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BOUNDARY BEHAVIOR OF THE BERGMAN CURVATURE
IN STRICTLY PSEUDOCONVEX POLYHEDRAL DOMAINS

KANG-TAE KiM AND JIYE YU

In this article, we present an explicit description of the
boundary behavior of the holomorphic curvature of the Berg-
man metric of bounded strictly pseudoconvex polyhedral do-
mains with piecewise C? smooth boundaries. Such domains
arise as an intersection of domains with strongly pseudocon-
vex domains with C? smooth boundaries, creating normal sin-
gularities in the boundary. Our results in particular yield an
optimal generalization of the well-known theorem of Klem-
beck, in terms of the boundary regularity. As an application,
we demonstrate generalization of several theorems which were
previously known only for the cases of eveywhere C® (essen-
tially) smooth boundaries.

1. Introduction.

Let D be a bounded domain in C*. Consider the space

H?(D) := {f :D—C|fis holomorphic,/ |fI2dp < oo}
D

where dy is the standard volume form of C*. This space is usually called
the Bergman space. Equipped with the standard L? norm, it is a separable
Hilbert space. Therefore, we choose an orthonormal basis {(p]} for the
Bergman space. Then the Bergman kernel function K : D X D — C can be

obtained by
50 =3 0290,

where z,{ € D. This function gives rise to the well-known Bergman metric
of D as follows:

- — 0% log K (2, %)
23d2% ® d2P = = 42 @ d2P.
a%; JaB a,gz=1 022028

One of the important features of this metric is that it is one of the invariant
Kahler metrics, in the sense that the biholomorphic mappings are isometries
with respect to the Bergman metric.
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The goal of this article is to present an effective analysis of the boundary
behavior of the holomorphic curvature (or, more traditionally, holomorphic
sectional curvature) of the Bergman metric near the boundary of a strictly
pseudoconvez polyhedral domain that is obtained by taking intersections of
the bounded domains with C? smooth strictly pseudoconvex boundaries,
where the intersections are allowed to produce the normal-crossing singular-
ities.

Definition 1. A bounded domain @ in C* is called a (pseudoconvez)
polyhedral domain, if there are C? smooth real valued functions py,... ,px :
C* — R such that

(1) Q={z€C |p(2) <0,...,m(2) <0},

(2) the gradient vectors Vp;,(q), ... , Vp;,(g) are linearly independent over
C whenever p;,(q) = ... = p;,(g) = 0, for all appropriate indices
{i1,... i} C{1,... ,k},

(3) 09 is pseudoconvex at every smooth boundary point.

If, in addition to (3), 9L is strongly pseudoconvex at every smooth boundary

point, then the domain §2 is called a strictly pseudoconvez polyhedral domain.

As indicated in [Kim], even in the case for the simplest singular boundary
points, there is no uniformity in the boundary behavior of the Bergman
curvature in the sense that the boundary behavior is heavily depending upon
the tangency of the orbit as well as the target boundary point. The first and
simplest case of our results is the case when the target boundary point is
smooth.

Theorem 1. Let D be a bounded pseudoconvex domain in C*, and let p be
a boundary point of D at which the boundary dD is C? smooth and strongly
pseudoconvez. Then for any sequence of points p; in D and any holomorphic
sections II; at p; the limit of the holomorphic curvatures of the Bergman
metric at p; in the direction II; is —4/(n + 1).

Main contribution of this result is that the regularity required at the
smooth strictly pseudoconvex boundary point is only C2. This differentiates
our results from the results of [Kle, GK1-2] and others that use Fefferman’s
asymptotic expansion formula of the Bergman kernel function. We would like
to point out also that work of Diederich ([Di] and others) on the Bergman
kernel and metric deals with C? smooth boundary case effectively. Thus, in
principle, Theorem 1 above may also follow along the ideas and the estimates
of [Di] after some considerable amount of modification and computation.
However, deriving the above conclusion from such work seems at least long
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and tedious if not formidable. Since our method here is simpler and more
flexible and general as far as the analysis of the curvature of the Bergman
metric is concerned, it should be of separate interest concerning the above
theorem.

The methods presented in this article do not depend upon either the
asymptotic expansion formula or the pseudo-local estimate ([FK]). Rather,
we use the L? estimate of the & operator by Hérmander [Hérl, 2] with
appropriate weights to localize the minimum integrals which give rise to a
formula ([Ber1, 2, Fuks] and others) for the holomorphic curvature of the
Bergman metric in a bounded domain. Then we use the scaling technique
which converts the problem of limiting curvature near the boundary to the
interior stability problem of the Bergman curvature, which was initiated in
an earlier work of the first author [Kim]. Then a simple modification of
a theorem of Ramadanov [Ram)] on the interior stability of the Bergman
kernel function, observed earlier in [Kim], yields the result. We would like
to emphasize at this point that our method does not require any regularity
of the boundary in its application. Thus it is flexible enough to handle the
following cases where the target boundary point is in fact singular.

Indeed, the main thrust of the methods we present in this article is aimed
toward the study of curvature behavior of the Bergman metric near the
boundary point where the boundary is not smooth.

