# $L^{2}$-BURAU MAPS AND $L^{2}$-ALEXANDER TORSIONS 

Fathi BEN ARIBI and Anthony CONWAY

(Received October 3, 2016, revised February 27, 2017)


#### Abstract

It is well known that the Burau representation of the braid group can be used to recover the Alexander polynomial of the closure of a braid. We define $L^{2}$-Burau maps and use them to compute some $L^{2}$-Alexander torsions of links. As an application, we prove that the $L^{2}$-Burau maps distinguish more braids than the Burau representation.


## 1. Introduction

The $L^{2}$-Alexander torsions of 3-manifolds were introduced by Dubois, Friedl and Lück in [12] as generalizations of both the classical Reidemeister torsions and the $L^{2}$-Alexander invariant of knots of Li-Zhang [16]. These $L^{2}$-Alexander torsions are topological invariants that are functions on the positive real numbers. On the one hand, the $L^{2}$-Alexander torsions share many features with the Alexander polynomial: for instance they are symmetric [11] and provide information on the Thurston norm of the considered manifold [12, 14]. In the classical case, the Alexander polynomial is related to the (reduced) Burau representation of the braid group [7]. It is thus natural to ask whether a similar relation exists in the $L^{2}$ case. On the other hand, the $L^{2}$-Alexander torsions are, in a sense, stronger invariants than their classical counterparts: not only do they contain the simplicial volume of a 3-manifold [18], they also detect an infinite number of knots [3, 4] whereas the Alexander polynomial does not. Therefore, if an $L^{2}$-analogue of the Burau representation were to exist, one may expect it to distinguish more braids than the classical Burau representation.

In the present article, we introduce $L^{2}$-Burau maps and reduced $L^{2}$-Burau maps (see Section 4 for the precise definitions) and study their properties. Although these maps do not provide (anti-)representations of the braid group, they remain computable by recursive formulas and Fox calculus (see Lemma 4.1 and Proposition 4.2). Moreover, we show that one can extract the classical Burau representation from any $L^{2}$-Burau map (Proposition 4.5). Furthermore, we relate particular $L^{2}$-Burau maps of braids to $L^{2}$-Alexander torsions of the closures of these braids (Theorem 4.9). As an application, we provide an example of two braids indistinguishable under the Burau representation but which can be told apart by the $L^{2}$ version (Corollary 4.11). Our main tools rely on well-known results from the theory of $L^{2}$ invariants together with the homological interpretation of the Burau representation.

The paper is organized as follows. First, in Section 2, we recall some theory of $L^{2}$ invariants. Then, in Section 3, we fix notations regarding the braid group and recall the definition of the $L^{2}$-Alexander torsion together with its relation to Fox calculus. Finally, in

Section 4, we introduce the $L^{2}$-Burau maps (Subsections 4.1 and 4.2) and prove the main results (Subsection 4.3).

## 2. Hilbert $\mathcal{N}(G)$-modules and the $L^{2}$-torsion

In this section we briefly review some theory of $L^{2}$-invariants. We begin with the von Neumann dimension of a finitely generated Hilbert $\mathcal{N}(G)$-module (Subsection 2.1) before moving on to the Fuglede-Kadison determinant (Subsection 2.2) and discussing $L^{2}$-homology (Subsection 2.3). We mostly follow [18] and [12].
2.1. The von Neumann dimension. Given a countable discrete group $G$, the completion of the algebra $\mathbb{C}[G]$ endowed with the scalar product $\left\langle\sum_{g \in G} \lambda_{g} g, \sum_{g \in G} \mu_{g} g\right\rangle:=\sum_{g \in G} \lambda_{g} \overline{\mu_{g}}$ is the Hilbert space

$$
\ell^{2}(G):=\left\{\left.\sum_{g \in G} \lambda_{g} g\left|\lambda_{g} \in \mathbb{C}, \sum_{g \in G}\right| \lambda_{g}\right|^{2}<\infty\right\}
$$

of square-summable complex functions on $G$. We denoted by $B\left(\ell^{2}(G)\right)$ the algebra of operators on $\ell^{2}(G)$ that are bounded with respect to the operator norm.

Given $h \in G$, we define the corresponding left- and right-multiplication operators $L_{h}$ and $R_{h}$ in $B\left(\ell^{2}(G)\right)$ as extensions of the automorphisms ( $g \mapsto h g$ ) and ( $g \mapsto g h$ ) of $G$. One can extend the operators $R_{h} \mathbb{C}$-linearly to operators $R_{w}: \ell^{2}(G) \rightarrow \ell^{2}(G)$ for any $w \in \mathbb{C}[G]$. Moreover, if $\ell^{2}(G)^{n}$ is endowed with its usual Hilbert space structure and $A=\left(a_{i, j}\right) \in$ $M_{p, q}(\mathbb{C}[G])$ is a $\mathbb{C}[G]$-valued $p \times q$ matrix, then the right multiplication

$$
R_{A}:=\left(R_{a_{i, j}}\right)_{1 \leqslant i \leqslant p, 1 \leqslant j \leqslant q}
$$

provides a bounded operator $\ell^{2}(G)^{q} \rightarrow \ell^{2}(G)^{p}$. Note that we shall consider elements of $\ell^{2}(G)^{n}$ as column vectors and suppose that matrices with coefficients in $B\left(\ell^{2}(G)\right)$ act on the left (even though the coefficients may be right-multiplication operators).

The von Neumann algebra $\mathcal{N}(G)$ of the group $G$ is the sub-algebra of $B\left(\ell^{2}(G)\right)$ made up of $G$-equivariant operators (i.e. operators that commute with all left multiplications $L_{h}$ ). A finitely generated Hilbert $\mathcal{N}(G)$-module consists in a Hilbert space $V$ together with a left $G$ action by isometries such that there exists a positive integer $m$ and an embedding $\varphi$ of $V$ into $\ell^{2}(G)^{m}$. A morphism of finitely generated Hilbert $\mathcal{N}(G)$-modules $f: U \rightarrow V$ is a linear bounded map which is $G$-equivariant.

Denoting by $e$ the identity element of $G$, the von Neuman algebra of $G$ is endowed with the trace $\operatorname{tr}_{\mathcal{N}(G)}: \mathcal{N}(G) \rightarrow \mathbb{C}, \phi \mapsto\langle\phi(e), e\rangle$ which extends to $\operatorname{tr}_{\mathcal{N}(G)}: M_{n, n}(\mathcal{N}(G)) \rightarrow \mathbb{C}$ by summing up the traces of the diagonal elements.

Definition. The von Neumann dimension of a finitely generated Hilbert $\mathcal{N}(G)$-module $V$ is defined as

$$
\operatorname{dim}_{\mathcal{N}(G)}(V):=\operatorname{tr}_{\mathcal{N}(G)}\left(\operatorname{pr}_{\varphi(V)}\right) \in \mathbb{R}_{\geqslant 0},
$$

where $\operatorname{pr}_{\varphi(V)}: \ell^{2}(G)^{m} \rightarrow \ell^{2}(G)^{m}$ is the orthogonal projection onto $\varphi(V)$.
The von Neumann dimension does not depend on the embedding of $V$ into the finite direct
sum of copies of $\ell^{2}(G)$.
2.2. The Fuglede-Kadison determinant. The spectral density $F(f): \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ of a morphism $f: U \rightarrow V$ of finitely generated Hilbert $\mathcal{N}(G)$-modules maps $\lambda \in \mathbb{R}_{\geqslant 0}$ to

$$
F(f)(\lambda):=\sup \left\{\operatorname{dim}_{\mathcal{N}(G)}(L) \mid L \in \mathcal{L}(f, \lambda)\right\}
$$

where $\mathcal{L}(f, \lambda)$ is the set of finitely generated Hilbert $\mathcal{N}(G)$-submodules of $U$ on which the restriction of $f$ has a norm smaller than or equal to $\lambda$. Since $F(f)(\lambda)$ is monotonous and right-continuous, it defines a measure $d F(f)$ on the Borel set of $\mathbb{R}_{\geqslant 0}$ solely determined by the equation $d F(f)([a, b])=F(f)(b)-F(f)(a)$ for all $a<b$.

