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Abstract
We systematically construct isoparametric functions on compact symmetric spaces using vec-

tor bundles and sections of the bundles. We establish a relation between invariants of vector
bundles and invariants of hypersurfaces which are the level sets of the isoparametric functions
induced by sections of the bundles. We hope that this approach provides a new method for com-
puting invariants of hypersurfaces. The Radon transform is performed to derive isoparametric
functions on spheres from our functions.

1. Introduction

1. Introduction
One of the main purposes in the present paper is to construct isoparametric functions on

symmetric spaces of compact type systematically. The research of an isoparametric hyper-
surface, which is the regular level set of an isoparametric function, has a long history, going
back to Levi-Civita and É.Cartan. We have a lot of literatures about isoparametric hypersur-
faces of spaces of constant curvatures, which have constant principal curvatures. We denote
by g the number of distinct principal curvatures. Amongst all, the research of an isoparamet-
ric hypersurface of a sphere is extensive and well-known. Substantial results are exhibited
in [1], [3], [9], [13] and [14], etc. In [9], Münzner shows that g = 1, 2, 3, 4, 6 and in [3],
a lot of isoparamertric functions on a sphere are systematically constructed by an algebraic
method, which are called isoparametric functions of OT-FKM type. By contrast, we have
few explicit examples of isoparametric functions on general Riemannian manifolds.

We utilise a homogeneous vector bundle and a section to construct an isoparametric func-
tion on an irreducible symmetric space, say G/K. To choose a vector bundle and a section,
we consider an irreducible G-module W of spherical type. This means that the principal
orbits are hyperspheres of W and so, we obtain a subgroup H ⊂ G as a stabilizer. Though
this hypothesis adds restriction to a number of considerable pairs (G/K,W) (Table 3.2), the
reason of the choice will be clear in the last section. If the representation is restricted to a
subgroup K, then K-submodules of W induce homogeneous vector bundles over G/K.

Needless to say, a relation between the zero locus of a section of a vector bundle and the
vector bundle itself is deeply understood in topology and algebraic geometry. In this paper,
the zero locus of a section also has prominent features, see §3. In particular, the zero locus
turns out to be a totally geodesic submanifold of G/K (Theorem 3.6). However, another
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interplay of vector bundles and submanifolds will be established in the next section, which
is one of our purposes in the present paper.

In §4, we develop geometry of submanifolds of symmetric spaces involving vector bun-
dles and sections. Frobenius reciprocity makes it possible that W is regarded as a space of
sections and the chosen section is really an eigensection of the Laplace operator acting on
sections. Using an invariant metric on the bundle, we define a function f : G/K → R as the
square of the norm of the section. The function has a symmetry, in other words, the function
has an invariance under the action of an isometry group H ⊂ G of G/K, because the section
has the same symmetry. In addition, we show that the function satisfies the condition (2)
(Theorem 4.3) in the definition of an isoparametric function (Definition 2.1).

If the action of H on G/K is of cohomogeneity one, then it is clear that f is an isopara-
metric function by a symmetry. In this case, we compute |d f |2 explicitly (Theorem 4.13) to
check that the function satisfies the condition (1) in Definition 2.1. Though we already see
that f satisfies the condition (2) in Definition 2.1, we subtract an appropriate constant from
f to obtain an eigenfunction denoted by f̃ (see the Remark after Theorem 4.13).

Next, the mean curvature of the level hypersurface is also computed (Theorem 4.14). We
have common description of |d f |2 and the mean curvature on any pairs (G/K,W). As a
by-product, we can specify the precise value whose inverse image of f is a minimal hyper-
surface in a family given by the isoparametric function. On the contrary, when we compute
the principal curvature, we have distinct difference between pairs and no unified way (The-
orems 4.17, 4.18, 4.19, 4.20 and 4.21). These invariants of submanifolds are related to
invariants of vector bundles and sections involving the eigenvalues and the dimension of the
eigenspaces. In those computations, the second fundamental forms of vector bundles [8]
play essential roles and the theory developed by the first author in [11] provides us with a
unified method. From this viewpoint, the present paper can be considered as a sequel of
[11], where we focus attention on all sections in W, but in this paper, we pay our attention
on a section in W.

If the cohomogeneity of the action of H on G/K is greater than one, then the function f :
G/K → R is not an isoparametric function. However, we can construct a new isoparametric
function F : G/K → Rk in the sense of Wang [18] (see also [2, p.55]), where k denotes the
cohomogeneity of H-action. One component of F consists of the function f . In the case
that a chosen pair is (Sp(n)/U(n),C2n), F coincides with a moment map for an Sp(1)-action
on Sp(n)/U(n).

Moreover, we can find a new isoparametric function f̃ : G/K → R. The function f̃ has
a larger symmetry than the original f . In short, a subgroup H̃ ⊂ G such that H ⊂ H̃ enters
into our theory and f̃ is invariant under the action of H̃. The appearance of f̃ and H̃ is not
accidental. We use other vector bundles and spaces of sections to explain in an algebraic and
geometric way that the chosen section in §3 has really a hidden symmetry H̃ ⊂ G. The H̃-
action on G/K turns out to be of cohomogeneity one. The relation between f̃ and F makes
some properties of H-action and level sets of F transparent. In particular, any submanifold
in our family induced by F is not an equifocal submanifold. Equifocal submanifolds are one
of generalizations of isoparametric hypersurfaces, see Terng-Thorbergsson [16]. In case of
codimension one, isoparametric hypersurfaces are all equifocal and the converse is also true.
Since we adopt Wang’s definition of an isoparametric function, we obtain submanifolds of
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higher codimension, which are not equifocal. Terng’s definition of an isoparametric function
[15] gives us a deep structural theory and close relations to equifocal submanifolds. Since
our F : G/K → Rk does not satisfy Terng’s conditions, we mainly focus our attention on
cases of hypersurfaces.

In the final section, we interpret the reason that representations of spherical type are
chosen. One of our aims in the present paper is to provide a geometric mean of constructing
an isoparametric function on a sphere. By our assumption, the quotient space of G by H is
a sphere S N−1 ⊂ W. Hence, we have a double fibration π : G → G/K and ψ : G → S N−1.
Then we can define a Radon transform R : C∞(G/K) → C∞(S N−1) using the normalized
Haar measure on H:

R( f )(x) =
∫
ψ−1(x)

π∗ f dμ, x ∈ S N−1.

Then the Radon transform of f̃ turns out to be an isoparametric function on a sphere. More
precisely, in the case that the H-action is of cohomogeneity one, R( f̃ ) is an isoparametric
function corresponding to an isoparametric hypersurface with g = 2. If the cohomogene-
ity of H-action is greater than one, then R( f̃ ) is an isoparametric function whose regular
hypersurface is an isoparametric hypersurface with g = 4.

Finally note that we have another fibrations ψ̃ : S N−1 → G/H̃, which are all (general-
ized) Hopf fibrations. In a similar way, we can define a Radon transform R̃ : C∞(G/K) →
C∞(G/H̃). Then we can show that R̃( f̃ ) is also an isoparametric function on G/H̃ (Theorem
5.6), because the fibration ψ̃ : S N−1 → G/H̃ has totally geodesic fibres and ψ̃∗R̃( f̃ ) = R( f̃ ).

We are very grateful to the anonymous referee for careful reading our manuscript and a
lot of comments which lead us to the essential change of our manuscript.

2. Preliminaries

2. Preliminaries2.1. Isoparametric functions.
2.1. Isoparametric functions. First of all, we give a definition of an isoparametic func-

tion on a Riemannian manifold in this paper.

Definition 2.1. Let f : M → R be a function on a Riemannian manifold (M, gM). The
function f is called an isoparametric function if there exist functions F,G : R → R such
that

(1) gM(d f , d f ) = F( f ), (2) Δ f = G( f ).

The regular level set of an isoparametric function is called an isoparametric hypersurface.
We recommend [17] for a review of isoparametric hypersurfaces.

Amongst isoparametric hypersurfaces, an isoparametric hypersurface of a sphere is well-
known and has been researched for a long time. An isoparametric hypersurface of a sphere
has g distinct constant principal curvatures, where g = 1, 2, 3, 4, 6 [9]. We give examples of
isoparametric functions on a sphere.

Example. (g = 2) Let S N−1 ⊂ RN be a unit sphere. If we denote a standard coordinate
functions on RN by (x1, · · · , xN), then
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1
N
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p∑

i=1

x2
i − p

q∑
α=1

x2
α

⎫⎪⎪⎬⎪⎪⎭ ,
where 2 � p � N − 2 and p + q = N, is an isoparametric function. The regular level set is
identified with S p−1 × S q−1.

Each isoparametic hypersurface with g = 1, 2, 3 is homogeneous in the sense that it is one
of orbits of an isometry group of a sphere. Such homogeneous isoparametric hypersurfaces
of a sphere are completely classified in Takagi-Takahashi [14] using a result in Hsiang-
Lawson [7]. However, there exist a lot of examples of non-homogeneous isoparametric
hypersurfaces of a sphere with g = 4.

First of all, Nomizu [12] found an isoparametric function with g = 4.

Example. (g = 4) Let S 2N−1 ⊂ CN (N � 3) be a unit sphere. If a standard coordinate
functions on CN are denoted by (x1 + iy1, · · · , xN + iyN), then⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

x2
i −

n∑
i=1

y2
i

⎞⎟⎟⎟⎟⎟⎠
2

+ 4

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

xiyi

⎞⎟⎟⎟⎟⎟⎠
2

is an isoparametric function.

The regular level set is homogeneous in this example.
Ozeki and Takeuchi [13] gave first examples of non-homogeneous isoparametric hyper-

surfaces with g = 4 and Ferus, Karcher and Münzner systematically constructed such hy-
persurfaces [3], which are nowadays called of OT-FKM type.

2.2. Geometry of Grassmannian.
2.2. Geometry of Grassmannian. Next, we review geometry of Grassmannian mani-

folds, in order to fix notation and our convention in this paper. For proofs, see [11].
Let W be an N-dimensional vector space. In the case that W is a real vector space, we

also consider the orientation of W.
Let Grp(W) be a Grassmannian manifold of (oriented) p-planes in W and S → Grp(W) a

tautological vector bundle. Since S → Grp(W) is regarded as a subbundle of a trivial vector
bundle W → Grp(W) of fibre W, we have an exact sequence of vector bundles:

0→ S
iS−→ W

πQ−−→ Q→ 0.

The quotient bundle Q→ Grp(W) is called the universal quotient bundle. The tangent bun-
dle is identified with S ∗ ⊗ Q. (More precisely, the holomorphic tangent bundle is identified
with S ∗ ⊗ Q in case of complex Grassmannian.)

We fix a scalar product (·, ·) on W. On the one hand, the orthogonal projection gives
a bundle surjection πS : W → S . On the other hand, Q → Grp(W) is regarded as the
orthogonal complementary bundle S ⊥ → Grp(W) to S → Grp(W), and so we obtain a
bundle injection iQ : Q → W. The vector bundles S → Grp(W) and Q → Grp(W) are
equipped with metrics gS and gQ, respectively.

We can define a connection ∇Q on Q → Grp(W) using a trivialization of W → Grp(W)
with an orthonormal basis. If t is a section of Q → Grp(W), then iQ(t) is considered as a
W-valued function. Then we have
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d
(
iQ(t)

)
= πS

(
d
(
iQ(t)

))
+ πQ

(
d
(
iQ(t)

))
.

The connection ∇Qt = πQ
(
d
(
iQ(t)

))
is nothing but the canonical connection. The other term

in right hand side πS
(
d
(
iQ(t)

))
is a 1-form with values in Hom(Q, S ) � Q∗ ⊗ S which is

called the second fundamental form in the sense of Kobayashi [8] and denoted by J.
In a similar way, if s is a section of S → Grp(W), then we have

d (iS (s)) = πS (d (iS (s))) + πQ (d (iS (s))) .

The canonical connection is expressed as ∇S s = πS (d (iS (s))) and we define the second
fundamental form I = πQdiS , which is a 1-form with values in Hom(S ,Q) � S ∗ ⊗ Q.