Theorem 2. Let Q2 be a bounded strictly pseudoconvex polyhedral domain in
C? and let p € AN be a boundary point at which the boundary 9% is singular.
Let {pj}3°=l C Q be a sequence of “radial type” that converges to p in C* to
the boundary of 2. Then the holomorphic sectional curvature tensor of the
Bergman metric of Q at p; converges to the holomorphic sectional curvature
tensor of the Bergman metric of the bi-disk in C? as j — oo.

In the complex dimension higher than two, a similar but somewhat weaker
conclusion can be obtained, and they are also presented in the end of Section
4. As for the tangential sequences of reference points, we also have the
following:

Theorem 3. Let Q be a strictly pseudoconvez polyhedral domain in C*
and let p be its singular boundary point. Let {pj};’il C Q be a sequence of
“g-tangential type” approaching p, then the holomorphic sectional curvature
tensor of the Bergman metric of Q along p; converges to the constant —4/(n+
1).

The precise concepts of the radial type and the g-tangential type are intro-
duced in Section 4. Roughly speaking, a sequence in a strictly pseudoconvex
polyhedral domain is called g-tangential if the sequence is tangential to the



144 KANG-TAE KIM AND JIYE YU

smooth portion of the boundary at least to order 2. The radial type se-
quences are the ones that are either not tangential at all to the boundary
or tangential “only to the singular locus” of the boundary. There is one
remaining intermediate type of sequences to consider which we call “mixed
type.” Along such sequences our method yields the conclusion that the limit
of the holomorphic curvature converges to that of the Bergman metric at a
precisely determined point in the intersection of the ball and the half spaces.
In conclusion, in terms of subsequences, Theorems 1, 2 and 3 provide an
effective sequential analysis of the boundary behavior of the holomorphic
curvature of the Bergman metric in complex dimension 2.

The final section of this article enlists several applications of our curvature
analysis of the Bergman metric. Among many applications possible, we
introduce only perhaps most straightforward cases. However, we would like
to point out that Pagano’s recent work ([Pa]) demonstrates that there are
more problems that may be solved using our main results.

2. Localization of Curvature and Minimum Integrals.

2.1. Minimum Integrals and a Formula of Bergman-Fuks. Let { € D,
and let £ = (&4,... ,&) € T¢D = C* be a nonzero vector. Then consider the
minimum integrals

1(Q) =int { [ |fdu| £ € H(D), £(0) = 1}
L(¢) mf{/ |/ Pdu| f € H*(D), £(¢) =0, ij <)—1}
L) = inf{ [ 1idul £ € #(D), £0) = -g-g«) — = 5O =0,

Y g (% L ¢- 1}

Jrk=1

Then the following formula for the holomorphic curvature was proven in
1930’s by Bergman ([Ber1, 2]) and Fuks ([Fuks]):

Theorem (Bergman-Fuks). Let {,&, D be as above. Then the holomorphic
curvature R = R (€) at ¢ in the direction { satisfies

L (L
R=2-105L0"
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The holomorphic curvature R above is of course given by

R= Rﬁjkifhf_j{kg
(g;8€7E*)?
where )
_ a gjrt Vi agjﬁ aguﬁ
9z%08 I Bzt Bzt
In the above, the summation convention was used. Moreover, g*” represents
the inverse matrix of g,3.

Rﬁjki

Remark. Perhaps the simplest proof of the Bergman-Fuks formula is
by representing the curvature formula above as well as the corresponding
minimum integrals by the special basis for H2(D) with derivative control
which can be found in detail in p. 146-148 of [GW]. (For the use of special
basis preceding [GW], see for instance [Berl, 2], [Kob].)

2.2. Localization of the Minimum integrals. In the light of the formula
of Bergman and Fuks above, in order to localize the holomorphic curvature of
the Bergman metric of a given domain, it is enough to localize the minimum
integrals I;, 1 = 1,2. In this section, we will denote the minimum integrals
by IP instead of I; to emphasize the dependence of the minimum integrals
upon the domain D.

The main result of this section is

Theorem 4. Let D be a bounded pseudoconvez domain in C*. Suppose that
p € 0D is a local peak point. Then for any neighborhood U of p in C*,
IP™(¢)
1 lim t——>* =1 , =0,1,2.
W &Brg b T
Moreover, the convergence is uniform on the choices of the unit vectors £ €
C" in the definition of the minimum integrals.

In the statement above, a boundary point p € 0D is called a local peak
point of D if there are a neighborhood V' of p in C* and a function h that
is continuous on D NV and holomorphic on D NV satisfying: |h(z)| < 1 for
allze DNV \ {p} and h(p) = 1.

Proof of Theorem 4. For this proof and throughout the paper, we will use
the following notation:

2| = (215 yza)| = /|22 + -+ |20)?

I19lo= ([ Iflzdu)%-
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Let h,V be as above. We may assume, without loss of generality, that
U C V. Choose another open neighborhood Uy of p in C* such that Uy, CC U
and h # 0 on Up. Then there is a constant a € (0,1) such that |h| < a on
(U \ Up) N D. Choose a cut-off function y € C°(U) satisfying: x = 1 on U,
and0<xy<1lonU.