Definition. The Fuglede-Kadison determinant of $f$ is defined by

$$
\operatorname{det}_{\mathcal{N}(G)}(f)= \begin{cases}\exp \left(\int_{0^{+}}^{\infty} \ln (\lambda) d F(f)(\lambda)\right) & \text { if } \int_{0^{+}}^{\infty} \ln (\lambda) d F(f)(\lambda)>-\infty \\ 0 & \text { otherwise }\end{cases}
$$

Moreover, when $\int_{0^{+}}^{\infty} \ln (\lambda) d F(f)(\lambda)>-\infty$, one says that $f$ is of determinant class.
If $U$ and $V$ have the same von Neumann dimension, we define the regular FugledeKadison determinant of $f$ denote by $\operatorname{det}^{r}{ }_{\mathcal{N}(G)}(f)$ as $\operatorname{det}_{\mathcal{N}(G)}(f)$ when $f$ is injective, and zero otherwise. For later use, let us mention the following property of the determinant (see [18] for the proof).

Proposition 2.1. Let $G$ be a countable discrete group. If $g \in G$ is of infinite order, then for all $t \in \mathbb{C}$ the operator $I d-t R_{g}$ is injective and $\operatorname{det}_{\mathcal{N}(G)}^{r}\left(I d-t R_{g}\right)=\max (1,|t|)$.
2.3. $L^{2}$-torsion of a finite Hilbert $\mathcal{N}(G)$-chain complex. A finite Hilbert $\mathcal{N}(G)$-chain complex $C_{*}$ is a sequence of morphisms of finitely generated Hilbert $\mathcal{N}(G)$-modules

$$
C_{*}=\left(0 \rightarrow C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots \xrightarrow{\partial_{2}} C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0\right)
$$

such that $\partial_{p} \circ \partial_{p+1}=0$ for all $p$. The $p$-th $L^{2}$-homology of $C_{*}$ is the finitely generated Hilbert $\mathcal{N}(G)$-module

$$
H_{p}^{(2)}\left(C_{*}\right):=\operatorname{Ker}\left(\partial_{p}\right) / \overline{\operatorname{Im}\left(\partial_{p+1}\right)} .
$$

The p-th $L^{2}$-Betti number of $C_{*}$ is defined as $b_{p}^{(2)}\left(C_{*}\right):=\operatorname{dim}_{\mathcal{N}(G)}\left(H_{p}^{(2)}\left(C_{*}\right)\right)$. A finite Hilbert $\mathcal{N}(G)$-chain complex $C_{*}$ is weakly acyclic if its $L^{2}$-homology is trivial (i.e. if all its $L^{2}$-Betti numbers vanish) and of determinant class if all the operators $\partial_{p}$ are of determinant class.

The following result is a reformulation of [18, Theorem 1.21 and Theorem 3.35 (1)]:
Proposition 2.2. Let $0 \rightarrow C_{*} \xrightarrow{\iota_{*}} D_{*} \xrightarrow{\rho_{*}} E_{*} \rightarrow 0$ be an exact sequence of finite Hilbert $\mathcal{N}(G)$-chain complexes. If two of the finite Hilbert $\mathcal{N}(G)$-chain complexes $C_{*}, D_{*}$, $E_{*}$ are weakly acyclic (respectively weakly acyclic and of determinant class), then the third is as well.

Definition. The $L^{2}$-torsion of a finite Hilbert $\mathcal{N}(G)$-chain complex $C_{*}$ is defined as

$$
T^{(2)}\left(C_{*}\right):=\prod_{i=1}^{n} \operatorname{det}_{\mathcal{N}(G)}\left(\partial_{i}\right)^{(-1)^{i}} \in \mathbb{R}_{>0}
$$

when $C_{*}$ is weakly acyclic and of determinant class, and as $T^{(2)}\left(C_{*}\right):=0$ otherwise.
Let $C_{*}=\left(0 \rightarrow \ell^{2}(G)^{k} \xrightarrow{\partial_{2}} \ell^{2}(G)^{k+l} \xrightarrow{\partial_{1}} \ell^{2}(G)^{l} \rightarrow 0\right)$ be a finite Hilbert $\mathcal{N}(G)$-chain complex and let $J \subset\{1, \ldots, k+l\}$ be a subset of size $l$. Viewing $\partial_{1}, \partial_{2}$ as matrices with coefficients in $B\left(\ell^{2}(G)\right.$ ), denote by $\partial_{1}(J)$ the operator composed of the columns of $\partial_{1}$ indexed by $J$, and by $\partial_{2}(J)$ the operator obtained from $\partial_{2}$ by deleting the rows indexed by $J$. We refer to [12, Lemma 3.1] for the proof of the following proposition.

Proposition 2.3. Assume that $\partial_{1}(J)$ is injective and of determinant class. Then

$$
T^{(2)}\left(C_{*}\right)=\frac{\operatorname{det}_{\mathcal{N}(G)}^{r}\left(\partial_{2}(J)\right)}{\operatorname{det}_{\mathcal{N}(G)}^{r}\left(\partial_{1}(J)\right)}
$$

In particular, $\partial_{2}(J)$ is injective and of determinant class if and only if $C_{*}$ is weakly acyclic and of determinant class, and in this case one can write

$$
T^{(2)}\left(C_{*}\right)=\frac{\operatorname{det}_{\mathcal{N}(G)}\left(\partial_{2}\right)}{\operatorname{det}_{\mathcal{N}(G)}\left(\partial_{1}\right)}=\frac{\operatorname{det}_{\mathcal{N}(G)}^{r}\left(\partial_{2}(J)\right)}{\operatorname{det}_{\mathcal{N}(G)}^{r}\left(\partial_{1}(J)\right)}
$$

## 3. Topological preliminaries

In this section, we start by reviewing the braid group (Subsection 3.1), before discussing the $L^{2}$-homology of CW-complexes (Subsection 3.2) and the $L^{2}$-Alexander torsions together with their relation to Fox calculus (Subsection 3.3).


Fig. 1. Two braids $\beta_{1}, \beta_{2}$ and their composition, the braid $\beta_{1} \beta_{2}$.
3.1. The braid group. Following Birman [6], we start by recalling some well-known properties of the braid group $B_{n}$ including its right action on the free group $F_{n}$. In contrast with Birman however, the composition of maps will be written in the usual way (from right to left) which leads to an anti-representation $B_{n} \rightarrow \operatorname{Aut}\left(F_{n}\right)$.

Let $D^{2}$ be the closed unit disk in $\mathbb{R}^{2}$. Fix a set of $n \geq 1$ punctures $p_{1}, p_{2}, \ldots, p_{n}$ in the interior of $D^{2}$. We shall assume that each $p_{i}$ lies in $(-1,1)=\operatorname{Int}\left(D^{2}\right) \cap \mathbb{R}$ and $p_{1}<p_{2}<\cdots<p_{n}$. A braid with $n$ strands is an $n$-component piecewise linear one-dimensional submanifold $\beta$ of the cylinder $D^{2} \times[0,1]$ whose boundary is $\bigsqcup_{i=1}^{n} p_{i} \times\{0,1\}$, and where the projection to $[0,1]$ maps each component of $\beta$ homeomorphically onto $[0,1]$. Two braids $\beta_{1}$ and $\beta_{2}$ are isotopic if there is a self-homeomorphism $H$ of $D^{2} \times[0,1]$ which keeps $D^{2} \times\{0,1\} \cup \partial D^{2} \times[0,1]$ fixed and such that $H\left(\beta_{1}\right)=\beta_{2}$. The braid group $B_{n}$ consists of the set of isotopy classes of braids. The identity element is given by the trivial braid $\xi_{n}:=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \times[0,1]$ while the composition $\beta_{1} \beta_{2}$ consists in gluing $\beta_{1}$ on top of $\beta_{2}$ and shrinking the result by a factor 2 (see Figure 1).