In the case of a complex Grassmannian, we can also consider complex analytical struc-
tures. Canonical connections give holomorphic structures to S → Grp(W) and Q →
Grp(W). In particular, W can be regarded as the space of holomorphic sections of Q →
Grp(W) by a theorem of Borel-Weil. The second fundamental form I ∈ Ω1(Hom(S ,Q)) is
of type (1, 0) and The second fundamental form J ∈ Ω1(Hom(Q, S )) is of type (0, 1).

Since the (holomorphic) tangent bundle is identified with S ∗ ⊗ Q, we can induce a Rie-
mannian metric gGr on a Grassmannian.
•Real case. We have

gGr(X, Y) = −trace JY IX = −trace IY JX ,

where X and Y are tangent vectors.
•Complex case. Let hGr be the Hermitian metric on the holomorphic tangent bundle T1,0

induced by Hermitian metrics gS and gQ. The definition yields that

hGr(Z,W) = −trace JW IZ ,

where Z and W are (1, 0)-vectors. Consequently we have

gGr(X, Y) = − trace JY IX − trace JXIY

= − trace IY JX − trace IX JY ,

where X and Y are (real) tangent vectors.
The Levi-Civita connection D is nothing but a connection induced by ∇S and ∇Q.

Proposition 2.2. The second fundamental forms I and J are parallel.

For a vector w ∈ W, we have two sections s = πS (w) and t = πQ(w), each of which is
sometimes called the section corresponding to w. Obviously, we have

Proposition 2.3. If s and t are the sections corresponding to w ∈ W, then

∇S s = −Jt, ∇Qt = −Is.

Lemma 2.4. The second fundamental forms I and J satisfy

gQ(Is, t) = −gS (s, Jt).

We now can easily compute (∇S )2 and (∇Q)2. If s and t are the corresponding sections to
w ∈ W, then we have

(∇S )2s = ∇S (−Jt) = −(∇J)(t) − J(∇Qt) = JIs,
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(∇Q)2t = ∇S (−Is) = −(∇I)(s) − I(∇S s) = IJt.

More precisely, we have

∇S
X(∇S s)(Y) = JY IX s, ∇Q

X (∇Qt)(Y) = IY JXt.

For instance, we take the trace of (∇S )2 to define the Laplace operator:
Δs = −∑n

i=1 ∇S
ei

(∇S s)(ei). We see that sections s and t are eigensections of the Laplacian
(Δs = qs, Δt = pt, where q = N − p).

2.3. Totally geodesic immersions into Grassmannians.
2.3. Totally geodesic immersions into Grassmannians. Let (G,K) be an irreducible

symmetric pair of compact type, where G is a simply-connected compact Lie group and
K is a closed subgroup of G. We denote by g and k the corresponding Lie algebras. The
standard decomposition is expressed as g = k ⊕m.

Let ρ : G → GL(W) be an irreducible representation with an G-invariant scalar product.
For simplicity, we do not distinguish a representation ρ : G → GL(W) from the represen-
tation space W. We assume that W has a non-trivial K-invariant orthogonal decomposition
W = U ⊕ V such that mU ⊂ V and mV ⊂ U. (Non-trivial decomposition means that nei-
ther U nor V is zero-dimensional.) Such a decomposition is called a generalised Cartan
decomposition of W. More generally, we define

Definition 2.5. Let � : G → GL(W) be an orthogonal or unitary representation of G.
The (�,W) has a generalised Cartan decomposition (for the symmetric pair (G,K)) if W is
decomposed into two non-zero K-modules W = U0 ⊕ V0 over the same coefficient field as
that of W under the restriction of the homomorphism � to a subgroup K, in such a way that

�(m)U0 ⊂ V0, �(m)V0 ⊂ U0, U0⊥V0,

and neither U0 or V0 is a G-module (in other words, �(m)U0 � {0} and �(m)V0 � {0}). The
decomposition W = U0 ⊕ V0 is called a generalised Cartan decomposition, more accurately,
a real generalised Cartan decomposition or a complex generalised Cartan decomposition
according to the coefficient field of W.

Assume that W has a generalised Cartan decomposition : W = U ⊕V . Let dim U = p and
dim V = q. We define an immersion i : G/K → Grp(W) by

i (gK) = �(g)U, g ∈ G.

We assume throughout this paper that a Riemannian metric on G/K is provided in such a way
that the immersion i : G/K → Grp(W) is an isometric immersion. Then i : G/K → Grp(W)
is indeed a totally geodesic immersion.

We can define two homogeneous vector bundles G ×K U and G ×K V with canonical
connections, which are denoted by U → G/K and V → G/K. Frobenius reciprocity yields
that W can be regarded as a finite dimensional space of sections of U→ G/K and V→ G/K.
More precisely, πU : W → U and πV : W → V denote the orthogonal projections. For
w ∈ W, we put

s([g]) :=
[
g, πU(g−1w)

]
, t([g]) :=

[
g, πV(g−1w)

]
,

where g ∈ G and [g] ∈ G/K. The sections s ∈ Γ(U) and t ∈ Γ(V) are also called the
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corresponding sections to w ∈ W.
From the construction, U → G/K and V → G/K are pull-back bundles of the tautologi-

cal bundle and the universal quotient bundle over Grp(W), respectively. Then the pull-back
connections are the same as the canonical connections. We can also pull-back the second
fundamental forms I and J which are sections of i∗T ∗ ⊗ Hom(U,V) and i∗T ∗ ⊗ Hom(V,U),
respectively, where T ∗ is the cotangent bundle of Grassmannian. Using the projection
i∗T ∗ → T ∗G/K, the pull-backs of I and J are the second fundamental forms of vector
bundles, and so we denote by the same symbol the pull-backs of the second fundamental
forms.

Theorem 2.6 ([11, Lemma 4.1]). A map f : G/K → Grp(W) is totally geodesic (i.e.∇d f
= 0) if and only if the second fundamental form I of vector bundles is parallel.

Proof. Since we have a fundamental relation ∇I = I∇d f , the result follows. �
We define an endomorphism A ∈ Γ (End (V)) by

A =
n∑

i=1

Iei Jei , n = dim G/K,

where e1, · · · , en is an orthonormal basis of the tangent space of G/K. We call A the mean
curvature operator. Notice that A can be defined in a similar way, even if the domain is a
Riemannian manifold [11]. Then we have

Theorem 2.7 ([11, Theorem 3.5]). Let (M, g) be an n-dimensional Riemannian manifold
and F : M → Grp(W) a smooth map. We fix an inner product or a Hermitian inner product
(·, ·) on W.

Then, the following two conditions are equivalent.

(1) F : M → Grp(W) is a harmonic map.
(2) Δt+ At = 0 for an arbitrary t ∈ W, where the vector space W is regarded as a space

of sections of the pull-back bundle F∗Q→ M.

Under these conditions, we have

|d f |2 = −trace A.

The role of the universal quotient bundle in Theorem 2.7 can be replaced by the tautolog-
ical bundle. To do so, we define an endomorphism B of U→ G/K by

B =
n∑

i=1

Jei Iei ,

which is also called the mean curvature operator.

3. Critical Submanifolds

3. Critical Submanifolds
Let (G,K) be an irreducible symmetric pair of compact type, where G is a simply-

connected compact Lie group and K is a closed subgroup of G. The standard involution
gives a decomposition g = k ⊕m, where g and k are the corresponding Lie algebras of G and
K, respectively.

We denote by W an irreducible G-module with a G-invariant scalar product, which has
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a hypersphere as a principal orbit. Such a representation W is called a representation of
spherical type. Those are classified in Hsiang-Hsiang [6].

Table 1.

G SU(n) Spin(n) Spin(7) Spin(9) Sp(n)
W C

n, Cn∗
R

n S 7 S 9 C
2n � C2n∗

G Spin(8) G2

W S +8 , S −8 R7

In this table, S n denotes a spin representation of Spin(n) and S ±n denote half-spin repre-
sentations of Spin(n).

Then, it is easily checked that the following happens: either W is decomposed into two
irreducible components as K-module W = U ⊕ V , or W itself is an irreducible K-module.
We consider only the former cases. Then on a case-by-case basis, we can show

Lemma 3.1. The decomposition W = U ⊕ V is a generalised Cartan decomposition.

We define two irreducible vector bundles G ×K U and G ×K V , which are denoted by
the same symbols U → G/K and V → G/K, with canonical connections ∇U and ∇V ,
respectively.

Fix an element w ∈ W such that |w| = 1 and consider the corresponding section s ∈
Γ(U). Denote by H the isotropy subgroup of G at w ∈ W. Our assumption yields that the
homogeneous space G/H is a unit sphere in W.

The square of a pointwise norm f ([g]) = |s|2([g]) (g ∈ G) of the section s is a function on
G/K. Here, we can take w ∈ U ⊂ W without loss of generality, since W is of spherical type.

First of all, we can show

Lemma 3.2. Only the zero set S 0 and the set S M where the function f attains the maxi-
mum value (, which is called the maximum set) are critical submanifolds of f : G/K → R.

Lemma 3.3. If neither U nor V is a trivial representation of K, then both sets S 0 and S M

are connected and H-orbits.

Lemma 3.4. The function is a Morse-Bott function.

For proofs, see [10] Lemmas 7.3, 7.8 and 7.10. The assumption that W is a G-
representation of spherical type is exploited in proofs and we have that K-modules U and V
are K-representations of spherical type, if they are not trivial representations of dimension
1. Indeed, we obtain

S 0 =
{
[g] ∈ G/K | πU([g−1w]) = 0

}
,(3.1)

S M =
{
[g] ∈ G/K | πV([g−1w]) = 0

}
.(3.2)

If we denote by T0 the zero set and by TM the maximum set of |t|2, then T0 = S M and
TM = S 0. For this duality, we do not distinguish module U from V . In the case that neither
U nor V is a trivial module of K, S 0 and S M are assumed to be expressed as H/H0 and
H/HM, respectively, as homogeneous spaces.

Lemma 3.5. If U is not a trivial module of H0, then S 0 is a singular H-orbit.
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Proof. Since W globally generates a bundle U → G/K, generic sections in W are trans-
verse to the zero section. The hypothesis that W is a representation of spherical type implies
that every section in W except zero is transverse to the zero section. From the transversality
of the section, the normal spaces of S 0 can be identified with U. Then the assumption yields
the result by so-called slice theorem. �
If we replace U, H0 and S 0 by V , HM and S M, respectively, then the same conclusion holds.
In this case, by Hsiang-Lawson [7], S 0 and S M are minimal submanifolds. However, we can
say more.

Theorem 3.6. The critical submanifolds S 0 and S M are totally geodesic submanifolds of
G/K.

Proof. First of all, we can consider a map into a Grassmannian i : G/K → Grp(W) as the
induced map by (V→ G/K,W) [11, Definition 3.2] (and so, p denotes the dimension of U).
Then i is a totally geodesic immersion from Lemma 3.1.

On a Grassmannian Grp(W), the module U gives the tautological vector bundle S →
Grp(W) in a similar fashion, whose pull-back bundle by i is naturally identified with U →
G/K. Then the element w ∈ W also gives a section s̃ of S → Grp(W) and the pull-back of s̃
is nothing but the section s. Let S̃ 0 and S̃ M be the zero set and the maximum set of |s̃|2. We
take the orthogonal complement space W⊥ of w in W. Then (3.1) and (3.2) imply that

S̃ 0 = Grp(W⊥), S̃ M = Grp−1(W⊥),

which are totally geodesic submanifolds of Grp(W).
Then S 0 and S M are the intersections of two totally geodesic submanifolds of Grp(W)

respectively (S 0 = G/K ∩ S̃ 0 and S M = G/K ∩ S̃ M), which yields the desired result. �

We give a table which includes symmetric spaces G/K, representation spaces W, stabiliz-
ers H, decompositions as K-modules W = U ⊕ V and pairs S 0 and S M. We give a complete
list in the table. To do so, we use the coincidences that happen in low dimensions between
the various classical Lie groups, which are listed in the Remark after the Table 2.

Table 2.