Given any function f € H2?(U N D), for each integer kK > 1, set a =
O(xfh*). Then « is a smooth closed (0,1)-form on D with supp a C (U \
Uys) N D. For any fixed ¢ € Uy, we write ¢(z) = (2n + 4) log |z — (|. Clearly
 is plurisubharmonic on C*. Applying Theorem 4.42 in [Hor], one gets a
solution u to the equation Ou = & on D such that

/; ]’u(z)|2e"<ﬂ(l)(]_ + |z!2)—2 du < L la(z)|26_¢(z) d/,l..

Here, as above, du denotes the standard Lebesgue measure on C*. The
inequality above then becomes

Jul? a2
9 / du < / B L N
@ @ T 2P S o 7= Cr

Since the right hand side of (2) is bounded, so is the left hand side. This
implies in particular that

9lAI+IBl,, .
Moreover, since D is bounded, there are positive constants ¢;, ¢; independent
of k such that

|u|2 / 2
du > du,
L e ez f i de

and

2 a.12 2 2k
/ o 4dﬂ=/ |0x| |f|2|h|4 "
pr(\U,) |2 = (PmF pn\Ue) |2 — ¢JPt

<af \F 1A dy
DN(U\Uo)

< cya®* / IfPdu by the choice of h, U
DN(U\Uo)
< CZa2k||f'|2DnU'
Therefore it follows from (2) that

(4) lullp < ca®||fllpru-
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Here, ¢ = ¢y /c;.
Now set F, = xfh* — u for any k > 1. Then F} € H?(D). Moreover, (4)
implies that

| Fillp < ”thk ”D + |lullp
< Ifllpav + ca® || f | prv
(5) = (1 +ca®) (| fllpu-

Let f € H*(D NU) be the minimizing function for I?"Y(¢). That is,
f(C) = (%{’(C) = 072 = 11 SRR () Z?,k:l €j§k(62f/azjazk)(<‘) = 13 and ”f”2 =
IPYU(¢). For any z € D, set g(z) = Fi(z)/(h(¢))*. Then g € A*(D).
Moreover, we have

09 .. Of . _ ) " 0%g _
90 = 520 =0 =0 12in md 3 GagT L0 =1
Hence, by the minimality of I”({), we obtain
1
) < lgllp = WIIFAI%
1
< T (1 +ca®)’ 1 £ 150w
1

- = k\2 yDAU
= hOPF (1+ca®)” L'V(C).

This implies that

IP()) _ (1+ca")’
IP() = TROPF

Letting { — p in the above inequality, we get

. IP(¢) 2
lim su 2 < (14 ca®)”.
nsu ooy < 1+ o)

Then let k& — oco. Since 0 < a < 1 and since c¢ is independent of k, we get

I7(¢)

limsup ——+ < 1.
(—=p IanU(C)

On the other hand, from the definition of the minimum integrals we have
IP > [PV, Therefore, we conclude that

i T2

e IPU(C) T

(6)
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Furthermore, this convergence is uniform on the choices of the unit vector ¢
in the definition of I” because the right hand side of (6) is independent of
choices of £. This proves (1) for I,. The proof of (1) for I, and I; is almost
identical. So we do not include further details to avoid repeating similar
arguments. This completes the proof of Theorem 4. O

An immediate consequence of Theorem of Bergman-Fuks and Theorem 4
above is the following localization of the holomorphic Bergman curvature:

Corollary. Let D be a bounded pseudoconvex domain in C*. If p € 0D is
a local peak point of D then, for any neighborhood U of p in C*, we have

i 2282 {&liccr\o

le_n)lp 7 Rg(fj) =1, for any sequence {¢;}; ,

where Rf’ (&) denotes the holomorphic curvature of the Bergman metric of
the domain D at { in the direction € with respect to the standard coordinate
system of C™.

Remark. An effective localization for the strictly pseudoconvex bound-
ary points was obtained for the Bergman kernel (on the diagonal) and the
Bergman metric earlier by Diederich and others. (Cf. [Di, DFH, McN,
Ohs, Yu)].)

3. Curvature behavior at C? strongly pseudoconvex points.

To make the exposition as clear as possible, we would like to present first the
proof of Theorem 1 in the special case when p; approaches p € 0D nontan-
gentially to 0D. Then in Section 3.2 below, we will present the arguments
which reduce the general case to the nontangential case.

3.1. Nontangential behavior. We will use the following standard nota-
tions:
z2=(21,...,2n) = (21,2"), 2' = (22,-.. , 2Zn).

Let D be a bounded pseudoconvex domain in C* which possesses a bound-
ary point p admitting an open neighborhood U such that the boundary DN
U is C? smooth and strongly pseudoconvex. Applying a global quadratic
change of complex coordinates of C* at p, and shrinking U to a smaller
neighborhood, we may assume that p = 0 and that E = DNU is defined by

E={z€U|2Rez < —|Z]*+0(2')|2l), |2| <r}.
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Let {p,}; be a sequence in D converging to p, and let & = (&,...,¢,) € C
fixed. Then, as soon as we prove that

jlirglo Rfj (&) = TIT for any sequence {¢;}; C C*\ 0,

the corollary to Theorem 4 in the preceding section will immediately imply
that

lim R? (¢) = -4

jooo Pi n+1
Therefore, to prove Theorem 1, we concentrate on the limiting behavior of
the holomorphic curvature of the Bergman metric of E.