The braid group $B_{n}$ can also be seen as the set of isotopy classes of orientation-preserving homeomorphisms of $D_{n}:=D^{2} \backslash\left\{p_{1}, \ldots, p_{n}\right\}$ fixing the boundary pointwise. Either way, $B_{n}$ admits a presentation with $n-1$ generators $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}$ subject to the relations $\sigma_{i} \sigma_{i+1} \sigma_{i}$ $=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$ for each $i$, and $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ if $|i-j|>2$. Topologically, the generator $\sigma_{i}$ is the braid whose $i$-th component passes over the $i+1$-th component.


Fig.2. The punctured disk $D_{3}$.
Fix a base point $z$ of $D_{n}$ and denote by $x_{i}$ the simple loop based at $z$ turning once around $p_{i}$ counterclockwise for $i=1,2, \ldots, n$ (see Figure 2). The group $\pi_{1}\left(D_{n}\right)$ can then be identified with the free group $F_{n}$ on the $x_{i}$. If $H_{\beta}$ is a homeomorphism of $D_{n}$ representing a braid $\beta$, then the induced automorphism $h_{\beta}$ of the free group $F_{n}$ depends only on $\beta$. It follows from the way we compose braids that $h_{\alpha \beta}=h_{\beta} \circ h_{\alpha}$, and the resulting right action of $B_{n}$ on $F_{n}$ can be explicitly described by

$$
h_{\sigma_{i}}\left(x_{j}\right)= \begin{cases}x_{i} x_{i+1} x_{i}^{-1} & \text { if } j=i, \\ x_{i} & \text { if } j=i+1, \\ x_{j} & \text { otherwise } .\end{cases}
$$

The closure of a braid $\beta \in B_{n}$ is the oriented link $\hat{\beta}$ in the three-sphere obtained from $\beta$ by adding $n$ parallel strands in $S^{3} \backslash\left(D^{2} \times[0,1]\right)$ (see Figure 3).
3.2. $L^{2}$-homology of CW-complexes. Following $[18,12]$, we recall the definition of the $L^{2}$-homology of a CW-complex associated with an admissible triple. We then make an explicit computation in the case of the punctured disk.

Let $X$ be a compact connected CW-complex endowed with a basepoint $z$, and let $Y$ be a connected CW-subcomplex of $X$. We denote by $p: \widetilde{X} \rightarrow X$ the universal cover of $X$ and


Fig. 3. The closure of a braid.
write $\widetilde{Y}=p^{-1}(Y)$. Setting $\pi=\pi_{1}(X, z)$, an admissible triple $(\pi, \phi, \gamma)$ consists in homomorphisms $\phi: \pi \rightarrow \mathbb{Z}$ and $\gamma: \pi \rightarrow G$ such that $\phi$ factors through $\gamma$. Given such a triple and $t>0$, if we denote by

$$
\kappa(\pi, \phi, \gamma, t): \mathbb{Z}[\pi] \rightarrow \mathbb{R}[G]
$$

the ring homomorphism determined by $g \mapsto t^{\phi(g)} \gamma(g)$ for $g \in \pi$, then there is a right action of $\pi$ on $\ell^{2}(G)$ given by $a \cdot g=R_{\kappa(\pi, \phi, \gamma, t)(g)}(a)$, where $a \in \ell^{2}(G)$ and $g \in \pi$; this turns $\ell^{2}(G)$ into a right $\mathbb{Z}[\pi]$-module.

On the other hand, the natural left action of $\pi=\pi_{1}(X, z)$ on $\widetilde{X}$ gives rise to a left $\mathbb{Z}[\pi]-$ module structure on the cellular chain complex $C_{*}(\widetilde{X}, \widetilde{Y})$. The $\mathcal{N}(G)$-cellular chain complex of the pair $(X, Y)$ associated to $(\phi, \gamma, t)$ is the finite Hilbert $\mathcal{N}(G)$-chain complex

$$
C_{*}^{(2)}(X, Y ; \phi, \gamma, t)=\ell^{2}(G) \otimes_{\mathbb{Z}[\pi]} C_{*}(\widetilde{X}, \widetilde{Y}),
$$

and the $L^{2}$-homology of $(X, Y)$ associated to $(\phi, \gamma, t)$, denoted $H_{*}^{(2)}(X, Y ; \phi, \gamma, t)$, is obtained by taking the $L^{2}$-homology of $C_{*}^{(2)}(X, Y ; \phi, \gamma, t)$.

Lemma 3.1. Given $z \in D_{n}$, for all admissible $(\pi, \phi, \gamma)$ and all $t>0$, the finitely generated Hilbert $\mathcal{N}(G)$-module $H_{1}^{(2)}\left(D_{n}, z ; \phi, \gamma, t\right)$ has von Neumann dimension $n$.

Proof. The punctured disk $D_{n}$ is simple homotopy equivalent to $X$, the wedge of the $n$ loops representing the generators of $\pi_{1}\left(D_{n}\right)$ described in Subsection 3.1. As a consequence, it follows from [18, Theorem 1.21] and the proof of [2, Theorem 2.12] that $H_{1}^{(2)}(X, z ; \phi, \gamma, t)$ and $H_{1}^{(2)}\left(D_{n}, z ; \phi, \gamma, t\right)$ have the same von Neumann dimension. Thus it suffices to prove the claim for $X$.

Choose a cellular decomposition of this latter space $X$ consisting of the 0 -cell $z$ (the basepoint of the wedge) and one 1-cell $x_{i}$ for each loop. For $i=1,2, \ldots, n$, let $\widetilde{x}_{i}$ be the lift of $x_{i}$ starting at an (arbitrary) fixed lift of $z$. With this cell structure, the $\mathcal{N}(G)$-cellular chain complex of the pair $(X, z)$ associated to $(\phi, \gamma, t)$ is $0 \rightarrow C_{1}^{(2)}(X, z ; \phi, \gamma, t) \rightarrow C_{0}^{(2)}(X, z ; \phi, \gamma, t) \rightarrow 0$, where

$$
C_{1}^{(2)}(X, z ; \phi, \gamma, t)=\ell^{2}(G) \otimes_{\mathbb{Z}[\pi]} C_{1}(\widetilde{X}, \widetilde{z}) \cong \bigoplus_{i=1}^{n} \ell^{2}(G) \widetilde{x}_{i} .
$$

Since $C_{0}^{(2)}(\widetilde{X}, \widetilde{z})$ vanishes, $H_{1}^{(2)}(X, z ; \phi, \gamma, t)=C_{1}^{(2)}(X, z ; \phi, \gamma, t)$ and the claim follows.

Given an admissible triple $\left(\pi_{1}\left(X^{\prime}, z^{\prime}\right), \phi, \gamma: \pi_{1}\left(X^{\prime}, z^{\prime}\right) \rightarrow G\right)$, note that a basepointpreserving homeomorphism of pairs $F:(X, Y) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$ induces an isomorphism $f: \pi_{1}(X)$ $\rightarrow \pi_{1}\left(X^{\prime}\right)$ and isomorphisms of finitely generated Hilbert $\mathcal{N}(G)$-modules

$$
H_{i}^{(2)}(F): H_{i}^{(2)}(X, Y ; \phi \circ f, \gamma \circ f, t) \rightarrow H_{i}^{(2)}\left(X^{\prime}, Y^{\prime} ; \phi, \gamma, t\right)
$$

The precomposition by $f$ is required for the homeomorphism $F$ to induce a well-defined chain map.