G/K W H U ⊕ V S 0, S M

SU(n)/SO(n) Cn SU(n − 1) Rn ⊕ Rn SU(n − 1)/SO(n − 1)
Grp(Cn) Cn SU(n − 1) Cp ⊕ Cq Grp(Cn−1), Grp−1(Cn−1)
Grp(Rn) Rn Spin(n − 1) Rp ⊕ Rq Grp(Rn−1), Grp−1(Rn−1)

S n−1 Rn Spin(n − 1) R ⊕ Rn−1 S n−1, 2points
Gr4(R7) S 7 G2 R4 ⊕ R4 G2/SO(4), G2/SO(4)
Gr4(R8) S ±8 Spin(7) R4 ⊕ R4 Gr4(R7), Gr3(R7)
Gr4(R9) S 9 Spin(7) R8 ⊕ R8 Gr4(R7), Gr3(R7)

Sp(n)/U(n) C2n Sp(n − 1) Cn ⊕ Cn∗ Sp(n − 1)/U(n − 1)
Grp(Hn) Hn Sp(n − 1) Hp ⊕Hq Grp(Hn−1), Grp−1(Hn−1)

G2/SO(4) R7 SU(3) R4 ⊕ R3 SU(3)/SO(3), CP2
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Remark. We now list the coincidences of a pair of symmetric spaces and representations
W omitted in the table.

(SU(2)/SO(2), su(2)) = (S 2,R3),(
SU(4)/SO(4),R6 = ∧2C4R)

=
(
Gr3(R6),R6

)
,(

SU(4)/Sp(2),R6
)
=
(
S 5,R6

)
,(

Gr4(R6),C4
)
=
(
Gr2(C4),C4

)
,(

Gr2(R5),C4
)
=
(
Sp(2)/U(2),C4

)
,(

SO(6)/U(3),C4
)
= (CP3,C4),(

Sp(1)/U(1), sp(1)
)
= (S 2,R3).

4. Isoparametric functions

4. Isoparametric functions
Let G/K, W, H and f be as in the previous section. In this section, the level set of the

function f : G/K → R is our main concern. Since H ⊂ G is an isotropy subgroup at w ∈ W,
f is invariant under the action of H. Hence, H acts on the level set of f .

We can easily show

Lemma 4.1. If the action of H on G/K is of cohomogeneity one, then f is an isopara-
metric function.

Because |grad f |2 and Δ f are also invariant under the action of H, and so they are constant
functions on the level set of f .

The actions of H are of cohomogeneity one except the following cases:

(SU(n)/SO(n),Cn) ,
(
Sp(n)/U(n),C2n

)
,
(
Gr4(R9), S 9

)
.

In the above cases, the cohomogeneity of the actions are 2, 3 and 2, respectively.
In the case of cohomogeneity one, we can easily describe the level set of f as a unit sphere

bundle of S 0 or S M, and show that all level sets are H-orbits, which are left to the reader.
From now on, we would like to compute geometric invariants of submanifolds, more

precisely, mean curvatures and principal curvatures. These invariants are related to invariants
of vector bundles.

Theorem 4.2. We have

Δs =
n
p

s, Δt =
n
q

t, n := dim G/K,

for arbitrary s ∈ W ⊂ Γ(U) and t ∈ W ⊂ Γ(V), when W is an orthogonal representation.
We also have

Δs =
n

2p
s, Δt =

n
2q

t, n := dim G/K,

for arbitrary s ∈ W ⊂ Γ(U) and t ∈ W ⊂ Γ(V), when W is a unitary representation.

Proof. From Theorem 2.6, we see that the mean curvature operators A and B are parallel.
Since U→ G/K and V→ G/K are irreducible, we have
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B = −μIdU , A = −νIdV

for some constant μ and ν. Since i : G/K → Grp(W) is totally geodesic (hence harmonic),
Theorem 2.7 yields that

Δs = μs, Δt = νt.

Since i : G/K → Grp(W) is an isometric immersion, the definition of the Riemannian metric
gGr yields that

n =
∑

gGr(ei, ei) = −
∑

trace Jei Iei = −trace A = −trace B,

when W is a real representation, and

n = −2 trace A = −2 trace B,

when W is a complex representation. Hence we have our desired results. �
We fix w ∈ W (|w| = 1) again and consider the function f = |s|2.

Theorem 4.3. We have that

Δ f =
2nN
pq

(
f − p

N

)
,

when W is an orthogonal representation and

Δ f =
nN
pq

(
f − p

N

)
,

when W is a unitary representation.

Proof. Notice that w ∈ W also induces a section of S → Grp(W) denoted by s̃. It
follows that the pull-back section of s̃ is nothing but s ∈ Γ(U). From Proposition 2.3,
we see that ∇S s̃ = −Jt̃ on Grassmannian, where t̃ is the corresponding section. Since
i : G/K → Grp(W) is a totally geodesic immersion and ∇U is regarded as the pull-back
connection of ∇S , we also have ∇U s = −Jt. Then we obtain

|Jt|2 =
∑

gU
(
Jei t, Jei t

)
= −gV (At, t) = gV (Δt, t) .

The well-known formula

Δ|s|2 = gU (Δs, s) + gU (s,Δs) − 2|∇U s|2

yields that

Δ|s|2 = 2gU (Δs, s) − 2gV (Δt, t) .

Theorem 4.2 yields the result. �
Hence, the function f always satisfies the condition (2) of the definition of an isoparametric
function.

However, |grad f |2 = |d f |2 does not satisfy the condition (1) in general. We distinguish
the case that the action of H is of the cohomogeneity one from others.
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4.1. The case of cohomogeneity one.
4.1. The case of cohomogeneity one. In this subsection, we omit the case that G/K is a

sphere. Hence, in the decomposition W = U⊕V , U and V are K-representations of spherical
type. Moreover, S 0 and S M are singular H-orbits, which are expressed as H/H0 and H/HM,
respectively. Since the action of H is of cohomogeneity one, U is a representation of H0 of
spherical type and V is a representation of HM of spherical type.

Let n be a unit normal vector field defined by

n =
grad f
|grad f | ,

on the regular point of f . We denote by An the shape operator of f −1(c), where c is a regular
value. By definition, we have that

AnX = −DXn = −X
(

1
|d f |
)

grad f − 1
|d f |DXgrad f ,

where X is a tangent vector to f −1(c) and D is the Levi-Civita connection on G/K. Since
f is an isoparametric function, the first term of the right-hand-side vanishes. Consequently,
we have that

g (AnX, Y) = − 1
|d f | (DXd f ) (Y),

where X and Y are tangent vectors to f −1(c) and g is the Riemannian metric on G/K. The
definition of f yields that

(DXd f ) (Y) = gU

(
∇U

X

(
∇U s

)
(Y), s

)
+ gU

(
s,∇U

X

(
∇U s

)
(Y)
)

+ gU

(
∇U

X s,∇U
Y s
)
+ gU

(
∇U

Y s,∇U
X s
)
.

Since W = U ⊕ V is a generalised Cartan decomposition, Proposition 2.3 yields that

∇U
X s = −Jt, ∇U

X

(
∇U s

)
(Y) = JY IX s,

where t is the corresponding section. It follows that

(DXd f ) (Y) = −gV (IX s, IY s) − gV (IY s, IX s)

+ gU (JXt, JYt) + gU (JYt, JXt) .

We define endomorphisms Ĩ and J̃ of the tangent bundle of G/K by

g(ĨX, Y) =
1
2
{gV (IX s, IY s) + gV (IY s, IX s)}

and

g(J̃X, Y) =
1
2
{gU (JXt, JYt) + gU (JYt, JXt)} .

By definition, we obtain

(4.1) An =
2
|d f |

(
Ĩ − J̃

)
.

We can immediately see

Lemma 4.4. The endomorphisms Ĩ and J̃ are H-invariant symmetric operators.
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To see properties of Ĩ and J̃, we give a key algebraic theorem.
We denote by h the corresponding Lie subalgebra to H and a natural projection by π :

G → G/K.

Theorem 4.5. In the case that the H-action on G/K is of cohomogeneity one, for an
arbitrary ξ ∈ m such that ξ⊥h and |ξw| = 1, we have that

ξ2w = −w.
Proof. Let N be the normal space of S M at π(e), where e is a unit element of G. The

subgroup L ⊂ G defined as L := K∩H is isomorphic to HM and acts on N as a representation
of spherical type, since the action of H is of cohomogeneity one.

Since W globally generates V → G/K and is a representation of spherical type, t is
transverse to the zero section. Hence we have that

TxS M = Ker∇Vt = Ker Is = {X ∈ TxG/K | IX s = 0} .
It follows that Tπ(e)G/K = Ker Is ⊕⊥ N.

We may regard Is : Tπ(e)G/K → Vπ(e) as an homomorphism Is : m → V and consider
N ⊂ m. Since s (π(e)) = [e, w], Is is an L-equivariant homomorphism. Hence V is also an
L-representation of spherical type which is isomorphic to N.

Let ξ ∈ N such that |Iξs| = |ξw| = 1. Then we obtain Lξ ⊂ L as an isotropy subgroup at ξ
and Iξ : U→ V is an Lξ-equivariant homomorphism. The endomorphism JξIξ : U → U can
be now regarded as ξ2 : U → U, which is a restriction of ξ2 : W → W to U ⊂ W. Note that
the eigenvalues except zero of ξ2|U are the same as ones of ξ2|V with multiplicities, since
W = U ⊕ V is a generalised Cartan decomposition. Then Lξ irreducible decompositions of
U and V , which are given after the proof, yield that ξ2w = cw with some constant c ∈ R by
Schur’s lemma. It follows that c = 〈ξ2w, w〉 = −〈ξw, ξw〉 = −1. �
We shall exploit Lξ-decomposition in the sequel. We denote by l and lξ the corresponding

Lie subalgebras to L and Lξ, respectively.
• Lξ-decomposition of (G/K,W).
(1)
(
Grp(RN),RN

)
.

Let e1, · · · , eN be an orthonormal basis of RN such that e1, · · · , ep spans Rp. We take
w = e1 and so, l = so(p − 1) ⊕ so(q), where q := N − p. Let ξ be a skew endomorphism of
RN such that

ξe1 = ep+1, ξep+1 = −e1, and ξeA = 0, A � 1, p + 1.

Notice that ξ ∈ m∩ h⊥ with |ξw| = 1. It follows that lξ is isomorphic to so(p− 1)⊕ so(q− 1).
Then we have

U = Rp = Rw ⊕ Rp−1, V = Rq = Rξw ⊕ Rq−1.

(2)
(
Grp(CN),CN

)
.

Let e1, · · · , eN be a unitary basis of CN such that e1, · · · , ep spans Cp. We take w = e1 and
so, l = u(1) ⊕ su(p − 1) ⊕ su(q). Let ξ be a skew Hermitian endomorphism of CN such that

ξe1 = ep+1, ξep+1 = −e1, and ξeA = 0, A � 1, p + 1.

Notice that ξ ∈ m ∩ h⊥ with |ξw| = 1. It follows that lξ is isomorphic to u(1) ⊕ su(p − 1) ⊕
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su(q − 1). Then we have

U = Cp = Cw ⊕ Cp−1, V = Cq = Cξw ⊕ Cq−1.

(3)
(
Grp(HN),HN

)
.

Let e1, · · · , eN be a quaternion-unitary basis of HN such that e1, · · · , ep spans Hp. We take
w = e1 and so, l = sp(p − 1) ⊕ sp(q). Let ξ be a quaternion-skew Hermitian endomorphism
of HN such that

ξe1 = ep+1, ξep+1 = −e1, and ξeA = 0, A � 1, p + 1.

Notice that ξ ∈ m∩ h⊥ with |ξw| = 1. It follows that lξ is isomorphic to sp(p− 1)⊕ sp(q− 1).
Then we have

U = Hp = Hw ⊕Hp−1, V = Hq = Hξw ⊕Hq−1.

(4)
(
Gr4(R7), S 7

)
.

The isotropy subalgebra is isomorphic to so(4) ⊕ sp(1). The Lie algebra so(4) is a direct
sum of two copies of sp(1). To distinguish these copies of sp(1), the isotropy subalgebra is
denoted by sp+(1) ⊕ sp−(1) ⊕ sp(1).