Assume momentarily that p; converges to p = 0 € 0D nontangentially,
meaning that there exists an acute cone V with the vertex at p such that,
for a neighborhood W of p, all of the points p; belong to € VNW C D.
Replacing » > 0 in the definition of E above by a smaller positive value,
we may assume without loss of generality that there exists a constant ¢ > 0
such that

ECG:={(z,?)€C'|2Re z; < —c|7'|*}.

Then we consider the sequence of complex linear maps of C* defined by

Lj(Zl,Z’) = ()\jzl, \/S\—j-z')

where \; = |p; — p|™* = |p;|™. Then L;(G) = G for all j. Therefore,
L;(E) C G for every j. Observe that the sequence of convex domains L;(E)
converges in the sense of the local Hausdorff set-convergence to the Siegel
upper half-space

H :={(z,7') € C*|2 Re z; < —|2'|*}.

Furthermore, observe that, because {p;} converges to p nontangentially to
the boundary, the sequence {L;(p;)} converges to a single point on the Re 2,
axis bounded away from the boundary of H as well as the boundaries of the
domains L;(E) for sufficiently large values of j.

Now consider the linear fractional mapping

<I>(z1,z’)= (1+21 ¥4 )

1- Zl, 1- z1
® maps biholomorphically the domains H, G and L;(E) onto the bounded
domains defined by
®(H) = {(21,2') € C"||21)* + ¢|2'|* < 1}
®(G)={z€C"||2| <1}
®(L;(E)) C ®(G), Vj
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respectively. Moreover, ®(L;(F)) converges to ®(H) in the sense of global
Hausdorff set-convergence. Notice that ®(H) is convex and contains the
origin inside, and that for every € > 0, there exists j, such that

(7) (1 -€)@(H) C ®(L;(E)) C (1 +€)®(H), Yj > Jo.

Furthermore, since each L; : E — L;(E) is a biholomorphism, we have

8) RE(€) = Raop’ () (d(® 0 L;)(€))

for every j > jo. Notice that the convergence of the right hand side of
(8) concerns only the interior stability of the Bergman holomorphic curva-
ture of the domain under the perturbation of the boundary. Therefore, the
identity (8) in fact converts the boundary behavior problem of the Bergman
holomorphic curvatures to the interior stability problem.

Now we will show that the right hand side of (7) converges to —4/(n+1).
This will follow from the following mild modification of Theorem 2 of [Raml],
and from the fact that the holomorphic curvature of the Bergman metric of
®(H) is identically equal to —4/(n + 1) at every point in every direction.

Proposition. Let {D;}32, be a sequence of bounded domains in C" that
converges to a convexr bounded domain D C C* in such a way that there
exists a common interior point ¢ of D and D; for all j and such that for
every € > 0 there exists jo satisfying

(I-e)(D-q)CD;j—qC (1+¢€)(D—q),

where D — q denotes the affine translation by —q of the set D in C*. Then
for each z € D that admits a compact neighborhood F which is uniformly
bounded away from 0D, the Bergman kernel function Kp, (z,Z) converges
uniformly on F to Kp(z,Z) on all derivative levels.

We do not include any detailed proof of the proposition above, since it
follows from the arguments that are almost identical to the proof in [Raml],
which proves that Kp,(z,() converges in L? norm to Kp(z,{) on F x F.
The conclusion of the proposition above then follows immediately by Cauchy
estimates on D x D, where D denotes the domain D with the conjugate
complex structure.

3.2. General Case. Now consider a sequence of points p; in D converging
to p =0 € 9D in an arbitrary manner. As in the preceding section, we will
begin our proof with

E={(2,2') €C*"|2Re z; + |2'|* + €(2) < 0,|2| < r}



BERGMAN CURVATURE IN POLYHEDRAL DOMAINS 151

where €(z) = o(|2'|?, |21]).

Let n > 0 be given. Without loss of generality, we may assume that all p;
are in the n-neighborhood W of the origin. We may choose 7 so small that
W cC U. Then the statement and the proof of Lemma 2.2 of [Pin] also
yield the following.

Lemma. There exists a positive value for n such that for each { € OENW,

there exists a complex linear coordinate change AS, depending continuously

on (, that satisfies

(1) A%(¢) =0, A° = identity;

(2) AS maps the normal vector to OE at ( to the normal vector to the
boundary of A*(E) at the origin,

(3) the new domain AS(ENW) has a defining function near the origin as
follows:

(9 2Rez+ Y au(Q)zzm+ ) bp(¢)zz +9(¢,2) <0

Jk=1 Jrk=1

where:

(4) the functions aj,b;z and v depend continuously on ¢, and
(5) ¥ =o(l#',|zl).