Example 3.2. Fix a basepoint $z \in \partial D_{n}$ as in Figure 2. Let $H_{\beta}: D_{n} \rightarrow D_{n}$ be a homeomorphism representing a braid $\beta \in B_{n}$. As $H_{\beta}$ fixes the boundary of the disk, it lifts uniquely to a homeomorphism $\widetilde{H}_{\beta}: \widetilde{D}_{n} \rightarrow \widetilde{D}_{n}$ which preserves a fixed lift of $z$. Up to homotopy, this lift depends uniquely on the isotopy class of $H_{\beta}$ and consequently the map induced on the chain group $C_{1}\left(\widetilde{D}_{n}, \widetilde{z}\right)$ depends uniquely on the braid $\beta$.

Denote by $\phi: \pi_{1}\left(D_{n}\right) \rightarrow \mathbb{Z}$ the epimorphism defined by $x_{i} \mapsto 1$. Fixing $t>0$ and a homomorphism $\gamma: \pi_{1}\left(D_{n}\right) \rightarrow G$ through which $\phi$ factors, each braid $\beta$ induces a welldefined isomorphism of finitely generated Hilbert $\mathcal{N}(G)$-modules:

$$
H_{1}^{(2)}\left(H_{\beta}\right): H_{1}^{(2)}\left(D_{n}, z ; \phi \circ h_{\beta}, \gamma \circ h_{\beta}, t\right) \rightarrow H_{1}^{(2)}\left(D_{n}, z ; \phi, \gamma, t\right)
$$

Since $\phi \circ h_{\beta}=\phi$ for all braids $\beta \in B_{n}$, from now on we shall write $\phi$ instead of $\phi \circ h_{\beta}$.
3.3. $L^{2}$-Alexander torsion and Fox calculus. Following [12], we define the $L^{2}$ Alexander torsion and outline its relation to Fox calculus. We also recall the definition of the $L^{2}$-Alexander torsion associated to a link and discuss its behavior on split links.

Given a compact connected CW-complex $X$, fix an admissible triple ( $\left.\pi_{1}(X), \phi, \gamma\right)$.
Definition. The $L^{2}$-Alexander torsion of $(X, \phi, \gamma)$ at $t>0$ is defined as

$$
T^{(2)}(X, \phi, \gamma)(t):=T^{(2)}\left(C_{*}^{(2)}(X ; \phi, \gamma, t)\right)
$$

Observe that $T^{(2)}(X, \phi, \gamma)(t) \neq 0$ if and only if $C_{*}^{(2)}(X ; \phi, \gamma, t)$ is weakly acyclic and of determinant class.

Note that $L^{2}$-Alexander torsions are only defined up to multiplication by ( $t \mapsto t^{k}$ ) with $k \in \mathbb{Z}$. For this reason, we shall write $f(t) \doteq g(t)$ if $f$ is equal to $g$ up to multiplication by $\left(t \mapsto t^{k}\right)$ for $k \in \mathbb{Z}$. Moreover the $L^{2}$-Alexander torsions are invariant by simple homotopy equivalence [9, 18, 12, 2]. Using this fact, we briefly review Fox calculus and outline how it can be used to compute the $L^{2}$-Alexander torsion.

Denoting by $F_{n}$ the free group on $x_{1}, x_{2}, \ldots, x_{n}$, the Fox derivative (first introduced by Fox [13]) $\frac{\partial}{\partial x_{i}}: \mathbb{Z}\left[F_{n}\right] \rightarrow \mathbb{Z}\left[F_{n}\right]$ is the linear extension of the map defined on elements of $F_{n}$ by

$$
\frac{\partial x_{j}}{\partial x_{i}}=\delta_{i j}, \quad \frac{\partial x_{j}^{-1}}{\partial x_{i}}=-\delta_{i j} x_{j}^{-1}, \quad \frac{\partial(u v)}{\partial x_{i}}=\frac{\partial u}{\partial x_{i}}+u \frac{\partial v}{\partial x_{i}}
$$

If $P=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ is a presentation of a group $\pi$, construct the 2-complex $W_{P}$ with
one 0 -cell $v, n$ oriented 1-cells labeled $x_{1}, x_{2}, \ldots, x_{n}$ and $m$ oriented 2 -cells $c_{1}, c_{2}, \ldots, c_{m}$ with each $\partial c_{j}$ glued to the 1 -cells according to the word $r_{i}$. Note that $\pi_{1}\left(W_{P}\right)=\pi$ and let $\widetilde{v}, \widetilde{x}_{i}$ and $\widetilde{c}_{j}$ be corresponding lifts to the universal cover $p: \widetilde{W}_{P} \rightarrow W_{P}$ (i.e. each $\widetilde{x}_{i}$ starts at $\widetilde{v}$ and the first word in the boundary of $\widetilde{c}_{j}$ is of the form $\widetilde{x}_{i}$ ).

Denote by $\mathrm{pr}: \mathbb{Z}\left[F_{n}\right] \rightarrow \mathbb{Z}[\pi]$ the ring homomorphism induced by the quotient map. The $\mathbb{Z}[\pi]$-module $C_{1}\left(\widetilde{W}_{P}, p^{-1}(v)\right)$ is generated by the $\widetilde{x}_{i}$, and if $w$ is a word in the $x_{i}$, then its lift $\widetilde{w}$ (viewed as a 1-chain in the universal cover) can be written as

$$
\widetilde{w}=\sum_{i=1}^{n} \operatorname{pr}\left(\frac{\partial w}{\partial x_{i}}\right) \widetilde{x}_{i} .
$$

Since the boundary map $\partial_{2}$ of the chain complex $C_{*}\left(\widetilde{W}_{P}\right)$ sends $\widetilde{c}_{j}$ to the lift of $r_{j}$ beginning at $\widetilde{v}$, the previous equation specializes to

$$
\partial_{2}\left(\widetilde{c}_{j}\right)=\sum_{i=1}^{n} \operatorname{pr}\left(\frac{\partial r_{j}}{\partial x_{i}}\right) \widetilde{x}_{i} .
$$

We shall assume that the elements in the chain complex $C_{*}\left(\widetilde{W}_{P}\right)$ of free left $\mathbb{Z}[\pi]$-modules are column vectors and that the matrices of the differentials act by left multiplication. Consequently, $\partial_{2}$ is represented by the $(n \times m)$ matrix whose $(i, j)$-coefficient is $\operatorname{pr}\left(\frac{\partial r_{j}}{\partial x_{i}}\right)$.

Combining these remarks with Propositions 2.1, 2.3 and the fact that for any integer $k$ and $t>0, \max \left(1, t^{k}\right)=t^{\frac{k-k \mid}{2}} \max (1, t)^{|k|} \doteq \max (1, t)^{|k|}$, the following result is immediate.