Under the action of the isotropy subalgebra on S 7, we have an irreducible decomposition:

S 7 =
(
C2
+ ⊗ C2

)R ⊕ (C2
− ⊗ C2

)R
,

where C2
(±) denote the standard representations of sp(±)(1), respectively and

(
C2± ⊗ C2

)R
de-

note real invariant spaces of C2± ⊗ C2, respectively.
We pick up a unit vector w ∈

(
C2
+ ⊗ C2

)R
and so, l is regarded as the diagonal subalgebra

of sp+(1) ⊕ sp(1). Let v ∈
(
C2− ⊗ C2

)R
be a unit vector. Since Lξ (ξ ∈ m ∩ h⊥ with |ξw| = 1)

can be identified with an isotropy subgroup of the L-action on S 7 at v, it follows that lξ is
isomorphic to the subalgebra {(X, X, X)} of sp+(1) ⊕ sp−(1) ⊕ sp(1). Then we have

U =
(
C2
+ ⊗ C2

)R
= Rw ⊕ R3, V =

(
C2
− ⊗ C2

)R
= Rv ⊕ R3,

where R3 denotes the adjoint representation of lξ.
(5)
(
G2/SO(4),R7

)
.

To distinguish two copies of sp(1), the isotropy subalgebra is denoted by sp+(1)⊕ sp−(1).
Under the action of the isotropy subalgebra on R7, we have an irreducible decomposition:

R7 =
(
C2
+ ⊗ C2

−
)R ⊕ sp−(1),

where C2± denote the standard representations of sp±(1), respectively and
(
C2
+ ⊗ C2−

)R
de-

notes a real invariant space of C2
+ ⊗ C2−.

We pick up a unit vector w ∈
(
C2
+ ⊗ C2−

)R
and so, l is regarded as the diagonal subalgebra

Δ of sp+(1)⊕ sp−(1). Let v ∈ sp−(1) be a unit vector. Since Lξ (ξ ∈ m∩ h⊥ with |ξw| = 1) can
be identified with an isotropy subgroup of L-action on R7 at v, we have that lξ is isomorphic
to u(1) which is the standard subalgebra of Δ. Then we have

U =
(
C2
+ ⊗ C2

−
)R
= Rw ⊕ R ⊕ C2, V = sp−(1) = Rv ⊕ C2,
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where Cα denotes an irreducible representation of u(1) with weight α.

Remark. We should consider the case of
(
Gr4(R8), S ±8

)
. However, the triality gives the

same picture as in the case of
(
Gr4(R8),R8

)
, and so we omit it.

Corollary 4.6. We can find a geodesic on G/K which intersects all H-orbits orthogonally.

Proof. For any ξ ∈ m such that ξ⊥h and |ξw| = 1, Theorem 4.5 yields that

etξw =
∑ 1

n!
ξnw = cos tw + sin tv,

where we put v := ξw ∈ V . Then, π(etξ) is a geodesic through π(e).
Moreover, we get

s
(
π(etξ)

)
=
[
etξ, πU

(
e−tξw

)]
= cos t

[
etξ, w

]
= cos tetξs (π(e)) .

Hence,

f
(
π(etξ)

)
= cos2 t,

and so, the geodesic π(etξ) meets all H-orbits.
Since ξ⊥h, ξ can be regarded as a normal vector of S M in G/K. We can identify the

normal bundle of an H-orbit with a neighbourhood of the H-orbit G-equivariantly via an
exponential map restricted to the normal space. Hence the geodesic π(etξ) intersects all H-
orbits orthogonally by Gauss’s lemma. �

Remark. The existence of a geodesic which intersects all orbits orthogonally is well-
known in the case that the action is of cohomogeneity one. However, we exploit our geodesic
π(etξ) to compute submanifold-geometric invariants including principal curvatures of the
regular level set explicitly. To do so, we fix the notation π(etξ) to express the specified
geodesic.

For simplicity, we put o := π(e) ∈ G/K.

Theorem 4.7. The endomorphism Ĩ has only two eigenspaces, which is expressed as
TxG/K = E1⊕E2, where s(x) � 0. The eigenspace E1 with zero eigenvalue is indeed Ker Is,
where we regard Is as a homomorphism Is : TG/K → V. The both E1 and E2 can be
identified with ToS M and V, respectively, via a parallel transport along the geodesic π

(
etξ
)

and an action of H, where ξ ∈ m ∩ h⊥.

Proof. As we already show,

ToS M = Ker∇Vt =
{
X ∈ ToG/K | ∇V

Xt = 0
}
.

It follows from ∇Vt = −Is that ToS M is included in the eigenspace of Ĩ with zero eigenvalue.
Let L be an isotropy subgroup of H at o ∈ S M. Then we already see that N(� V) is an

irreducible representation of L. From Lemma 4.4, V must be an eigenspace of Ĩ, because L
acts on each eigenspace.

Let x ∈ G/K be a point outside S M and suppose that s(x) � 0. It follows from H-
invariance of Ĩ that x can be assumed to be joined to o by π(etξ) and x = π(et0ξ) for some
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ξ ∈ m ∩ h⊥. If we put g(x) = et0ξ, then x = g(x)o and s(x) = cos t0g(x)s(o).
Since I is G-invariant, if X and Y ∈ TxG/K, then we obtain

gx

(
ĨX, Y

)
=

1
2
{
gVx (IX s(x), IY s(x)) + gVx (IY s(x), IX s(x))

}

=
1
2

{
gVx

(
Ig(x)g(x)−1X cos t0g(x)s(o), Ig(x)g(x)−1Y cos t0g(x)s(o)

)
+ gVx

(
Ig(x)g(x)−1Y cos t0g(x)s(o), Ig(x)g(x)−1X cos t0g(x)s(o)

)}

=
f (y)
2

{
gVy

(
g(x)Ig(x)−1X s(o), g(x)Ig(x)−1Y s(o)

)
+ gVy

(
g(x)Ig(x)−1Y s(o), g(x)Ig(x)−1X s(o)

)}

=
f (y)
2

{
gVo

(
Ig(x)−1X s(o), Ig(x)−1Y s(o)

)
+ gVo

(
Ig(x)−1Y s(o), Ig(x)−1X s(o)

)}
= f (y) go

(
Ĩg(x)−1X, g(x)−1Y

)
.

It follows that TxG/K = g(x)ToS M ⊕ g(x)Vo is the eigenspace decomposition of the endo-
morphism Ĩx. It also follows that g(x)ToS M = Ker Is. �

Lemma 4.8. The normal vector field n belongs to E2, where d f � 0.

Proof. From Corollary 4.6, the velocity vector of the geodesic π(etξ) is a constant multiple
of the unit normal vector field n.

By Theorem 4.7, the eigenspace E1 corresponding to zero eigenvalue is the image of a
parallel transport of TS M along π(etξ). Then, we have that n⊥E1. The H-invariance gives
our desired result. �

Remark. It is well-known (and easily shown) that the unit normal vector field n generates
a geodesic if the function satisfies the condition (1) of Definition 2.1.

We denote by λ an eigenvalue of Ĩ whose eigenspace is E2 � V .

Theorem 4.9. The eigenvalue λ is equal to n
pq |s|2 when W is real, n

4pq |s|2 when W is
complex.

Proof. In both cases, we have

(4.2)
∑

g(Ĩei, ei) = gV
(
Iei s, Iei s

)
= −gU(Bs, s) = gU(Δs, s).

•W: real. By definition, we have
∑
g(Ĩei, ei) = qλ. From (4.2) and Theorem 4.2, we get

qλ =
n
p
|s|2.

•W: complex. By definition, we have
∑
g(Ĩei, ei) = 2qλ. From (4.2) and Theorem 4.2, we

get

2qλ =
n

2p
|s|2.

�
In a similar way, we have
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Theorem 4.10. The eigenspaces of J̃ can be identified with U and TS 0 via a parallel
transport along the geodesic π(etξ) and an H-action. The eigenvalue corresponding to the
eigenspace U is n

pq |t|2 when W is real, n
4pq |t|2 when W is complex. The eigenspace TS 0 is

the kernel of J̃.

For simplicity, it is said that the eigenspaces of Ĩ are V and TS M and the eigenspaces of
J̃ are U and TS 0, when no confusion can arise.

Lemma 4.11. The unit normal vector field n is the eigenvector of J̃ which belongs to U.

We can compute the norm of the velocity vector of the geodesic π(etξ).

Lemma 4.12. Let ξ ∈ m ∩ h⊥ with |ξw| = 1. The square of the norm |ξ|2 is equal to pq
n ,

when W is real, 4pq
n , when W is complex.

Proof. On the one hand, since ξ is a constant multiple of n, we get Ĩξ = λξ, from Lemma
4.8, where λ is the eigenvalue different from zero. It follows that

g(Ĩξ, ξ) = λ|ξ|2

On the other hand, the definition gives g(Ĩξ, ξ) = gV

(
Iξs, Iξs

)
. Since G/K is a totally

geodesic submanifold of Grp(W), we can compute

Iξs
(
π(etξ)

)
=
[
etξ, ξ cos tw

]
= cos t

[
etξ, ξw

]
.

Since |ξw| = 1, we obtain |Iξs|2 = cos2 t|ξw|2 = |s|2.
We immediately get λ|ξ|2 = |s|2, which provides us with the result by Theorem 4.9. �

Theorem 4.13. The norm of the gradient vector grad f is given by

|d f | =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2|s||t|
√

n
pq , when W is real,

|s||t|
√

n
pq , when W is complex.

Proof. Let ξ ∈ m ∩ h⊥ with |ξw| = 1. It is enough to compute the norm on the geodesic
π(etξ) due to H-invariance. Note that the corresponding section t is expressed as

t
(
π(etξ)

)
=
[
etξ,− sin tv

]
= − sin t

[
etξ, v

]
= − sin tetξt (o) .

Moreover, we get from ξv = −w that

Jξt
(
π(etξ)

)
= − sin t

[
etξ, ξv

]
= tan t

[
etξ, w

]
=
|t|
|s| s
(
π(etξ)

)
.

Then, we have

|d f |2 =
∑(

gU

(
∇U

ei
s, s
)
+ gU

(
s,∇U

ei
s
))2

=
∑(

gU
(
Jei t, s

)
+ gU

(
s, Jei t

))2
=
∑ |s|2
|t|2
(
gU

(
Jei t, Jξt

)
+ gU

(
Jξt, Jei t

))2
=
∑

4
|s|2
|t|2
(
g(J̃ei, ξ)

)2
.

We can take en = n and already see that ξ = |ξ|n (up to a sign). Theorem 4.10 and Lemma
4.12 yield that
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|d f |2 = 4
|t|2
|s|2 |ξ|

2μ2,

where μ is the eigenvalue of J̃ different from zero. �

Remark. From Theorems 4.3 and 4.13, it follows that

Δ f =
2nN
pq

(
f − p

N

)
, |d f |2 = 4n

pq
f (1 − f ),

when W is real, and

Δ f =
nN
pq

(
f − p

N

)
, |d f |2 = n

pq
f (1 − f ),

when W is complex. If we define a new function f̃ by

f̃ = f − p
N
,

then we have

Δ f̃ =
2nN
pq

f̃ , |d f̃ |2 = 4n
pq

(
f̃ +

p
N

) ( q
N
− f̃
)
,

when W is real, and

Δ f̃ =
nN
pq

f̃ , |d f̃ |2 = n
pq

(
f̃ +

p
N

) ( q
N
− f̃
)
,

when W is complex.

Let c be a regular value of the function f : G/K → R. We can compute the mean
curvature m of the hypersurface f −1(c). Notice that |s|2 = c and |t|2 = √1 − c, by definition.
Hence, instead of using c, we employ |s| and |t| to express invariants on f −1(c).

Theorem 4.14. Let m be the mean curvature of the regular level set f −1(c). Then m is
expressed:

m =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
|s||t|
√

n
pq

{
|s|2(q − 1) − |t|2(p − 1)

}
, when W is real,

1
2|s||t|
√

n
pq

{
|s|2(2q − 1) − |t|2(2p − 1)

}
, when W is complex.

Proof. From (4.1), Theorems 4.7, 4.9 and 4.10 and Lemmas 4.8 and 4.12, it follows that

m =
n−1∑
i=1

g(Anei, ei) =
2
|d f |

{
trace Ĩ − g(Ĩn, n) − trace J̃ + g(J̃n, n)

}
,

where e1, · · · , en = n is an orthonormal basis of TG/K. Using again Lemmas 4.8 and 4.12,
Theorem 4.13 yield the result. �

Remark. Using only the function f , m is described as

m =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
n

pq f (1− f ) {(N − 2) f − (p − 1)} , when W is real,√
n

4pq f (1− f ) {2(N − 1) f − (2p − 1)} , when W is complex.
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Corollary 4.15. There exists one and only one minimal regular level set of the function
f . More precisely, f −1(c) is a minimal hypersurface, where

c =

⎧⎪⎪⎨⎪⎪⎩
p−1
N−2 , when W is real,
2p−1

2(N−1) , when W is complex.