The proof of this lemma follows directly from part of the proof of Lemma
2.2 of [Pin], and so we again omit the details here.

Now we deal with the curvature behavior for general p; converging to
p = 0 € 0D. The key idea is that there is a certain uniformity to our
methods in a neighborhood of a strongly pseudoconvex point. Note that
without loss of generality we may replace E by ENW, keeping the notation
E. Let {; € OF be such that |p; — (;| = dist (p;, OF) and such that the
line joining p; and (; is perpendicular to OE. Then, by the Lemma, the
defining function of E can be written as in (3)-(5) in Lemma above, with
¢; replacing (. Since the linear change of coordinates does not destroy the
strong convexity of 0F N U, there exists R > 0 such that

AS(E) C B := {(21,2') € C"||z1 + R* + |2'|* < R?}
for any ( € OENU. Let

B:={(z,7) € C* |2 Re 2 < —|2'|*/R}

then clearly B C B. Now let \; = |p; — ¢;|~! and apply the linear map

Lj(z,2') = (Ajzl, \/&:z')
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to A%(E) and B. First of all L;(B) = B for every j. Then, the properties
(1)-(5) of Lemma imply that the local Hausdorff set-limit of the sequence
L;(A% () is

H = {(2,2') € C*|2 Re 2 < —|7'|*}.

Since L;(A%(p;)) defines a sequence in the common interior of H and
L;(A% (p;)) bounded away from their boundaries, the rest of the proof is
identical with that for the nontangential case in the preceding section. There-
fore, the proof of Theorem 1 is now complete.

4. Curvature behavior at the singular boundary points.

As will be seen in the subsequent sections, the boundary behavior of the
Bergman curvature in a polyhedral domain near a singular boundary point of
the holomorphic curvature of the Bergman metric is in general very sensitive
to the order of tangency of the orbit of the reference points to the smooth
faces of the boundary of the domain. So, we will begin this portion of
exposition by defining the classes of the orbits of the reference points in
complex dimension two in which the conclusions are the strongest and most
explicit. At the end of this chapter, we will discuss how certain methods and
cases can be generalized to higher dimensions.

4.1. Types of orbits of the reference points. Let 2 C C? be a polyhe-
dral domain as in Definition 1 of Section 1 defined by

D={zeC|p(2) <0,...,p(2) <0}

Call the strongly pseudoconvex hypersurfaces ; = {p;(z) =0} (j = 1,... ,k)
the faces of the boundary surface 92.

Let p be a singular boundary point of Q. It turns out that the boundary
behavior of the sectional curvature tensor of the Bergman metric is dependent
upon the tangency of the orbit of the reference points to the smooth portion
of the boundary as the reference points approach the boundary point p.
Therefore, as in what follows, the asymptotic behavior of the holomorphic
curvature tensor of the Bergman metric of {2 can only be made sense in terms
of subsequential limits along subsequences of the sequence of the reference
points. Now, the orbits can be classified into three mutually exclusive classes
as follows:

Let us denote by Spq the set of boundary points at which the boundary
0N is singular, and by Rpsq the set of smooth boundary points.

Let p € Ssq. According to the definition of the polyhedral domains (Def-
inition 1), the singularity set Ssq is locally an intersection of exactly two
distinct faces of Q2 in C2. We may assume without loss of generality that
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the two faces are ¥; and X,. Further, assume that p is the origin of C2.
Then at the origin, apply a complex linear change of the coordinates of C?
such that the gradient vectors to ¥; and ¥, are parallel to the Im z and
Im w axes, respectively.

Let p,; denote a sequence of points in 2 converging to p. We now define
the orbit-types. Denote by

A]' = dist (p]', 21)
p; = dist (p;, )
for each 5. Then

Definition 2. The sequence p; above is said to be of radial type if there
exists a positive constant C independent of 7 such that

lSﬁSC, for all j.
C ™ p

The sequence p; is said to be of g-tangential type if either
. -1 _
jlirgp,j VA =0

lim A/ = 0.

j—oo

or

The sequence p; is said to be of mized type if it is of neither radial type nor
g-tangential type.

4.2. Curvature behavior along a sequence of radial type. Let 2 be

a bounded strictly pseudoconvex polyhedral domain in C?, let p = (0,0) €

Saq C 052, and let p; denote a sequence of radial type in £ approaching p.
We now fix a vector £ = (&;,&;) € C and compute

lim R, (£)

j—oo
in what follows.

Angle factor at p. Recall from the paragraph preceding Definition 2 that
we assumed p is the origin of C2. Then at the new origin p, apply a complex
linear change, say A, of the coordinates of C? such that the gradient vectors
to ¥; and X, are parallel to the Im 2z and Im w axes, respectively. This A
will play a role in the computation of the limit of the holomorphic curvature.
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Controlled scaling along a radial orbit. Now choose, for each j, s, € &,
and t; € ¥, such that

dist (s;, p;) = dist (p;, 21)
dist (¢;,p;) = dist (p;, 3>)

respectively. Due to the smoothness of the “faces” and due to the definition
of the polyhedral domains, the following two unit vectors in C? given by

Pj — S
vy, =4I
’ llp; — s;ll
pi—tj
Uy, = ————
7 ps =4l

are well-defined and linearly independent over C.