Proposition 3.3. Let $P=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{n-1}\right\rangle$ be a deficiency one presentation of a group $\pi$, fix $t>0$ and let $(\pi, \phi: \pi \rightarrow \mathbb{Z}, \gamma: \pi \rightarrow G)$ be an admissible triple. If one denotes by $A$ the matrix in $M_{n-1, n-1}(\mathbb{C}[G])$ whose $(i, j)$ component is

$$
\kappa(\pi, \phi, \gamma, t)\left(\operatorname{pr}\left(\frac{\partial r_{j}}{\partial x_{i}}\right)\right)
$$

and one assumes that $\gamma\left(x_{n}\right)$ has infinite order in $G$, then

$$
T^{(2)}\left(W_{P}, \phi, \gamma\right)(t) \doteq \frac{\operatorname{det}_{\mathcal{N}(G)}^{r}\left(R_{A}\right)}{\operatorname{det}_{\mathcal{N}(G)}^{r}\left(t^{\phi\left(x_{n}\right)} R_{\gamma\left(x_{n}\right)}-I d\right)} \doteq \frac{\operatorname{det}_{\mathcal{N}(G)}^{r}\left(R_{A}\right)}{\max (1, t)^{\phi \phi\left(x_{n}\right) \mid}} .
$$

Moreover, if $M$ is an irreducible 3-manifold with non-empty toroidal boundary and infinite $\pi=\pi_{1}(M)$, then

$$
T^{(2)}(M, \phi, \gamma)(t) \doteq \frac{\operatorname{det}_{\mathcal{N}(G)}^{r}\left(R_{A}\right)}{\operatorname{det}_{\mathcal{N}(G)}^{r}\left(t^{\phi\left(x_{n}\right)} R_{\gamma\left(x_{n}\right)}-I d\right)} \doteq \frac{\operatorname{det}_{\mathcal{N}(G)}^{r}\left(R_{A}\right)}{\max (1, t)^{\left|\phi\left(x_{n}\right)\right|}}
$$

The second part of the above proposition uses the fact that the $L^{2}$-Alexander torsions are invariant under simple homotopy equivalence and the following Lemma 3.4. Although the content of this lemma is known [1, Section 3.2], we present a short proof that (somewhat appropriately) uses $L^{2}$-Betti numbers.

Lemma 3.4. Let $M$ be an irreducible 3-manifold with non-empty toroidal boundary and infinite fundamental group. If $P$ is a deficiency one presentation of $\pi_{1}(M)$, then $M$ is simple homotopy equivalent to $W_{P}$.

Proof. As $M$ is an irreducible 3-manifold with infinite fundamental group, it is aspherical [1, Paragraph C.1]. Since the Whitehead group of the fundamental group of a compact, orientable, non-spherical irreducible 3-manifold is trivial [1, Paragraph C.36], one only needs to show that $M$ and $W_{P}$ are homotopy equivalent. Consequently it remains to prove that $W_{P}$ is aspherical: indeed both spaces would then be $K\left(\pi_{1}(M), 1\right)$ 's. The first $L^{2}$-Betti number of a finite CW-complex depends only on its fundamental group [15, Section 2.2], therefore $b_{1}^{(2)}\left(W_{P}\right)=b_{1}^{(2)}\left(\pi_{1}(M)\right)=b_{1}^{(2)}(M)$. Since $M$ is prime and has infinite fundamental group, $b_{1}^{(2)}(M)=0$ by [18, Theorem 4.1] and therefore $b_{1}^{(2)}\left(W_{P}\right)=0$. As $P$ has deficiency one, $\chi\left(W_{P}\right)=0$. From [15, Theorem 2.4], a connected finite 2-dimensional CW-complex $X$ satisfying $-b_{1}^{(2)}(X)=\chi(X)$ is aspherical. Since $-b_{1}^{(2)}\left(W_{P}\right)=0=\chi\left(W_{P}\right)$, it follows that $W_{P}$ is aspherical.

Given an oriented link $L=L_{1} \cup \ldots \cup L_{\mu}$ in $S^{3}$, denote by $M_{L}$ its exterior and by $G_{L}=$ $\pi_{1}\left(M_{L}\right)$ its group. Since any homomorphism $\phi: G_{L} \rightarrow \mathbb{Z}$ factors through the abelianization $\alpha_{L}: G_{L} \rightarrow H_{1}\left(M_{L}\right) \cong \mathbb{Z}^{\mu}$, it is determined by integers $n_{1}, \ldots, n_{\mu}$. Following the notation of [2], we denote by $\left(n_{1}, \ldots, n_{\mu}\right): H_{1}\left(M_{L}\right) \rightarrow \mathbb{Z}$ the map sending the $i$-th meridian of $L$ to $n_{i}$ (thus $\left.\phi=\left(n_{1}, \ldots, n_{\mu}\right) \circ \alpha_{L}\right)$ and we call

$$
T_{L,\left(n_{1}, \ldots, n_{\mu}\right)}^{(2)}(\gamma)(t):=T^{(2)}\left(M_{L}, \phi, \gamma\right)(t)
$$

the $L^{2}$-Alexander torsion associated to the link $L$ and the morphism $\gamma: G_{L} \rightarrow G$ at the value $t>0$.

Although the next lemma is certainly well-known to the experts, to the best of our knowledge, it does not appear in this form in the literature. Therefore, we include it in our discussion.

Lemma 3.5. Let L be a link, $t>0$ and $n_{1}, \ldots, n_{\mu} \in \mathbb{Z}$. The following assertions are equivalent:
(1) L is split.
(2) $C_{*}^{(2)}\left(M_{L},\left(n_{1}, \ldots, n_{\mu}\right) \circ \alpha_{L}, i d, t\right)$ is not weakly acyclic.
(3) The $L^{2}$-Alexander torsion $T_{L,\left(n_{1}, \ldots, n_{\mu}\right)}^{(2)}(i d)(t)$ vanishes.

Proof. If the $\mu$-component link $L$ is not split, then its exterior $M_{L}$ is irreducible, and it follows from [19] that for all integers $n_{1}, \ldots, n_{\mu}$ and all $t>0, C_{*}^{(2)}\left(M_{L},\left(n_{1}, \ldots, n_{\mu}\right) \circ \alpha_{L}, i d, t\right)$ is weakly acyclic and of determinant class. Thus, in this case $T_{L,\left(n_{1}, \ldots, n_{\mu}\right)}^{(2)}(i d)(t)$ is non-zero, proving that $(3) \Rightarrow(1)$. Moreover, $(2) \Rightarrow(3)$ is immediate.

Let us prove (1) $\Rightarrow$ (2). If $L$ is split, then $M_{L}$ is not irreducible, and one can write $M_{L}=M_{1} \sharp \ldots \sharp M_{r}$, where the $M_{i}$ are irreducible link exteriors in $S^{3}$. Let us order the $M_{i}$ so that

$$
M_{L}=\left(M_{1} \backslash B^{3}\right) \cup\left(\bigcup_{i=2}^{r-1}\left(M_{i} \backslash\left(B^{3} \sqcup B^{3}\right)\right)\right) \cup\left(M_{r} \backslash B^{3}\right)
$$

where the intersection is a disjoint union of $r-1$ spheres $S^{2}$. Fix $t>0$, integers $n_{1}, \ldots, n_{\mu} \in \mathbb{Z}$ (we denote $\left.\phi_{L}=\left(n_{1}, \ldots, n_{\mu}\right) \circ \alpha_{L}\right)$ and let $j_{i}$ be the group monomorphism induced by the inclusion of $M_{i}$ minus one or two balls into $M_{L}$. An immediate generalization of the proof of [2, Theorem 3.1] (see also [18]) implies that

$$
\begin{gathered}
\begin{array}{c}
C_{*}^{(2)}\left(M_{1} \backslash B^{3}, \phi_{L} \circ j_{1}, j_{1}, t\right) \oplus \\
\bigoplus_{i=1}^{r-1} C_{*}^{(2)}\left(S^{2}, 1,1, t\right) \rightarrow \bigoplus_{i=2}^{r-1} C_{*}^{(2)}\left(M_{i} \backslash\left(B^{3} \sqcup B^{3}\right), \phi_{L} \circ j_{i}, j_{i}, t\right) \rightarrow C_{*}^{(2)}\left(M_{L}, \phi_{L}, i d, t\right) \rightarrow 0 \\
\oplus C_{*}^{(2)}\left(M_{r} \backslash B^{3}, \phi_{L} \circ j_{r}, j_{r}, t\right)
\end{array}
\end{gathered}
$$