Next, we compute principal curvatures, in other words, the eigenvalues of An. From (4.1),
we should see how the eigenspaces of Ĩ and J̃ intersect with each other.

As we have already seen, the eigendecomposition of Ĩ is expressed as

ToG/K � m = {X ∈ m | Xw = 0} ⊕⊥ V = TS M ⊕⊥ V.

We put g0 := e
π
2 ξ. In a similar way, we have

g−1
0

(
Tπ(g0)G/K

)
� m = {X ∈ m | Xv = 0} ⊕⊥ U = g−1

0

(
Tπ(g0)S 0

)
⊕⊥ U.

We use the same notation as in Lξ-decomposition of (G/K,W) after Theorem 4.5.
•Principal curvatures.

By (4.1), Theorems 4.7, 4.9, 4.10 and 4.13 imply

Lemma 4.16. The shape operator An satisfies

An =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 (on ToS M ∩ g−1
0 (Tπ(g0)S 0))

|s|
a|t|
√

n
pq

(on g−1
0 (Tπ(g0)S 0) ∩ V)

− |t|
a|s|
√

n
pq

(on ToS M ∩ U)

|s|2 − |t|2
a|s||t|

√
n
pq

(on U ∩ V),

where a = 1 (resp. 2) if W is real (resp. complex).

(1)
(
Grp(RN),RN

)
,

The tangent space m is regarded as Rp ⊗ Rq. We get the lξ-decomposition of m:

m = Rw ⊗ Rξw ⊕⊥ Rp−1 ⊗ Rξw ⊕⊥ Rw ⊗ Rq−1 ⊕⊥ Rp−1 ⊗ Rq−1

= R ⊕⊥ Rp−1 ⊕⊥ Rq−1 ⊕⊥ Rp−1 ⊗ Rq−1.

In this decomposition, we can identify:

TS 0 = Rq−1 ⊕⊥ Rp−1 ⊗ Rq−1, TS M = Rp−1 ⊕⊥ Rp−1 ⊗ Rq−1,

U = R ⊕⊥ Rp−1, V = R ⊕⊥ Rq−1.

Since the both Ĩ and J̃ are lξ-invariant, Schur’s lemma yields the eigendecomposition of An.
Then Lemma 4.16 implies

Theorem 4.17. The principal curvatures of the regular level set f −1(c) of the function f
are

|s|
|t| , − |t||s| , 0,

with multiplicities q − 1, p − 1, (p − 1)(q − 1), respectively.
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(2)
(
Grp(CN),CN

)
,

The holomorphic tangent space at o is regarded as Cp∗ ⊗ Cq. We identify m with the
holomorphic tangent space at o. We get the lξ-decomposition of m:

m =Cw∗ ⊗ Cξw ⊕⊥ Cp−1∗ ⊗ Cξw ⊕⊥ Cw∗ ⊗ Cq−1 ⊕⊥ Cp−1∗ ⊗ Cq−1

=C ⊕⊥ Cp−1∗ ⊕⊥ Cq−1 ⊕⊥ Cp−1∗ ⊗ Cq−1.

In this decomposition, we can identify:

TS 0 =Cq−1 ⊕⊥ Cp−1∗ ⊗ Cq−1, TS M = Cp−1∗ ⊕⊥ Cp−1∗ ⊗ Cq−1,

U∗ =C ⊕⊥ Cp−1∗ , V = C ⊕⊥ Cq−1.

Since the both Ĩ and J̃ are lξ-invariant, Schur’s lemma yields the eigendecomposition of An.
Then Lemma 4.16 implies

Theorem 4.18. The principal curvatures of the regular level set f −1(c) of the function f
are

1√
2|s||t| (|s|

2 − |t|2),
|s|√
2|t| , − |t|√

2|s| , 0,

with multiplicities 1, 2(q − 1), 2(p − 1), 2(p − 1)(q − 1), respectively.

(3)
(
Grp(HN),HN

)
,

The tangent space m is regarded as Hp ⊗ Hq, in an appropriate sense. We get the lξ-
decomposition of m:

m =Hw ⊗Hξw ⊕⊥ Hp−1 ⊗Hξw ⊕⊥ Hw ⊗Hq−1 ⊕⊥ Hp−1 ⊗Hq−1

=H ⊕⊥ Hp−1 ⊕⊥ Hq−1 ⊕⊥ Hp−1 ⊗Hq−1.

In this decomposition, we can identify:

TS 0 =Hq−1 ⊕⊥ Hp−1 ⊗Hq−1, TS M = Hp−1 ⊕⊥ Hp−1 ⊗Hq−1,

U =H ⊕⊥ Hp−1, V = H ⊕⊥ Hq−1.

Since the both Ĩ and J̃ are lξ-invariant, Schur’s lemma yields the eigendecomposition of An.
Then Lemma 4.16 implies

Theorem 4.19. The principal curvatures of the regular level set f −1(c) of the function f
are

1
2|s||t| (|s|

2 − |t|2),
|s|
2|t| , − |t|

2|s| , 0,

with multiplicities 3, 4(q − 1), 4(p − 1), 4(p − 1)(q − 1), respectively.

(4)
(
Gr4(R7), S 7

)
,

The tangent space m is isomorphic to R4 ⊗ R3 as so(4) ⊕ sp(1)-module. Note that lξ
is isomorphic to the subalgebra {(X, X, X)} of sp+(1) ⊕ sp−(1) ⊕ sp(1), and so we have a
decomposition of m as lξ-module:

m = R5 ⊕⊥ 2R3 ⊕⊥ R.
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Since

TS 0 = R5 ⊕⊥ R3, TS M = R5 ⊕⊥ R3, U = R ⊕ R3, V = R ⊕ R3,

we can not obtain the same conclusion as before.
We consider a lξ-irreducible decomposition of S 7:

S 7 = Rw ⊗ R3 ⊕ Rv ⊗ R3,

We already see that ξw = v and ξv = −w. Let u1, u2, u3 be an orthonormal basis of R3 ⊂
U. We can put ξ2ui = xui for i = 1, 2, 3. Using the relation that |ξ|2 = gV(Iξw, Iξw) +∑

i gV(Iξui, Iξui), Lemma 4.12 yields that
pq
n
= 1 − 3x.

If we substitute p, q and n by 4, 4 and 12, then we obtain

x = −1
9
.

Hence we can take an orthonormal basis v1, v2 and v3 of R3 ⊂ V such that

ξui =
1
3
vi, ξvi =

−1
3

ui, i = 1, 2, 3.

Let η be a normal vector of ToS M which is orthogonal to ξ, (which yields that η ∈ R3 ⊂
V), and satisfies that |ηw| = 1. Theorem 4.12 gives

|η|2 = pq
n
=

4
3
.

The relation ξ⊥η yields that ξw⊥ηw. Hence we may suppose that

ηw = v1, ηv =
−1
3

u1.

We put η = η0 + η1 according to the decomposition m = TS 0 ⊕U. Note that η0 ∈ R3 ⊂ TS 0

and η1 ∈ R3 ⊂ U. Then we have

ηv = η0v + η1v = η1v,

and so, |η1v|2 = 1
9 . Since η1 ∈ U, we get

g(J̃η1, η1) =
n
pq
|t|2|η1|2 = 3

4
|η1|2.

On the other hand, we have

go(J̃η1, η1) = gV(Jη1 t, Jη1 t) = |t|2|η1v|2 = 1
9
.

Consequently, we have |η1|2 = 4
27 , |η0|2 = 32

27 , and so,

|η0| : |η1| = 2
√

2 : 1.

Hence, if X is a vector of R3 ⊂ ToS M and X = X0 + X1, where X0 ∈ R3 ⊂ ToS 0 and
X1 ∈ R3 ⊂ U, then we have
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|X0| : |X1| = 1 : 2
√

2.

Let X1, X2 and X3 be an orthonormal basis of R3 ⊂ ToS M and v1, v2 and v3 an orthonormal
basis of R3 ⊂ V . Then we can take an orthonormal basis Y1, Y2 and Y3 of

(
R3 ⊕ R3

)
∩ ToS 0

and an orthonormal basis u1, u2 and u3 of
(
R3 ⊕ R3

)
∩ U such that

Xi =
1
3

(
Yi − 2

√
2ui

)
, vi =

1
3

(
2
√

2Yi + ui

)
, i = 1, 2, 3.

It follows from Theorem 4.10 that

J̃Xi =
2
√

2
9

n
pq
|t|2
(
2
√

2Xi − vi

)
, J̃vi =

1
9

n
pq
|t|2
(
−2
√

2Xi + vi

)

From (4.1) and Theorems 4.7, 4.9, 4.10 and 4.13, we need to compute the eigenvalues of

1
9

√
n
pq

1
|s||t|

( −8|t|2 2
√

2|t|2
2
√

2|t|2 9|s|2 − |t|2
)

to obtain the principal curvatures. Then we have

Theorem 4.20. The principal curvatures of the regular level set f −1(c) of the function f
are √

3
12

1
|s||t|

{
3(|s|2 − |t|2) ±

√
9 − 4|s|2|t|2

}
, 0,

with multiplicities 3, 3, 5, respectively.

(5)
(
G2/SO(4),R7

)
,

We can proceed in the almost same way as in case of
(
Gr4(R7), S 7

)
. So we shall sketch a

proof.
The tangent space m is regarded as

(
C2
+ ⊗ S 3C2−

)R
. Since lξ is isomorphic to u(1) ⊂ Δ ⊂

sp+(1) ⊕ sp−(1), we get a decomposition of m as lξ-module:

mC = C4 ⊕⊥ 2C2 ⊕⊥ 2C ⊕⊥ 2C−2 ⊕⊥ C−4.

Considering real representations, we can take

m = C4 ⊕⊥ 2C2 ⊕⊥ 2R.

Since

TS 0 = C4 ⊕ C2, TS M = C4 ⊕ C2 ⊕ R, U = R ⊕ C2 ⊕ R, V = R ⊕ C2,

we can not obtain the same conclusion as before.
We consider a u(1)-irreducible decomposition of R7:

R7 = Rw ⊕ R ⊕ C2 ⊕ Rv ⊕ C2.

Let u1, u2 be an orthonormal basis of C2 ⊂ U and u3 ∈ R ⊂ U be an unit vector. We can put
ξ2ui = xui for i = 1, 2 and ξu3 = 0. If follows from Lemma 4.12 that

pq
n
= 1 − 2x,

and so
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x = −1
4
.

Let η be a normal vector of ToS M which is orthogonal to ξ, (which yields that η ∈ C2 ⊂
V), and satisfies that |ηw| = 1. We put η = η0 + η1 according to the decomposition m =
TS 0 ⊕ U. Note that η0 ∈ C2 ⊂ TS 0 and η1 ∈ C2 ⊂ U. Then we have |η1|2 = 3

8 , |η0|2 = 9
8 ,

and so,

|η0| : |η1| = 3 :
√

3.

Hence, if X is a vector of C2 ⊂ ToS M and X = X0 + X1, where X0 ∈ C2 ⊂ ToS 0 and
X1 ∈ C2 ⊂ U, then we obtain

|X0| : |X1| = 1 :
√

3.

From (4.1) and Theorems 4.7, 4.9, 4.10 and 4.13, we need to compute the eigenvalues of

1
4

√
n
pq

1
|s||t|

(−3|t|2 √
3|t|2√

3|t|2 4|s|2 − |t|2
)

to obtain the principal curvatures. Then we have

Theorem 4.21. The principal curvatures of the regular level set f −1(c) of the function f
are

1√
6

1
|s||t|

{
(|s|2 − |t|2) ±

√
1 − |s|2|t|2

}
, −

√
2
3
|t|
|s| , 0,

with multiplicities 2, 2, 1 and 2, respectively.