For each j, consider the complex affine transform B; : C* — C* which
maps p; to the origin and, v;; and v4; to the unit vectors in Im z and Im w
directions, respectively. More specifically, we define B; for each j by

B;(p;) = (0,0),
B;(ny) = (V=1,0),
B;(vy)) = (0,V-T).

Notice that lim;_,, B; is the identity mapping of C?.

Choose a small open ball U = U(p,€) with radius € centered at p. For
each j, change coordinates by passing to A and B; in order. Then, in U the
domain 2 is represented by the inequalities

Im (z B 82_1)) > Q1 (w, @) + 0 (lz —sM 4 lez)
m (w—t) > Qa(2,2) + o (jw— 7| + |2]°)

where @Q; and (), denote the real-valued quadratic polynomials, and where
5 = (sg1 , ]2)) and t; = (t(1 t(z)) in C*>. Now, apply to U N Q the mapping

L;:C->C deﬁned by
Li(z,w) = ()\j‘lz,uj“lw)

and consider the sequence of the domains L;(U N §2) To be more specific,

consider the domains L; o Bj o A(V N Q) for some small open ball V' in C?

centered at p. Then, one easily observes the following:

(a) The sequence of domains L; o B; o A(V N ) converges in the local
Hausdorff sense to the domain defined by the inequalities

Im(z+¢) >0, and Im(w+¢) >0

for some positive constants c;, c.
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(b) For every r > 0, there exist positive constants j, such that
L;joBjoA(VNQ) C E = {(z,w) € C|Im z > —¢;—7, Im w > —c,—r}.

for all 5 > jo.
(c) L;oBjoA(p;) =(0,0) for every j.

Bergman curvature along a radial orbit. Continuing from the above,
denote by (2 the domain in C? defined by

Im 2> —¢;, and Im w > —c;,.

There exists a linear fractional transformation ® of C2 which embeds  into
C? biholomorphically so that

B() = A2 ={(z,w) € C?||z] < 1,|w| < 1}

and
®(0,0) = (0,0).

Now, let E be the domain in (a) above. By choosing a sufficiently small value
for 7 > 0, we obtain that ®(FE) is a bounded domain in C? biholomorphic to
E. The effect of such simultaneous bounded realization is the following:
(i) (PoLjoB;0A)VNQ) C P(E) for all j > jo.
(if) For every € > 0, there exists j; such that (1 —€)A% C (2o L;oBjo
AV N C(1+¢€A?forall j>j.

Now, we apply the interior stability of the Bergman metric (Proposition
in Section 3.1) to get the curvature results. First choose a subsequence of p;
so that

lim =L =m

j—oo /J'j
and let
. 10
L= lim \L; = <0 m) :

Then for every ¢ € C? \ {0}, we obtain

lim RY™ = lim Rigo " *%° VY™ (8, 0 L; o (B;). o A)(£))

Jj—oo j—oo
. 2
= lim R ((®. 0 Lo A)(¢)).
j—oo
Notice that ®, L and A can be explicitly computed whenever the strictly
pseudoconvex polyhedral domain and the radial type sequence of the refer-
ence points p; are given explicitly.
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Combining the discussion above with the sharp localization of the holo-
morphic curvature of the Bergman metric in Theorem 4 and its corollary in

Section 2 of this article, we now obtain the following refinement of Theorem
2:

Theorem 2’. Let Q be a strictly pseudoconvez polyhedral domain in C* with
a singular boundary point p, through which two C? smooth strongly pseudo-
convez faces ¥y and X, pass. Let p; be a sequence of radial type converging to
p from inside Q such that m = lim;_,, dist (p;, £,)/ dist (p;, £2). Then there
exists a nonsingular 2 x 2 matriz S depending only on the number m and
the normal vectors to the faces £, and ¥, such that the boundary behavior
of the holomorphic curvature of the Bergman metric is described by

lim R (¢) = R{y,)(5¢), Ve e ©

where the curvature tensor is represented with respect to the standard Eu-
clidean coordinate system of C>. Moreover, S can be computed ezplicitly
depending upon the domain Q and the sequence p;.

Remark. The reasons why the above conclusion at a singular point is
limited to the holomorphic curvatures are the following two: (1) We do not
have a sharp localization of the full sectional curvature tensor of the Bergman
metric and, (2) The holomorphic sectional curvature of the limit domain is
not in general constant. However, for a convez polyhedral domain in C?, the
localization argument is unnecessary in the discussion above and hence one
obtains much stronger a conclusion on the asymptotic boundary behavior
of the full sectional curvature of the Bergman metric. Such a result can be
easily obtained by a line by line imitation of the above.

4.3. Curvature behavior along a sequence of g-tangential type.
Now, staying in the complex dimension two mainly for the sake of simplicity,
we consider the sequence of the reference points when it is of g-tangential
type. The main differences of this case in comparison to the preceding radial
case are (1) that the scaling limit yields the ball which is totally different
from the bidisk in its Bergman geometry, and (2) that the “angle factor”
does not play a role.