is an exact sequence of finite Hilbert $\mathcal{N}\left(G_{L}\right)$-chain complexes.
Now, for all $i=1, \ldots, r-1$, we add a term $\ell^{2}\left(G_{L}\right) \widetilde{B^{3}} \oplus \ell^{2}\left(G_{L}\right) \widetilde{B^{3}}$ to the $i$-th summand of the left part of the sequence and to the $i$-th and $(i+1)$-th summands of the middle part (one ball for each), where the boundary operators send one $\widetilde{B^{3}}$ to the corresponding $\widetilde{S^{2}}$ and the other to a corresponding $-\widetilde{S^{2}}$. Since this process does not change exactness of the sequence, it follows that

$$
0 \rightarrow \bigoplus_{i=1}^{r-1} C_{*}^{(2)}\left(S^{3}, 1,1, t\right) \rightarrow \bigoplus_{i=1}^{r} C_{*}^{(2)}\left(M_{i}, \phi_{L} \circ j_{i}, j_{i}, t\right) \rightarrow C_{*}^{(2)}\left(M_{L}, \phi_{L}, i d, t\right) \rightarrow 0
$$

remains an exact sequence of finite Hilbert $\mathcal{N}\left(G_{L}\right)$-chain complexes.
Recall that if $i: H \hookrightarrow G$ is an injective group homomorphism, we can construct an induction functor $i_{*}$ from the category (finitely generated Hilbert $\mathcal{N}(H)$-modules, morphisms of finitely generated Hilbert $\mathcal{N}(H)$-modules) to (finitely generated Hilbert $\mathcal{N}(G)$-modules, morphisms of finitely generated Hilbert $\mathcal{N}(G)$-modules) such that $i_{*}\left(\ell^{2}(H)\right)=\ell^{2}(G)$, as explained in [18, Section 1.1.5]. Each $j_{i}$ is an injective group homomorphism and thus induces an induction functor $\left(j_{i}\right)_{*}$. As weak acyclicity is unaffected by these induction functors $\left(j_{i}\right)_{*}$ (see [18, Lemma 1.24 (4)]), the first part of the proof applied to the irreducible pieces $M_{i}$ shows that $\bigoplus_{i=1}^{r} C_{*}^{(2)}\left(M_{i}, \phi_{L} \circ j_{i}, j_{i}, t\right)$ is weakly acyclic. Since the left part of the above short exact sequence is not weakly acyclic (see [18, Theorem 1.35 (8)]), neither is $C_{*}^{(2)}\left(M_{L},\left(n_{1}, \ldots, n_{\mu}\right) \circ \alpha_{L}, i d, t\right)$ (by Proposition 2.2).

## 4. The $L^{2}$-Burau maps and the $L^{2}$-Alexander torsions

In this section, we define the $L^{2}$-Burau maps (Subsection 4.1), the reduced $L^{2}$-Burau maps (Subsection 4.2) and relate the latter to some $L^{2}$-Alexander torsions of links (Subsection 4.3).
4.1. The $L^{2}$-Burau map. In this subsection, we define $L^{2}$-Burau maps and show how to compute them using Fox calculus. We wish to emphasize that since our conventions differ from [10] (see Subsection 3.1), the resulting maps nearly behave as anti-representations (instead of representations).

Denote by $\phi: \pi_{1}\left(D_{n}\right) \rightarrow \mathbb{Z}$ the epimorphism defined by $x_{i} \mapsto 1$. Fix $t>0$ and a homomorphism $\gamma: \pi_{1}\left(D_{n}\right) \rightarrow G$ through which $\phi$ factors. Given a basepoint $z \in \partial D_{n}$, we saw in Example 3.2 that each braid $\beta \in B_{n}$ induces a well-defined isomorphism of finitely generated $\mathcal{N}(G)$-modules

$$
H_{1}^{(2)}\left(H_{\beta}\right): H_{1}^{(2)}\left(D_{n}, z ; \phi, \gamma \circ h_{\beta}, t\right) \longrightarrow H_{1}^{(2)}\left(D_{n}, z ; \phi, \gamma, t\right) .
$$

Using the same notations as in the proof of Lemma 3.1, we shall call the basis resulting from the isomorphism

$$
H_{1}^{(2)}\left(D_{n}, z ; \phi, \gamma, t\right) \cong \bigoplus_{i=1}^{n} \ell^{2}(G) \widetilde{x}_{i}
$$

the good basis of $H_{1}^{(2)}\left(D_{n}, z ; \phi, \gamma, t\right)$. With respect to the good bases of $H_{1}^{(2)}\left(D_{n}, z ; \phi, \gamma \circ h_{\beta}, t\right)$ and $H_{1}^{(2)}\left(D_{n}, z ; \phi, \gamma, t\right)$, the isomorphism of finitely generated $\mathcal{N}(G)$-modules $H_{1}^{(2)}\left(H_{\beta}\right)$ gives rise to a $n \times n$ matrix $\mathcal{B}_{t, \gamma}^{(2)}(\beta)$ with coefficients in $B\left(\ell^{2}(G)\right)$.

Definition. The $L^{2}$-Burau map $\mathcal{B}_{t, \gamma}^{(2)}$ associated to the value $t>0$ and the homomorphism $\gamma$ sends a braid $\beta \in B_{n}$ to the matrix $\mathcal{B}_{t, \gamma}^{(2)}(\beta) \in M_{n, n}\left(B\left(\ell^{2}(G)\right)\right)$ representing the isomorphism of finitely generated Hilbert $\mathcal{N}(G)$-modules defined above.

The next lemma shows that while the $L^{2}$-Burau map is generally not an (anti-) representation, it is nevertheless determined by the generators of $B_{n}$.

Lemma 4.1. Given two braids $\alpha, \beta \in B_{n}$, the equation

$$
\mathcal{B}_{t, \gamma}^{(2)}(\alpha \beta)=\mathcal{B}_{t, \gamma}^{(2)}(\beta) \circ \mathcal{B}_{t, \gamma \circ h_{\beta}}^{(2)}(\alpha)
$$

holds for all $t>0$ and for all $\gamma: \pi_{1}\left(D_{n}\right) \rightarrow G$ through which $\phi$ factors.
Proof. Since the lift of $H_{\alpha \beta}$ to the universal cover coincides with the lift of $H_{\beta} \circ H_{\alpha}$, the composition

$$
H_{1}^{(2)}\left(D_{n}, z ; \phi, \gamma \circ h_{\alpha \beta}, t\right) \xrightarrow{\mathcal{B}_{t, \gamma h_{\beta}}^{(2)}(\alpha)} H_{1}^{(2)}\left(D_{n}, z ; \phi, \gamma \circ h_{\beta}, t\right) \xrightarrow{\mathcal{B}_{t, \gamma}^{(2)}(\beta)} H_{1}^{(2)}\left(D_{n}, z ; \phi, \gamma, t\right)
$$

coincides with the map $\mathcal{B}_{t, \gamma}^{(2)}(\alpha \beta)$.
In particular, Lemma 4.1 shows that if one picks a homomorphism $\gamma$ satisfying $\gamma \circ h_{\beta}=\gamma$ for each $\beta \in B_{n}$, then the $L^{2}$-Burau maps $\mathcal{B}_{t, \gamma}^{(2)}$ yield anti-representations of the braid group. More generally, fixing $\gamma: \pi_{1}\left(D_{n}\right) \rightarrow G$, the $L^{2}$-Burau maps $\mathcal{B}_{t, \gamma}^{(2)}$ provide anti-representations of $B_{n}^{\gamma}:=\left\{\beta \in B_{n} \mid \gamma \circ h_{\beta}=\gamma\right\}$.