4.2. The case of cohomogeneity greater than one.
4.2. The case of cohomogeneity greater than one. In this subsection, we see that f =

|s|2 is not an isoparametic function in each case. However, if we adopt Wang’s definition of
isoparametric functions ([18] or see also [2, p.55]), it will be shown that we can find a vector
valued isoparametirc function F : G/K → Rk which has f as a component, where k is the
cohomogeneity of the H-action. Every H-orbit is included in a level set of F.

Moreover, we shall show that there exists a hidden symmetry in each case, in other words,
w ∈ W determines another subgroup of G. We obtain a subgroup H̃ ⊂ G such that H ⊂ H̃.
The action of H̃ on G/K is of cohomogeneity one. Finally, the corresponding isoparametric
functions are specified and we shall detect the relation between w ∈ W and the new function.

Remark. For completeness, we give a definition of an isoparametric function by Wang.
Let f = ( f1, · · · , fk) : M → Rk be a function on a Riemannian manifold (M, gM) with
values in Rk. The function f is called an isoparametric function if there exist functions
Fi j,Gi : Rk → R (1 � i, j � k) such that

(1) gM(d fi, d f j) = Fi j( f1, · · · , fk) (2) Δ fi = Gi( f1, · · · , fk).

This definition is different from a definition of Terng [15]. Though Terng’s definition is
stronger than one of Wang, Terng get a deep and beautiful structural theory. See also
Heintze, Liu and Olmos [4] for isoparametric submanifolds. In both, the principal orbit
of an hyperpolar action is a typical example.
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• (SU(n)/SO(n),Cn)
The tangent space m is identified with a representation S 2

0Rn of SO(n), where S 2
0Rn de-

notes the set of tracefree symmetric transformations on Rn. We denote by π0 : Rn ⊗ Rn →
S 2

0Rn the indicated orthogonal projection.
According to a generalised Cartan decomposition of Cn, we obtain z = x+iy ∈ Rn⊕iRn �

Rn ⊕Rn. Hence the vector bundle V→ G/K is naturally identified with U → G/K, and we
do not distinguish one from the other.

Let Y be an element of S 2
0Rn. Since iY ∈ m ⊂ su(n), we have

(iY)(x + iy) = −Yy + iY x, and so, Y(x, y) = (−Yy, Y x).

When Cn is regarded as a real representation of SU(n) and the orthogonal projections are
defined as πU(x + iy) = x and πV(x + iy) = y, we have

∇π(Lg(iY))s =
[
g,−(iY)πV(g−1w)

]
=
[
g, YπV(g−1w)

]
,

∇π(Lg(iY))t =
[
g,−(iY)πU(g−1w)

]
=
[
g,−YπU(g−1w)

]
,

where g ∈ G. For simplicity, we identify Y ∈ m with the tangent vector π(LgY) to G/K and
∇Y s and ∇Yt are abbreviated to Yt and −Y s, respectively.

Then we get

d f = 2gU (∇s, s) = 2gU (Yt, s) = 2gGr(Y, s ⊗ t),

where gGr is the Riemannian metric on Grn(R2n), which is the target of the totally geodesic
immersion of G/K → Grn(R2n). Hence we obtain

d f = 2π0(s ⊗ t) = 2
(
s · t − gU(s, t)

n
In

)
,

where

s · t = 1
2

(s ⊗ t + t ⊗ s) ,

and In denotes the identity transformation of U → G/K. Consequently, we have

|d f |2 = 2
(
|s|2|t|2 + n − 2

n
gU(s, t)2

)
,

which shows that f is not an isoparametric function. Note that f is an isoparametric function
in the case that n = 2, since we have(

SU(2)/SO(2),C2
)
=
(
CP1,C2

)
,

which was already seen in the previous subsection.
We compute

dgU(s, t)(Y) = gU(Yt, t) − gU(s, Y s) = gGr(Y, t ⊗ t − s ⊗ s)

and so, we get

dgU(s, t) = π0(t · t − s · s) = t · t − s · s + |s|
2 − |t|2

n
In.

It follows that
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|dgU(s, t)|2 = |s|4 − 2gU(s, t)2 + |t|4 − 1
n

(
|s|2 − |t|2

)2
,

g (d f , dgU(s, t)) = −2(n − 1)
n

gU(s, t)
(
|s|2 − |t|2

)
,

Moreover, we have∑
gU(∇ei s,∇ei t) = −

∑
gU(eit, eis) =

∑
gU(eieit, s) = −gU(Δt, s).

It follows from Theorem 4.2 that

ΔgU(s, t) =gU(Δs, t) − 2
∑

gU(∇s,∇t) + gU(s,Δt)

=
2(n − 1)(n + 2)

n
gU(s, t).

Consequently, we obtain an isoparametric function F with values in R2:

F :=
(
|s|2 − |t|2, 2gU(s, t)

)
.

Since gU(s, t) is also H-invariant, the level sets of F consist of H-orbits.
We put f̃ = |F|2 =

(
|s|2 − |t|2

)2
+ 4gU(s, t)2.

Theorem 4.22. The function f̃ is an isoparametric function on the symmetric space
SU(n)/SO(n).

Proof. Combined our direct computations with a well-known formula Δ f 2 = 2
{
fΔ f

− |d f |2
}
, we have

Δ f̃ = 4(n + 1) f̃ − 8.

Moreover, it follows that

|d f̃ |2 = 8 f̃ (1 − f̃ ).

�
We explain how w ∈ W relates to f̃ . Let h be an invariant Hermitian product on W � Cn.

Then iw ⊗ h(·, w) − i
n In ∈ W ⊗ W∗ can be considered as an element of su(n). We have

a generalised Cartan decomposition of su(n), which is a standard decomposition su(n) =
so(n)⊕m. Hence iw⊗h(·, w)− i

n In determines a section s̃ of the holonomy bundle SU(n)×SO(n)

so(n). Since

s̃ =
[
g, pr

(
g−1
(
iw ⊗ h(·, w) − i

n
In

))]
, g ∈ SU(n),

where pr : su(n)→ so(n) is the orthogonal projection and w = s + it, we have

s̃ = s ⊗ gU(·, t) − t ⊗ gU(·, s).

Consequently, we obtain

(4.3) 2|s̃|2 = 4
(
|s|2|t|2 − gU(s, t)2

)
= 1 −

{(
|s|2 − |t|2

)2
+ 4gU(s, t)2

}
= 1 − f̃ .

Since iw⊗ h(·, w)− i
n In is invariant under the action of S (U(1)×U(n− 1)) which is denoted

by H̃, we have
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Lemma 4.23. The function f̃ is invariant under the action of H̃.

If we check the action of H̃ on SU(n)/SO(n) at o infinitesimally, it follows that the action
of H̃ on SU(n)/SO(n) is of cohomogeneity one.

Next, we determine critical points of f̃ . We begin with a simple algebraic lemma, whose
proof is left to the reader.

Lemma 4.24. Let u and v be vectors in Rn. Then π0(u · v) and π0(u2 − v2) are linearly
independent if and only if u and v are linearly independent.

We have

(4.4) d f̃ = 8
(
|s|2 − |t|2

)
π0(s · t) + 8gU(s, t)π0(t2 − s2).

Lemma 4.25. The set of critical points of f̃ consists of those points in f̃ −1(0) and f̃ −1(1).

Proof. From (4.4), x ∈ SU(n)/SO(n) is a critical point of f̃ if and only if F(x) = 0 or
π0(s · t)(x) and π0(t2 − s2)(x) are linearly dependent and

(4.5)
(
|s|2 − |t|2

)
π0(s · t) + gU(s, t)π0(t2 − s2) = 0

at x.
Of course, F(x) = 0 is equivalent to f̃ (x) = 0.
The latter condition yields that s(x) and t(x) are linearly dependent by lemma 4.24. Then

the equation (4.5) is automatically satisfied. The Cauchy-Schwarz inequality implies that

f̃ � (|s|2 − |t|2)2 + 4|s|2|t|2 =
(
|s|2 + |t|2

)2
= 1,

where the equality holds if and only if s(x) and t(x) are linearly dependent. �

We can describe f̃ −1(0) and f̃ −1(1) as H̃ � U(n − 1)-orbits, respectively. In fact, we have

f̃ −1(0) = U(n − 1)/U(1) × SO(n − 2) � SU(n − 1)/SO(n − 2),

f̃ −1(1) = U(n − 1)/SO(n − 1) ⊃ S 0, S M.

We already see that

dF(x) =
(
4π0(s · t), 2π0(t2 − s2)

)
.

If F(x) = 0, then f̃ (x) = 0 and so, s(x) and t(x) are linearly independent. Lemma 4.24 yields
that π0(s · t) and π0(t2 − s2) is also linearly independent. Hence x is a regular point of F.
Indeed, from the above description, though f̃ −1(0) is a singular orbit of H̃, F̃−1(0) is not a
singular orbit of H.

Lemma 4.26. One orbit F−1(0) of the action of H on SU(n)/SO(n), which is not a singu-
lar orbit, is a minimal submanifold of SU(n)/SO(n).

Proof. The orbit F−1(0) is equal to f̃ −1(0) and f̃ −1(0) is a singular orbit of H̃. The theorem
of Hsiang-Lawson [7] yields the result. �

Lemma 4.27. The action of H on SU(n)/SO(n) is not a hyperpolar action.
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Proof. We can apply [5, Theorem 3.13, p.231] to get the result. (We also refer to [5] to
see the definition of the hyperpolar action.) �

Corollary 4.28. The submanifold F−1(c), where c is a regular value of F, is not an
equifocal submanifold of SU(n)/SO(n).

See [16] for the definition of the equifocal submanifold, which is considered as a gener-
alization of isoparametric hypersurfaces.

Next we focus our attention on f̃ −1(1). From (4.3), f̃ −1(1) is nothing but a zero locus of
the section s̃. In addition, since su(n) = so(n)⊕m is a generalised Cartan decomposition, we
have a totally geodesic immersion from SU(n)/SO(n) to a real Grassmannian Grp(su(n)),
where p = dim SO(n). Then the same method as in the proof of Theorem 3.6 yields

Theorem 4.29. The level set f̃ −1(1) is a totally geodesic submanifold of SU(n)/SO(n).

• (Sp(n)/U(n),Cn)
The holomorphic tangent space is identified with S 2Cn∗ as complex U(n)-module, where

S 2Cn∗ denotes a symmetric power of Cn∗ . Hence, S 2Cn∗ ⊕ S 2Cn is regarded as the complex-
ification of m, which is denoted by mC. Let σ : mC → mC be the real structure. If Y ∈ m is
a real vector, then there exists a unique Z ∈ S 2Cn∗ such that Y = (Z, σ(Z)) ∈ mC.

Let j : C2n → C2n be an invariant quaternion structure. We regard C2n as a left H-
module with j. As U(n)-module, we have C2n = Cn ⊕ Cn∗ . If Z ∈ S 2Cn∗ is regarded as a
homomorphism Z : Cn → Cn∗ , then we have σ(Z) = jZ j : Cn∗ → Cn, where the quaternion
structure j is restricted to Cn∗ . Consequently, Y ∈ m acts on (u, v) ∈ Cn⊕Cn∗ in the following
way:

Y(u, v) = (σ(Z)v, Zu) ,

where Y = (Z, σ(Z)) ∈ mC.
We put U = G ×K Cn and V = G ×K Cn∗ � U∗. With our convention, we have

∇π(Lg(Y))s =
[
g,−σ(Z)πV(g−1w)

]
, ∇π(Lg(Y))t =

[
g,−ZπU(g−1w)

]
,

where g ∈ G. For simplicity, we identify Y ∈ m with the tangent vector π(LgY) to G/K and
∇Y s and ∇Yt are abbreviated to −σ(Z)t and −Zs, respectively.

Then we get

d f (Y) = gU (∇Y s, s) + gU (s,∇Y s) = −gU (σ(Z)t, s) − gU (s, σ(Z)t)

= − hGr (σ(Z), gV(·, t) ⊗ s) − hGr (gV(·, t) ⊗ s, σ(Z)) ,

where hGr is the Hermitian metric on Grn(C2n), which is the target of the totally geodesic
immersion of G/K → Grn(C2n).

Hence we obtain

d f 1,0 = s · gV(·, t) = 1
2

(s ⊗ gV(·, t) + gV(·, t) ⊗ s) .