In detail, let p be a singular boundary point of 2 and assume that the
faces ¥; and X, pass through p. Let p; € 2 form a g-tangential orbit of the
reference points, and denote by

A] = dist (p]', El)
B = dist (pj’ 22)
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for each j. Taking a subsequence, we assume further that the orbit {p;} is
g-tangential to ;. More precisely speaking,

Jll)rgl»‘, \/)\-j=0.

Controlled scaling along a q-tangential orbit. As in the paragraph
preceding Definition 2 in Section 4.1, we use the setting that the normal
vectors to the faces ¥; and ¥, are parallel to the Im z and Im w axes,
respectively.

Denote by p; = (pgl), pf)) for each j. Restrict ourselves for a moment to

a closed ball B(p,r) in C? centered at p with radius r. For sufficiently small
a positive number r > 0, the surfaces X; and ¥, can be represented by the
equalities

Im (z (1))—!-)\ =@ (w pgz))+o(|z 1)|+|w p(2)| )

Im ('w pgz)) +p; = Qs (z - (1)) +o (lw pf)l + |z — pj1)|2)
where Q); and @, are real-valued strictly subharmonic quadratic polynomi-
als. Under the same restriction, the set  is obviously represented by the
inequalities

Im (z —pgl)) + XA > (w —p§2)) +o0 (|z - )I + |w— p(2)| )

tm (w—p") + 15 > Qs (= = 5") +o (jw =1 +12 = 5{F).

Now consider the scaling by the sequence of scaling mappings L; : C* — C?
defined by

Lj(z’w) = (;] (z _le)), \/—;(w p§2))) .

First notice that in the sense of local Hausdorff set convergence we have

lim L;(Q) = hm L;(B(p,r) N ),

j—oo

since A\; = 0 and p; — p as j = co. Now, the set L;(B(p,r) N Q) for each j
is represented by

Im (\¢) + X5 > Q1 (\/A5€) +0 (A (11 + [€1%)

Im (4/%6) + b5 > Qa(As0) + o (y/Aslel + XI¢P)
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in (¢, €) coordinates of C?. To compute the set convergence, we normalize the
first inequality by dividing by ); and the second by /A;. It follows imme-
diately that the second inequality yields the entire C? as its local Hausdorff
limit, whereas the first inequality converges to

Im¢+1>Q:(¢).

Since Q,(€) is a real-valued strictly subharmonic quadratic polynomial, the
above expression yields that the limit set

lim L;(Q) = ]ll’rg L;(B(p,r) N Q)

j—roo
is indeed biholomorphic to the unit ball in C2.

Bergman curvature along a g-tangential orbit. Now we are ready to
complete the proof of Theorem 3. Let Q be a strictly pseudoconvex poly-
hedral domain (recall that it has a piecewise C? smooth, but not entirely
smooth boundary), and let p; € Q form a sequence of g-tangential type ap-
proaching the singular boundary point p of Q2. For each j, choose a real two
dimensional holomorphic section IT; in T},,Q. Then combining (1) the argu-
ments of localization (Chapter 2 of this article), (2) the conversion of limiting
boundary behavior problem of Bergman curvature to the interior stability
problem (as shown in Chapter 3 and the preceding sections of Chapter 4),
and (3) the fact that the scaled limit is the unit ball in the present case,
one can easily repeat the methods of 3.2 to obtain the conclusion that every
subsequence of the sequence R;?,- (TI;) contains a subsequence converging to
—4/(n + 1). This yields the conclusion of Theorem 3.

4.4. Holomorphic Bergman curvature along the orbits of mixed
type. As above, let p be a singular boundary point of Q2 through which two
faces ¥; and X, pass. This time, let {p;}32, C Q be a sequence of reference
points of mized type. Let us use the same notations as above:

A, = dist (p;, )
p; = dist (p;, To).

Then there are essentially only two typical types of orbits of mixed type as

follows:
A .

Case 1: lim;_,o ;\f =0 and lim;_, EME =m>0

. Aj : Aj
Case 2: lim;_, ;j— =0 and lim;_, u;J = 00.
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In both cases, we scale the domain 2 in a small neighborhood of p using
the scaling mappings L; : C2 — C? defined by

Lj(zw) = 07 (z = p)”), 17" (w = p7))

for each j, where p; = §1),P§2

given by the two inequalities

)). Then the scaled limit in this case will be

2
Im ¢ +1> lim £2Q, (¢)
Jj—roo )\j

Im¢{+1>0.

Therefore, one gets a Siegel domain as the limit for both cases. The second
case yields in fact the bidisk as the limit and hence the curvature behavior
is well understood. However, notice that the holomorphic curvature of the
Bergman metric of the limiting domains in these cases are not constant.
Therefore, to complete the procedure of the limit curvature computation,
we consider the behavior of the holomorphic sections under the scaling. The
holomorphic sections are mapped into another in both cases by the sequence
of linear mappings represented by the matrix

Aj/ui 0
(74)

and the reference points are mapped to the origin for every j.