The next proposition shows that the $L^{2}$-Burau map can be computed via Fox calculus.
Proposition 4.2. Let $\beta \in B_{n}$ be a braid. If one denotes by $A$ the ( $n \times n$ )-matrix whose $(i, j)$ component is

$$
\kappa\left(\pi_{1}\left(D_{n}\right), \phi, \gamma, t\right)\left(\frac{\partial\left(h_{\beta}\left(x_{j}\right)\right)}{\partial x_{i}}\right) \in \mathbb{C}[G]
$$

then $\mathcal{B}_{t, \gamma}^{(2)}(\beta)$ is equal to $R_{A}$.
Proof. Fix a lift of $z$ to the universal cover $p: \widetilde{D}_{n} \rightarrow D_{n}$. Given a homeomorphism $H_{\beta}$ representing a braid $\beta$, let $\widetilde{H}_{\beta}$ be the map induced by the lift of $H_{\beta}$ on the chain group $C_{1}\left(\widetilde{D}_{n}, \widetilde{z}\right)$ (where $\left.\widetilde{z}=p^{-1}(z)\right)$. As $H_{1}^{(2)}\left(D_{n}, z ; \phi, \gamma, t\right) \cong \ell^{2}(G) \otimes_{\mathbb{Z}\left[\pi_{1}\left(D_{n}\right)\right]} C_{1}\left(\widetilde{D}_{n}, \widetilde{z}\right)$, it remains to compute the operator $i d \otimes \widetilde{H}_{\beta}$. Clearly $\widetilde{H}_{\beta}\left(\widetilde{x}_{j}\right)$ is the lift of a loop representing $h_{\beta}\left(x_{j}\right)$ to the universal cover. Fox calculus then shows that on the chain level

$$
\widetilde{H}_{\beta}\left(\widetilde{x}_{j}\right)=\sum_{i=1}^{n} \frac{\partial\left(h_{\beta}\left(x_{j}\right)\right)}{\partial x_{i}} \widetilde{x}_{i} .
$$

As we view elements of the left $\mathbb{Z}\left[\pi_{1}\left(D_{n}\right)\right]$-module $C_{1}\left(\widetilde{D}_{n}, \widetilde{z}\right)$ as column vectors, $\widetilde{H}_{\beta}$ is represented by the $(n \times n)$ matrix whose $(i, j)$ component is $\frac{\partial\left(h_{g}\left(x_{j}\right)\right)}{\partial x_{i}}$. The claim now follows from the right $\mathbb{Z}\left[\pi_{1}\left(D_{n}\right)\right]$-module structures of $\ell^{2}(G)$.

Example 4.3. A short computation involving Fox calculus shows that

$$
\frac{\partial\left(h_{\sigma_{i}}\left(x_{i}\right)\right)}{\partial x_{i}}=\frac{\partial\left(x_{i} x_{i+1} x_{i}^{-1}\right)}{\partial x_{i}}=1-x_{i} x_{i+1} x_{i}^{-1}, \quad \text { and } \quad \frac{\partial\left(h_{\sigma_{i}}\left(x_{i}\right)\right)}{\partial x_{i+1}}=\frac{\partial\left(x_{i} x_{i+1} x_{i}^{-1}\right)}{\partial x_{i+1}}=x_{i} .
$$

Consequently, with respect to the good bases, the $L^{2}$-Burau maps of $\sigma_{i}$ are given by

$$
\mathcal{B}_{t, \gamma}^{(2)}\left(\sigma_{i}\right)=I d^{\oplus(i-1)} \oplus\left(\begin{array}{cc}
\left.I d-t R_{\gamma\left(x_{i} x_{i+1}+x_{i}^{-1}\right.}\right) & I d \\
t R_{\gamma\left(x_{i}\right)} & 0
\end{array}\right) \oplus I d^{\oplus(n-i-1)} .
$$

Example 4.4. Using Proposition 4.2, let us illustrate Lemma 4.1 with an example. For $\sigma_{1}, \sigma_{2} \in B_{3}$, one has

$$
\mathcal{B}_{t, \gamma}^{(2)}\left(\sigma_{2}\right)=\left(\begin{array}{ccc}
I d & 0 & 0 \\
0 & I d-t R_{\gamma\left(x_{2} x_{3} x_{2}-1\right)} & I d \\
0 & t R_{\gamma\left(x_{2}\right)} & 0
\end{array}\right), \mathcal{B}_{t, \gamma \circ h_{\sigma_{2}}}^{(2)}\left(\sigma_{1}\right)=\left(\begin{array}{ccc}
I d-t R_{\gamma\left(x_{1} x_{2} x_{3} x_{2} x_{2}^{-1} x_{1}^{-1}\right)} & I d & 0 \\
t R_{\gamma\left(x_{1}\right)} & 0 & 0 \\
0 & 0 & I d
\end{array}\right),
$$

and their composition is equal to

$$
\mathcal{B}_{t, \gamma}^{(2)}\left(\sigma_{2}\right) \circ \mathcal{B}_{t, \gamma \circ h_{\sigma_{2}}}^{(2)}\left(\sigma_{1}\right)=\left(\begin{array}{ccc}
I d-t R_{\gamma\left(x_{1} x_{2} x_{3}-x_{2}^{-1} x_{1}^{-1}\right)} & I d & 0 \\
\left.t R_{\gamma\left(x_{1}\right)}-t^{2} R_{\gamma\left(x_{2}\right.} x_{1} x_{1} x_{2}^{-1}\right) & 0 & I d \\
t^{2} R_{\gamma\left(x_{1} x_{2}\right)} & 0 & 0
\end{array}\right),
$$

which coincides with $\mathcal{B}_{t, \gamma}^{(2)}\left(\sigma_{1} \sigma_{2}\right)$.
Let us now relate the $L^{2}$-Burau maps to the classical Burau representation $\mathcal{B}$. Given $\beta \in B_{n}$, recall that a matrix for $\mathcal{B}(\beta) \in M_{n, n}\left(\mathbb{Z}\left[T, T^{-1}\right]\right)$ can be obtained by computing $T^{\phi}\left(\frac{\partial h_{\beta}\left(x_{i}\right)}{\partial x_{j}}\right)$, where the ring homomorphism $T^{\phi}: \mathbb{Z}\left[F_{n}\right] \rightarrow \mathbb{Z}\left[T, T^{-1}\right]$ sends $x_{i}$ to the indeterminate $T$. For any given $\gamma$ and $t$, the $L^{2}$-Burau map $\mathcal{B}_{t, \gamma}^{(2)}$ holds at least as much information as the classical Burau representation, in the following sense:

Proposition 4.5. Let $R_{M_{n, n}(\mathbb{C}[G])}$ denote $\left\{R_{A} \in B\left(\ell^{2}(G)^{n}\right) \mid A \in M_{n, n}(\mathbb{C}[G])\right\}$. Given $\beta \in B_{n}$, for any $t>0$ and $\gamma: F_{n} \rightarrow G$, there exists a map $\Theta: R_{M_{n, n}([G])} \rightarrow M_{n, n}\left(\mathbb{Z}\left[T, T^{-1}\right]\right)$ such that $\Theta\left(\mathcal{B}_{t, \gamma}^{(2)}(\beta)\right)=\mathcal{B}(\beta)$. In particular, if $\alpha, \beta \in B_{n}$ and $\mathcal{B}_{t, \gamma}^{(2)}(\alpha)=\mathcal{B}_{t, \gamma}^{(2)}(\beta)$, then $\mathcal{B}(\alpha)=\mathcal{B}(\beta)$.