Consequently, we have

|d f |2 =
(
|s|2|t|2 + |(s, t)|2

)
,

where (·, ·) denotes the pairing between U → G/K and V → G/K. This shows that f is not
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an isoparametric function.
We compute

d(s, t)(Y) = −(σ(Z)t, t) − (s, Zs) = −(σ(Z), t ⊗ t) − (s ⊗ s, Z),

where (·, ·) in the right-hand-side denotes the obvious pairing. It follows that

d(s, t) = −t · t − s · s.
As a result, we have

|d(s, t)|2 = |s|4 + |t|4,
h (d(s, t), d f ) = −

(
|s|2 + |t|2

)
(s, t) = −(s, t),

Moreover, we have ∑
(∇ei s,∇ei t) = −(Δt, s).

It follows from Theorem 4.2 that

Δ(s, t) = (Δs, t) − 2
∑

(∇s,∇t) + (s,Δt) = 2(n + 1)(s, t).

Consequently, we obtain an isoparametric function F with values in R3:

F :=
(
|s|2 − |t|2, 2(s, t)

)
.

Since (s, t) is also H-invariant, the level sets of F consists of H-orbits.
We put f̃ = |F|2 =

(
|s|2 − |t|2

)2
+ 4|(s, t)|2.

Theorem 4.30. The function f̃ is an isoparametric function on the symmetric space
Sp(n)/U(n).

Proof. In a similar computation to one in a proof of Theorem 4.22, we have

|d f̃ |2 = 4 f̃ (1 − f̃ ),

and

Δ f̃ = 2(2n + 1) f̃ − 6.

�

We discuss a relation between w ∈ W and f̃ . Let ω be an invariant symplectic form on
W � C2n and we do not distinguish between C2n and C2n∗ . We can consider w ∧ jw ∈
∧2C2n. We have an irreducible decomposition ∧2C2n = ∧2

0C2n ⊕ Cω as Sp(n)-module, and
so we define the orthogonal projection π0 : ∧2C2n → ∧2

0C2n. As a U(n)-module, we have
∧2

0C2n = ∧2Cn ⊕ ∧2Cn∗ ⊕ su(n)C. Taking a real part, we get the orthogonal projection

pr :
(
∧2

0C2n
)R → (

∧2Cn ⊕ ∧2Cn∗
)R

. Hence w ∧ jw determines a section s̃ of the bundle

Sp(n) ×U(n)

(
∧2Cn ⊕ ∧2Cn∗

)R
. Since

s̃ =
[
g, pr

(
g−1π0 (w ∧ jw)

)]
, g ∈ Sp(n),

we have
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s̃ = −s ⊗ gV(·, t) − t ⊗ gU(·, s).

Consequently, we obtain

2|s̃|2 = 4
(
|s|2|t|2 − |(s, t)|2

)
= 1 −

{(
|s|2 − |t|2

)2
+ 4|(s, t)|2

}
= 1 − f̃ .

Since w ∧ jw is invariant under the action of Sp(1) × Sp(n − 1) which is denoted by H̃, we
have

Lemma 4.31. The function f̃ is invariant under the action of H̃.

From the infinitesimal action of H̃ on Sp(n)/U(n) at o, it follows that the action of H̃ on
Sp(n)/U(n) is of cohomogeneity one.

Remark. From the viewpoint of Sp(1), the function F is a moment map for the action
of Sp(1) on Sp(n)/U(n). Hence Sp(n − 1) acts on the Kähler quotient. Indeed, the Kähler
quotient is identified with a flag manifold Sp(n − 1)/S (U(n − 2) × U(1) × U(2)).

Next, we determine critical points of f̃ . We have

(4.6) d f̃ 1,0 = 4
(
|s|2 − |t|2

)
s · gV(·, t) − 4(s, t)s2 + 4(s, t)gV(·, t)2.

Lemma 4.32. The set of critical points of f̃ consists of those points in f̃ −1(0) and f̃ −1(1).

Proof. If s and gV(·, t) are linearly dependent, then we have d f̃ 1,0 = 0 by (4.6).
Suppose that s and gV(·, t) are linearly independent. Then, s · gV(·, t), s2 and gV(·, t)2 are

linearly independent. It follows from (4.6) that d f̃ 1,0 = 0 if and only if f̃ = 0.
Since (s, t) = gU (s, gV(·, t)), the Cauchy-Schwarz inequality implies that

f̃ � (|s|2 − |t|2)2 + 4|s|2|t|2 =
(
|s|2 + |t|2

)2
= 1,

where the equality holds if and only if s and gV(·, t) are linearly dependent. �

We can describe f̃ −1(0) and f̃ −1(1) as H̃-orbits, respectively. In fact, we have

f̃ −1(0) = Sp(1) × Sp(n − 1)/Sp(1) × U(n − 2) � Sp(n − 1)/U(n − 2),

f̃ −1(1) = S 2 × Sp(n − 1)/U(n − 1) ⊃ S 0, S M.

In similar ways in the case of (SU(n)/SO(n),Cn), we have

Lemma 4.33. One orbit F−1(0) of the action of H on Sp(n)/U(n), which is not a singular
orbit, is a minimal submanifold of Sp(n)/U(n).

Lemma 4.34. The action of H on Sp(n)/U(n) is not a hyperpolar action.

Corollary 4.35. The submanifold F−1(c), where c is a regular value of F, is not an
equifocal submanifold of Sp(n)/U(n).

Theorem 4.36. The level set f̃ −1(1) is a totally geodesic submanifold of Sp(n)/U(n).

•
(
Gr4(R9), S 9

)
Since S 9 = S +4 ⊗ S 5 ⊕ S −4 ⊗ S 5 as Spin(4) × Spin(5)-module, we put U = S +4 ⊗ S 5 and

V = S −4 ⊗ S 5. More precisely, though we need to take a real part of each space, we omit the



704 Y. Nagatomo andM. Takahashi

notation to indicate it. According to the decomposition

U ⊗ V = R4 ⊗
(
R ⊕ R5 ⊕ so(5)

)
,

we define two orthogonal projections π0 : U⊗V → R4 and πT : U⊗V → R4⊗R5. Note that
R4 and R4 ⊗ R5 can also be considered as the tautological bundle and the cotangent bundle
on Gr4(R9) with our convention.

We have

d|s|2 = 2s ⊗ t

on Gr8(S 9), where s and t are regarded as sections of the tautological bundle and the univer-
sal quotient bundle on Gr8(S 9), respectively. Since S ⊗ Q can be regarded as the cotangent
bundle on Gr8(S 9), using a totally geodesic immersion i : Gr4(R9)→ Gr8(S 9), we obtain

d f = 2πT (s ⊗ t).

Lemma 4.37. We have

|d f |2 = 2
(
|s|2|t|2 − 6 |π0(s ⊗ t)|2

)
.

Proof. First of all, we pay attention on Spin(5)-modules. We identify Spin(5) with Sp(2).
Then S 5 is recognized with the standard representation C4 with an invariant symplectic
form ω of Sp(2) and we have C4 ⊗ C4 = Cω ⊕ ∧2

0C4 ⊕ so(5)C. If u, v ∈ C4, then, under the
decomposition

u ⊗ v = u ∧ v + u · v, u ∧ v = 1
2

(u ⊗ v − v ⊗ u) , u · v = 1
2

(u ⊗ v + v ⊗ u) ,

we have

u ∧ v ∈ Cω ⊕ ∧2
0C4, u · v ∈ so(5)C.

It follows that

|u ∧ v|2 = 1
2

(
|u|2|v|2 − |h(u, v)|2

)
,

where h(·, ·) is an invariant Hermitian product on C4.
We denote two orthogonal projections by p0 : ∧2C4 → Cω and pT : ∧2C4 → ∧2

0C4,
respectively. It follows from |u ∧ v|2 = |p0(u ∧ v)|2 + |pT (u ∧ v)|2 that

(4.7) |p0(u ∧ v)|2 + |pT (u ∧ v)|2 = 1
2

(
|u|2|v|2 − |h(u, v)|2

)
.

Since |ω|2 = 4, we get

p0(u ∧ v) = 1
4
ω(u, v)ω, |p0(u ∧ v)|2 = 1

4
|ω(u, v)|2 .

It follows that

(4.8) |pT (u ∧ v)|2 = 1
2

(
|u|2|v|2 − |h(u, v)|2

)
− 1

4
|ω(u, v)|2.

The subgroup Spin(4) is now identified with Sp+(1) × Sp−(1). Let C2± be standard repre-
sentations with invariant quaternion structures j± of Sp±(1), respectively. Note that C2± are
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equivalent to S ±4 , respectively. We denote by e1, e2 the standard basis of C2
+. This means

that e1, e2 is a unitary basis with e2 = j+e1. The standard basis of C2− is denoted by f1, f2.
Let a = e1 ⊗ u1 + e2 ⊗ u2 be a real vector in C2

+ ⊗ C4. This yields that

ju1 = u2,

where j is an invariant quaternion structure on C4. We denote a real vector in C2− ⊗ C4 by
b = f1 ⊗ v1 + f2 ⊗ v2 with jv1 = v2. We have

a ⊗ b =
∑(

ei ⊗ f j

)
⊗
(
ui ⊗ v j

)
.

By definition, we get

πT (a ⊗ b) =
∑(

ei ⊗ f j

)
⊗ pT

(
ui ∧ v j

)
,

and so,

(4.9) |πT (a ⊗ b)|2 =
∑∣∣∣∣pT

(
ui ∧ v j

)∣∣∣∣2 .
Since a and b are real vectors, we have, for instance,

h(u1, v1) = −h(u1, jv2) = ω(u1, v2).

Consequently, it follows from (4.8) that

|pT (u1 ∧ v1)|2 = 1
2

(
|u1|2|v1|2 − |ω(u1, v2)|2

)
− 1

4
|ω(u1, v1)|2.

and so, (4.9) yields that

(4.10) |πT (a ⊗ b)|2 = 1
2

(
|u1|2 + |u2|2

) (
|v1|2 + |v2|2

)
− 3

4

∑
|ω(ui, v j)|2.

The definition yields that

(4.11) π0(a ⊗ b) =
∑(

ei ⊗ f j

)
⊗ p0

(
ui ∧ v j

)
,

and so,

(4.12) |π0(a ⊗ b)|2 =
∑∣∣∣∣p0

(
ui ∧ v j

)∣∣∣∣2 = 1
4

∑∣∣∣ω(ui, v j)
∣∣∣2 .

It follows from (4.10) and (4.12) that

|πT (a ⊗ b)|2 = 1
2
|a|2|b|2 − 3 |π0(a ⊗ b)|2 ,

which yields the result. �

If π0(s ⊗ t) � 0, then it follows that f is not an isoparametric function on Gr4(R9). Since
π0(s ⊗ t) is a section of R4 determined by w ∈ S 9, we need to see how π0(s ⊗ t) corresponds
to w. Note that w⊗w is an element of S 2S 9 the symmetric power of S 9. As Spin(9)-module,
we have a decomposition S 2S 9 = R ⊕ R9 ⊕ ∧4R9. Let Π : S 2S 9 → R9 be the orthogonal
projection. We define a Spin(9)-equivariant map α : S 9 → R9 as

α(w) = Π(w ⊗ w).

To describe α : S 9 → R9 explicitly, we use a diagonal subgroup Δ ⊂ Sp+(1) × Sp−(1) and
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regard S 9 and R9 as Δ × Sp(2)-modules:

S 9 =
(
C2 ⊗ C4

)R ⊕ (C2 ⊗ C4
)R
, R9 = R ⊕

(
S 2C2

)R ⊕ (∧2
0C4
)R
,

where C2 denotes the standard representation of Δ. We use Δ to define a quaternion structure
on
(
C2 ⊗ C4

)R
and so, R ⊕

(
S 2C2

)R ⊂ R9 is identified with a scalar field H. Then we have

S 9 = H2 ⊕H2, R9 = H ⊕
(
∧2

0C4
)R
.

Using a quaternion structure, we can also show

Lemma 4.38. For an arbitrary (u, v) ∈ S 9 = H2 ⊕H2, α : S 9 → R9 can be expressed as:

α(u, v) = c (hH(u, v), pT (u ∧ ju) − pT (v ∧ jv)) ,

where c is a real non-zero constant and hH denotes a quaternion hermitian inner product on
H2.