According to the methods presented in this article, the limiting behavior
of the holomorphic Bergman curvature is completely understood in the sec-
ond case. But the limiting boundary behavior of the holomorphic Bergman
curvature along the first case of the mixed orbit is not explicitly computed
due to two reasons: First, the Bergman metric of the limiting Siegel domain
is not well understood, and secondly, passing to the simultaneous bounded
realization of L;(2), the limiting Siegel domain is not convex. However, this
is not unexpected, since we are dealing with the domains with necessarily
a complicated curvature behavior to begin with. Also, it is expected that
the curvature behavior of the Bergman metric of an arbitrary domain can-
not be always a combination of relatively simple domains such as symmetric
domains.

4.5. Remarks on curvature behavior in higher dimensions. A careful
examination of the methods presented above will show that the asymptotic
boundary behavior of the holomorphic curvature of the Bergman metric in
complex dimensions higher than two can be easily understood by a direct
generalization, if the sequence of the reference points in consideration falls
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on to one of the following three cases: radial type, q-tangential type to a
particular face, or special cases of the mixed type that yields the polydisk
as the limit domain of the scaling. Beyond such cases, it is not known to
us at the time of this writing if any better analysis of the behavior of the
Bergman curvature in higher dimensions is possible. The main difficulty is
that, in complex dimension higher than two, there are many more possibil-
ities for the typical subsequential types of the orbits of the reference points
resulting in that the limit domain becomes a general Siegel domain. Since
the Bergman curvature of the general Siegel domains are not known to us
explicitly, one can only draw a general conclusion: Along any sequence of
the reference points in a strictly pseudoconvez polyhedral domain in C* for
any n, any subsequential limit of the holomorphic sectional curvature tensor
of the Bergman metric is the holomorphic curvature tensor of the Bergman
metric of a certain Siegel domain at a certain point. Even though the Siegel
domain and the point in the preceding statement can always be computed
explicitly, lack of explicit understanding of the Bergman curvature of the
Siegel domains leaves us only the result in the below. This is a direct con-
sequence of our methods presented above, which useful for many purposes.
See [Pa] for more application, for instance.

Proposition. For any bounded (weakly) pseudoconvez polyhedral domain
D in C", there ezxists a sequence of points in D such that the holomorphic
sectional curvature tensor of the Bergman metric of D along the sequence
converges to the holomorphic sectional curvature tensor of either the unit
ball in C* or the polydisk (up to an angle factor for the polydisk) in C*.

The proof follows immediately by considering the strictly convex boundary
points and radial type orbit accumulating to it. We do not include any details
in order to avoid repeating similar arguments.

5. Applications and Concluding Remarks.

Theorem 1 yields, for instance, the following improvement from the theo-
rem on complex analyticity of Kéhler isometries by Kobayashi and Nomizu
[KN1], and also by Greene and Krantz [GK1]:

Proposition. Let Q be a bounded pseudoconvez domain in C* with a C?
strongly pseudoconvez boundary point. Let 2 be equipped with the Bergman
metric, and let M be a Kahler manifold. Then any smooth isometry between
Q and M is either holomorphic or conjugate holomorphic.

Corollary. Any smooth isometry from a bounded pseudoconver domain
with C? boundary in C* onto a Kdhler manifold is either holomorphic or
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conjugate holomorphic.

The proofs follow from Theorem 1 and a line by line imitation of the proof
of Theorem 1.17 in [GK1, 2]. The improvement we present here is again in
the fact that we require only the local C? regularity for the boundary, which
is most natural, at the strongly pseudoconvex point in consideration.

Theorem 1 also provides a verification of the validity of the geometric ar-
guments (formerly known only for C* strongly pseudoconvex cases) proving
the full version of Rosay’s generalization ([Ros]) of Wong’s Theorem ([Wo))
which is:

Theorem (Wong (1977), Rosay (1979)). Let Q be a bounded domain in C*.
If there exist a sequence of points q; of Q bounded away from the boundary
0 of the domain Q and a sequence of holomorphic automorphisms f; of
such that the sequence {f;(q;)}; accumulates at a boundary point p of Q at
which the boundary 8Q is C? strongly pseudoconvez, then the domain § is
biholomorphic to the unit ball in C*.

The proof is as follows: Since the orbit {f;(g;)} accumulates at p € 0%
at which 99 is C? strongly pseudoconvex, due to the existence of a local
peaking function at p, the sequence {f;(z)} will also accumulate at the same
p for every z € Q as j — 0o. Therefore, Theorem 1 implies that the holo-
morphic curvature of the Bergman metric of this domain is identically equal
to —4/(n+1) at every point. Moreover, due to the existence of such special
orbit of a point by a sequence of automorphisms accumulating at p, the do-
main is necessarily simply connected, as shown in detail in Lemma on p. 256
of [Wo). A similar argument with the estimate of the Bergman distance near
the C? smooth strongly pseudoconvex boundary points by Diederich ([Di])
also yields that the domain equipped with the Bergman metric is complete
Kahler. Finally, Lu’s theorem ([Lu]) then concludes that the bounded do-
main in consideration is indeed biholomorphic to the unit ball.
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