation below C7, using Lemma 2.11 we can repeat the construction
above and obtain families (Ca : 7 < a < 7 + ω) and (Ca : 7 < α < 7 + ω)
such that (1) - (4) hold for 7 + ω instead of 7.

Since A has no separation, only the fact \A\ > b can cause this construc-
tion to stop at some stage 7 < ω\. Hence we may assume that it does
not stop below α>i, and so we obtain (Ca : α < CJI), (Ca : a < ωi) and
(Ta : a G lim(«>i)> with (1) - (4).

Pick pa G Ta for every a G lim(α i). So by (4) there exists na < ω such
that Ca(n) C* pa(n) for all n > na. Find A G [ωx]

ωi and n* such that
na = n* for all a e A. Let {αfc : A; < α;} be the first ω members of A and let
α* = sup{α* : k < ω}. Then by (1) and (4) we conclude

VA; < ώin > n* {Ca* (n) C* pak (n)).

But then by Proposition 2.5 we conclude that A has size at least b. D

3. The consistency of b < α(n).

Following [Shi, §§1,2] closely we will sketch the proof of the following.

Theorem 3.1. // ZFC is consistent then so is ZFC + Vn < ω(b < α(n)).

A revised version of [Shi] will appear in [Sh2]. Since there are several
gaps in the proof of the consistency of b < α in [Shi] the reader should also
consult [Sh2].
Definition 3.2. Given cubes C,D G ('P(α;)/fin)λ we say that C splits
D if C||£> and there exists cube D' < D such that D' _L C We call T C
(V(ω)/ fin)λ a splitting family if every member of (V(ω)/ fin)λ is split by some
member of T. Let s(λ) be the least size of a splitting family in (V(ω)/ fin)λ.

Fix n* < ω. First we define a forcing Q (really Q(n*)) which is almost
ωω—bounding in the sense of [Shi, 1.4] and adds a n*—dimensional cube
which is not split by any cube from the ground model.
Definition 3.3. For n < ω let Kn be the set of pairs (s, /ι), s a finite set,
h a partial function of V(s) to n + 1 such that h(s) = n, and for every t C s ,
if h(t) = I + 1 and t = tλ U t2 then ft(ti) > / or h(t2) > L

Let K>n = \J{Ki : i > n}, and let K = [j{Kn : n < ω}.
Then K is partially ordered as defined in [Shi, 2.2.].

Definition 3.4. For n < ω let Ln be the set of pairs (5, H) such that
(1) S is a finite tree with a root such that in(5), the set of nonmaximal

nodes of 5, is contained in ω, and int(S'), the set of maximal nodes of
5, is contained in n*ω;
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(2) H is a function with domain in(S') and value Hx for x G 'ιn(S) such
that (s\iccs(x),Hx) G if>n, where succs(z) is the set of immediate
successors of x in 5.

Then Ln is partially ordered as in [Shi, 2.4(2)]. Let lev(S, H) = max{n :
(S,H) G Ln} for teLnwe write t = (S^H1).

The following fact is proved by induction on the height of the tree S.
Fact 3.5. // (S, H) G Irn+i, int(S) = Λ u A b ίΛen tfiere eziste {S\Hλ) G
Ln sucΛ *Λα* {S^H1) < (S,H) and either int^S1) C Ao or i n t ^ 1 ) C Ai.
Definition 3.6. We define a forcing notion Q as follows. Members of Q are
pairs (w,T) such that w Cn*ω is finite, and T is a countable infinite subset
of U{^n ' n < ω} such that T\Ln is finite for every n < ω and moreover,
for every n < ω, field(int(Sf*))Πn is empty for almost all t G T.

The ordering of Q is analogously defined as in [Shi, 2.8(2,3)].

Lemma 3.7.
(1) Q is proper;

(2) Suppose G is Q—generic over V'. Define n* —dimensional cube CQ by
CG{Ϊ) = W(i) '- o- E pr0 G}, for every i < n*. Then CQ is not split by
any cube in V.

Proof. (1) is proved analogously as [Sh, 2.11(2)].
For (2), let C e 0P(ω)/fin)n* ΠV and (tu,T) e Q. To every σ G U{int(<) :

t ET} assign a colour c G n*2 in such a way that for every i < n*, σ(i) G C(i)
if and only if c(i) = 1. So for every t eT, int(t) gets coloured by (at most) 2n*
colours. As T \ Ln is finite for every n < ω, by applying Fact 3.5 repeatedly
we may find (w,T') G Q extending (w,T) and colour c G n*2 such that for
every t G T'', every member of int(t) has colour c. By genericity we may
assume (w,T;) G G.

Suppose first that c is constant with value 1. Then clearly CQ < C
Otherwise c(i) = 0 for some t < n*, hence CG(i) Π C(i) is finite, and so
CG _L C Hence in either case, C does not split Co- Π

Similarly as in [Shi, 2.12, 2.13] one proves that forcing Q is almost
ωω—bounding in the sense of [Shi, 1.4]. Moreover in [Shi, §1] it is proved
that the property of being almost ωω—bounding is preserved by countable
support iterations.

Fix an infinite partition Λ of (/P(ω)/fin)n*.

Definition 3.8. Define a subforcing Q[Λ] C Q by letting (ιu,T) G Q[̂ 4] if
and only if for every finite subset F C. Λ there exist infinitely many t G T
such that int(5£) Π C = 0 for all C G F. (Note that here we identify C with
Π«<« C{i).)



PARTITIONING PRODUCTS OF P(ω)/ήn 261

Similarly as in [Shi, 2.16A] one proves that if forcing with Q preserves
A, then Q[A] has a nice dense subset.

Lemma 3.9. Suppose that after forcing with Q, A is still a partition of
(P(ω)/fin)n\ Then the set of all (w,T) G Q[A] with the property that there
exists T e [A]ω such that for every C G T the set {t € T : i n t ^ ) C C] is
infinite and {JiintiS*) : t G T} C \JF is dense in Q[A].

Proof. Let (w,T) G Q[A]. Since forcing with Q preserves A and (w,T) G
Q there exist (wo,To) G Q, (wo,To) < (w,T), and Co G A such that
(wo,To) \\—QCG\\C0. By the argument from the proof of Lemma 3.6(2)
we may assume that int(S'<) C Co for all t eT0.

Suppose that To , . . . , Tn and Co , . . . , Cn have been constructed. Note that
the condition

ί 11 G Γ : int(5*) Π (J C{ = 0

belongs to Q[A]. Hence, as in the first step, there exist an extension
Γn +i) of it in Q and C n + 1 G A such that int(S") C C n + 1 for all t G Γn + 1.

Finally let T = (J{Γn : n e ω}. Then ( ^ r ) G Q[^], (w,T;) < (w,T),
and (w,T') is as desired. D

Corollary 3.10. Suppose that after forcing with Q, A is still a partition
of {V{ω)/ fin)n*. Then forcing with Q[A] destroys A.

Proof. Let C G A and (w,T) belong to the dense set from Lemma 3.9,
witnessed by {Cn : n < ω} G [.A]". Let Tn = {t G T : int(5*) C Cn}.

Note that except for at most one n (for which Cn = C), for almost all
ί G Tn, int(S') Π C = 0. Hence (tu, { t G Γ : int(5*) ΠC = fl}) belongs to
Q[A], extends (w,T) and forces CG ±C. D

Now using 3.9 and 3.10, similarly as in [Sh2] one shows that if Q preserves
A, then first adding b^ Cohen reals and then forcing with Q[A] is almost
ωω—bounding and destroys A. Now it is clear how to construct a model for
Theorem 3.1. D
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