The sections s and t are locally expressed as

s = e1 ⊗ s1 + e2 ⊗ s2, t = f1 ⊗ t1 + f2 ⊗ t2,

where {e1, e2} and { f1, f2} are now regarded as local standard frames. Since s and t are real
sections, we have

js1 = s2, jt1 = t2.

Under the identification S 9 = H2 ⊕H2, this yields that

g−1w =
√

2(s1, t1) ∈ H2 ⊕H2, g ∈ Spin(9).

It follows from (4.11) and our identification R4 � H that

(4.13) π0(s ⊗ t) =
√

2hH(s1, t1),

which is nothing but the section of the tautological bundle corresponding to α(w) (up to
constant) by Lemma 4.38. Consequently, f is not an isoparametric function on Gr4(R9),
but a new function f̃ := |π0(s ⊗ t)|2 is an isoparametric function considered in the previous
subsection. We have a subgroup Spin(8) ⊂ Spin(9) as an isotropy subgroup at α(w), which is
denoted by H̃. Of course, f̃ is invariant under the action of Spin(8). Since |s|2 = |s1|2+ |s2|2 =
2|s1|2 and |t|2 = 2|t1|2, the Cauchy-Schwarz inequality implies that

|π0(s ⊗ t)|2 � 1
2
|s|2|t|2 = 1

8

{
1 −
(
|s|2 − |t|2

)2}
,

where the equality holds if and only if |s|2 = |t|2 = 1
2 . In particular, the maximum value of f̃

is 1
8 . This yields that |α(w)|2 = 1

8 . Hence we have

(4.14) α(u, v) =
√

2 (hH(u, v), pT (u ∧ ju) − pT (v ∧ jv)) .

It follows that

f̃ −1(0) = Gr4(R8) ⊃ S 0, S M, f̃ −1
(
1
8

)
= Gr3(R8).

We define a function F : Gr4(R9)→ R2:
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F :=
(
|s|2 − |t|2, f̃

)
.

Lemma 4.39. The function F is an isoparametric function.

Proof. From Lemma 4.37, we get∣∣∣∣d (|s|2 − |t|2)
∣∣∣∣2 = 1

2

{
1 −
(
|s|2 − |t|2

)2 − 6 f̃
}
.

We need to compute g
(
d
(
|s|2 − |t|2

)
, d f̃
)
. Since π0(s ⊗ t) is a section of the tautological

bundle corresponding to α(w), it follows from (4.14) that

d f̃ = 4hH(s1, t1) ⊗ {pT (s1 ∧ s2) − pT (t1 ∧ t2)} .
On the other hand, we see that

d
(
|s|2 − |t|2

)
= 2d f = 4πT (s ⊗ t) = 4

∑(
ei ⊗ f j

)
⊗ pT

(
si ∧ t j

)
.

It follows from R4 � H that
1
4
g
(
d f̃ , πT (s ⊗ t)

)
=ω(s1, t1)g (pT (s1 ∧ s2) − pT (t1 ∧ t2), pT (s1 ∧ t1))

+ω(s1, t1)g (pT (s1 ∧ s2) − pT (t1 ∧ t2), pT (s2 ∧ t2))

+h(s1, t1)g (pT (s1 ∧ s2) − pT (t1 ∧ t2), pT (s1 ∧ t2))

−h(s1, t1)g (pT (s1 ∧ s2) − pT (t1 ∧ t2), pT (s2 ∧ t1))

=
1
4

(
|s|2 − |t|2

)2
f̃ .

�

Since F−1
(
0, 1

8

)
= f̃ −1

(
1
8

)
, we obtain

Lemma 4.40. One orbit F−1
(
0, 1

8

)
of the action of H on Gr4(R9) is a totally geodesic

submanifold of Gr4(R9).

Remark. From F−1
(
0, 1

8

)
= f̃ −1

(
1
8

)
, we can get the well-known fact that Spin(7)/Sp(1)×

Sp(1) � Gr3(R8).

Lemma 4.41. The action of H on Gr4(R9) is not a hyperpolar action.

Corollary 4.42. The submanifold F−1(c), where c is a regular value of F, is not an
equifocal submanifold of Gr4(R9).

5. Radon transforms

5. Radon transforms
We obtained isoparametric functions f̃ in the previous section. In the case that the action

of H is of cohomogeneity one, f̃ is invariant under the action of H. Otherwise, f̃ is invariant
under the action of H̃. In both cases, if we pull back f̃ to G under the natural fibration
π : G → G/K, then the pull-back function π∗ f̃ is invariant under the action of H × K on G,
where H acts on G on the left and K on the right. Hence, we can push down π∗ f̃ to get a
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function on H\G.
To be more precise, we introduce the Radon transform. Let ψ : G → H\G be a natural

fibration and dμ is the normalized Haar measure on H. We use the same notation to denote
the measure on the fibre of ψ : G → H\G induced by dμ. We define a Radon transform
R : C∞(G/K)→ C∞(H\G) for an arbitrary function f on G/K as

R( f )(x) =
∫
ψ−1(x)

π∗ f dμ, x ∈ H\G.

By definition, the Radon transform is a G-equivariant linear map.

5.1. The case of cohomogeneity one.
5.1. The case of cohomogeneity one. Let f̃ = |s|2 − p

N be an isoparametric function
defined in the Remark after Theorem 4.13. Let {e1, · · · , eN} be an orthogonal basis of a real
representation W such that {w = e1, · · · , ep} is a basis of U and {ep+1, · · · , eN} is a basis of
V . By definition, we have

f̃ (π(g)) =
∣∣∣∣πU

(
g−1w

)∣∣∣∣2 − p
N
, g ∈ G.

Let {x1, · · · , xN} be the standard coordinate functions with respect to e1, · · · , eN on W. We
get

∣∣∣∣πU

(
g−1w

)∣∣∣∣2 − p
N
=

p∑
i=1

xi(g−1w)2 − p
N

N∑
A=1

xA(g−1w)2

=
1
N

⎧⎪⎪⎪⎨⎪⎪⎪⎩q
p∑

i=1

xi(g−1w)2 − p
N∑

α=p+1

xα(g−1w)2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,
and so,

R( f̃ ) =
1
N

⎧⎪⎪⎪⎨⎪⎪⎪⎩q
p∑

i=1

xi(g−1w)2 − p
N∑

α=p+1

xα(g−1w)2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
If a real representation is replaced by a complex representation, then we have a similar result.

Theorem 5.1. The Radon transform of f̃ in the case of cohomogeneity one is an isopara-
metric function on a unit sphere of W which induces an isoparametric hypersurface of a
sphere with two distinct principal curvatures.

5.2. The case of cohomogeneity greater than one.
5.2. The case of cohomogeneity greater than one. We obtain Radon transforms of f̃ on

case-by-case computations.
• (SU(n)/SO(n),Cn) n � 3.

Let {e1, Je1, · · · , en, Jen} be an orthogonal basis of a real representation Cn =
(
R2n, J

)
such that {w = e1, · · · , en} is a basis of U and {Je1, · · · , Jen} is a basis of V . Since f̃ =(
|s|2 − |t|2

)2
+ 4g(s, t)2, by definition, we have

f̃ (π(g)) =
(∣∣∣∣πU

(
g−1w

)∣∣∣∣2 −
∣∣∣∣πV

(
g−1w

)∣∣∣∣2
)2
+ 4g

(
πU

(
g−1w

)
, πV

(
g−1w

))2
,

where we identify U with V in a standard way and g ∈ SU(n). Let {x1, y1, · · · , xn, yn} be the
standard coordinate functions with respect to e1, Je1, · · · , en, Jen on W. It follows that
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R( f̃ )(x, y) =

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

xi(g−1w)2 −
n∑

i=1

yi(g−1w)2

⎞⎟⎟⎟⎟⎟⎠
2

+ 4

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

xi(g−1w)yi(g−1w)

⎞⎟⎟⎟⎟⎟⎠
2

.

Theorem 5.2. In the case of (SU(n)/SO(n),Cn) (n � 3), the Radon transform of f̃ is
an isoparametric function defined by Nomizu [12] on a unit sphere of Cn which induces an
isoparametric hypersurface of a sphere with four distinct principal curvatures.

•
(
Sp(n)/U(n),C2n

)
n � 2.

Let {e1, je1, · · · , en, jen} be a unitary basis of a complex representation C2n such that
{w = e1, · · · , en} is a basis of U � Cn and { je1, · · · , jen} is a basis of V � Cn∗ . Since
f̃ =
(
|s|2 − |t|2

)2
+ 4|(s, t)|2 by definition, we have

f̃ (π(g)) =
(∣∣∣∣πU

(
g−1w

)∣∣∣∣2 −
∣∣∣∣πV

(
g−1w

)∣∣∣∣2
)2
+ 4
∣∣∣∣(πU

(
g−1w

)
, πV

(
g−1w

))∣∣∣∣2 ,
where g ∈ Sp(n). Let {z1, w1, · · · , zn, wn} be the standard coordinate functions with respect
to e1, Je1, · · · , en, Jen on W. It follows that

R( f̃ )(z, w) =

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

|zi(g−1w)|2 −
n∑

i=1

|wi(g−1w)|2
⎞⎟⎟⎟⎟⎟⎠

2

+ 4

∣∣∣∣∣∣∣
n∑

i=1

zi(g−1w)wi(g−1w)

∣∣∣∣∣∣∣
2

.

Theorem 5.3. In the case of
(
Sp(n)/U(n),C2n

)
(n � 2), the Radon transform of f̃ is an

isoparametric function on a unit sphere of C2n which induces an isoparametric hypersurface
of a sphere with four distinct principal curvatures.

From [3, Satz in §6.1], we have

Theorem 5.4. In each case, every isoparametric hypersurface of a sphere in a family
defined by R( f̃ ) is homogeneous, in the sense that it is an orbit of the action of isometry
group.

•
(
Gr4(R9), S 9

)
We use an identification between S 9 and H2 ⊕H2 in the previous section. It follows from

(4.13) that

R( f̃ )(u, v) = 2 |hH(u, v)|2 .
Theorem 5.5. The Radon transform of f̃ is an isoparametric function on a unit sphere

of S 9 which induces a family of isoparametric hypersurfaces of a sphere with four distinct
principal curvatures. Every isoparametric hypersurface in our family is homogeneous.

We will postpone a proof until the last paragraph.
Since f̃ is also invariant under H̃, we can easily obtain a Radon transform of f̃ on H̃\G,

which is denoted by R̃( f̃ ). In each case, we also have a fibration ψ̃ : H\G → H̃\G with
totally geodesic fibres. More concretely, we have

S 2n−1 → CPn−1, S 4n−1 → HPn−1, and S 15 → S 8.

Using the normalized Haar measure on H̃, we have

ψ̃∗R̃( f̃ ) = R( f̃ ).
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Since R( f̃ ) is constant on the fibre of ψ̃ : H\G → H̃\G, it follows from Theorems 5.2, 5.3
and 5.5 that

Theorem 5.6. The Radon transform R̃( f̃ ) is an isoparametric function on H̃\G.

We describe R̃( f̃ ) in the last case. To do so, we “normalize” f̃ to get an eigenfunction.
Since π0(s ⊗ t) is the corresponding section to α(w) ∈ R9 with |α(w)|2 = 1

8 , it follows from
the Remark after Theorem 4.13 that f̂ := f̃ − 1

18 is an eigenfunction. According to the
SO(4) × SO(5) decomposition of R9, we put (ũ, ṽ) ∈ R4 ⊕ R5 = R9. Then Theorem 5.1
yields that 5|ũ|2 − 4|ṽ|2 is an isoparametric function. If α is restricted to the unit sphere of
S 9, we have that ψ̃ = α, It follows from (4.14) that

R̃( f̂ )(α(u, v)) =
2
72

[
5 |hH(u, v)|2 − 4

{
1
4

(|u|2 + |v|2)2 − |hH(u, v)|2
}]

=
1
36

{
9 |hH(u, v)|2 − (|u|2 + |v|2)2

}
.

From [3, Satz in §6.4], Theorem 5.5 holds. We can directly check that (|u|2 + |v|2)2 −
9 |hH(u, v)|2 is a harmonic function on S 9, but in [3], a polynomial (|u|2 + |v|2)2 − 8 |hH(u, v)|2
is introduced as an isoparametric function, which is called a Cartan-Münzner polynomial.
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