Proof. Using Proposition 4.2, $\mathcal{B}_{t, \gamma}^{(2)}(\beta)$ is the right-multiplication operator $R_{A}$ where the matrix $A$ has $\kappa\left(F_{n}, \phi, \gamma, t\right)\left(\frac{\partial\left(h_{\beta}\left(x_{j}\right)\right)}{x_{i}}\right) \in \mathbb{C}[G]$ as its $(i, j)$-coefficient. By considering the map $\theta: B\left(\ell^{2}(G)^{n}\right) \rightarrow M_{n, n}\left(\ell^{2}(G)\right)$ which evaluates an operator $S$ on the $n$ canonical (column) vectors of $\ell^{2}(G)^{n}$, one can extract $A=\theta\left(R_{A}\right)$ from $R_{A}$. Thus it only remains to recover $\mathcal{B}(\beta)$ from $A$.

Since $\left(\pi_{1}\left(D_{n}\right), \phi, \gamma\right)$ is an admissible triple, there exists a homomorphism $\psi: G \rightarrow \mathbb{Z}$ such that $\phi=\psi \circ \gamma$. Defining the homomorphism $T^{\psi}: G \rightarrow\left\{T^{m} ; m \in \mathbb{Z}\right\} \subset \mathbb{Z}\left[T, T^{-1}\right]$ by $g \mapsto T^{\psi(g)}$, the $(i, j)$-coefficient of $\kappa\left(G, \psi, T^{\psi}, t^{-1}\right)(A)$ is

$$
\left(\kappa\left(G, \psi, T^{\psi}, t^{-1}\right) \circ \kappa\left(F_{n}, \phi, \gamma, t\right)\right)\left(\frac{\partial\left(h_{\beta}\left(x_{j}\right)\right)}{\partial x_{i}}\right)=T^{\phi}\left(\frac{\partial h_{\beta}\left(x_{j}\right)}{\partial x_{i}}\right)
$$

which is precisely the $(j, i)$-coefficient of $\mathcal{B}(\beta)$. The map $\Theta=\left.\operatorname{tra} \circ \kappa\left(G, \psi, T^{\psi}, t^{-1}\right) \circ \theta\right|_{R_{M_{n, n}([G])}}$ thus satisfies the assumptions of the proposition (where tra is the transpose operator).

Remark 4.6. Although all $L^{2}$-Burau maps recover the Burau representation, different choices of $\gamma: F_{n} \rightarrow G$ produce various effects on the injectivity of the resulting maps and their defect to being anti-representations. On one end of the spectrum, if $\gamma$ is the identity, the $L^{2}$-Burau maps $\mathcal{B}_{t, i d}^{(2)}: B_{n} \rightarrow B\left(\ell^{2}\left(F_{n}\right)^{n}\right)$ are injective for all $t>0$ (since $B_{n} \rightarrow$ $\operatorname{Aut}\left(F_{n}\right), \beta \mapsto h_{\beta}$ is injective and automorphisms of the free group are determined by their Fox jacobian [8, Proposition 9.8]). As $G$ becomes smaller, the $L^{2}$-Burau maps $\mathcal{B}_{t, \gamma}^{(2)}$ lose in injectivity but edge closer to being actual anti-representations. As the proof of Proposition 4.5 demonstrates, a critical step appears when $\gamma$ reaches $T^{\phi}$ : in this case, $\mathcal{B}_{t, T^{\phi}}^{(2)}(\beta)$ is an antirepresentation which is equal to $R_{\operatorname{tra}(\mathcal{B}(\beta))}$ up to a change of variable; in particular it is known not to be faithful for $n \geq 5[17,5]$.

Summarizing, the various $L^{2}$-Burau maps interpolate between the injective ones induced by the Artin representation and the classical Burau representation. Indeed, they all distinguish at least as many braids as the Burau representation (as shown in Proposition 4.5) but sometimes do better, as Corollary 4.11 will show (for $L^{2}$-Burau maps associated to a link group).
4.2. The reduced $L^{2}$-Burau map. In this subsection, we shall generalize the definition of the reduced Burau representation to the $L^{2}$-setting.

Instead of working with the free generators $x_{1}, x_{2} \ldots, x_{n}$ of $\pi_{1}\left(D_{n}\right)$, consider the elements $g_{1}, g_{2}, \ldots, g_{n}$, where $g_{i}=x_{1} x_{2} \cdots x_{i}$. The action of the braid group $B_{n}$ on this new set of free generators for $\pi_{1}\left(D_{n}\right)$ is given by

$$
h_{\sigma_{i}}\left(g_{j}\right)= \begin{cases}g_{j} & \text { if } j \neq i \\ g_{i+1} g_{i}^{-1} g_{i-1} & \text { if } j=i \neq 1 \\ g_{2} g_{1}^{-1} & \text { if } j=i=1\end{cases}
$$

Let $\widetilde{g}_{i}$ be the lift of $g_{i}$ starting at a fixed lift of $z$ (note that $\left.\widetilde{g}_{i}=\widetilde{x}_{1}+\ldots+\left(x_{1} \ldots x_{i-1}\right) \widetilde{x}_{i}\right)$. Using the same argument as in Lemma 3.1, one obtains the splitting

$$
H_{1}^{(2)}\left(D_{n}, z ; \phi, \gamma, t\right)=\bigoplus_{i=1}^{n-1} \ell^{2}(G) \widetilde{g}_{i} \oplus \ell^{2}(G) \widetilde{g}_{n}
$$

for any $\gamma: F_{n} \rightarrow G$ through which $\phi$ factors. As $g_{n}$ is always fixed by the action of the braid group, its lift $\widetilde{g}_{n}$ is fixed by the lift $\widetilde{H}_{\beta}$ of a homeomorphism $H_{\beta}$ representing a braid $\beta$.

Definition. The reduced $L^{2}$-Burau map sends a braid $\beta$ to the restriction $\overline{\mathcal{B}}_{t, \gamma}^{(2)}(\beta)$ of the $L^{2}$ Burau map to the subspace of $H_{1}\left(D_{n}, z ; \phi, \gamma \circ h_{\beta}, t\right)$ generated by $\widetilde{g}_{1}, \ldots, \widetilde{g}_{n-1}$.

The next proposition now follows immediately.

Proposition 4.7. If $\widetilde{\mathcal{B}}_{t, \gamma}^{(2)}(\beta)$ denotes the $L^{2}$-Burau matrix of a braid $\beta \in B_{n}$ with respect to the basis of the $\widetilde{g}_{i}$, then

$$
\widetilde{\mathcal{B}}_{t, \gamma}^{(2)}(\beta)=\left(\begin{array}{cc}
\overline{\mathcal{B}}_{t, \gamma}^{(2)}(\beta) & 0 \\
V & I d
\end{array}\right)
$$

where $V \in M_{1, n-1}\left(B\left(\ell^{2}(G)\right)\right)$.
One can see the matrix of operators $\widetilde{\mathcal{B}}_{t, \gamma}^{(2)}(\beta)$ as a conjugate of $\mathcal{B}_{t, \gamma}^{(2)}(\beta)$ via a trigonal change of basis matrix between the good basis $\left(\widetilde{x}_{i}\right)_{1 \leqslant i \leqslant n}$ and the new basis $\left(\widetilde{g}_{i}\right)_{1 \leqslant i \leqslant n}$. In particular the reduced $L^{2}$-Burau map also satisfies the property of Lemma 4.1 :

$$
\overline{\mathcal{B}}_{t, \gamma}^{(2)}(\alpha \beta)=\overline{\mathcal{B}}_{t, \gamma}^{(2)}(\beta) \circ \overline{\mathcal{B}}_{t, \gamma \circ h_{\beta}}^{(2)}(\alpha)
$$

Example 4.8. Combining Proposition 4.2 and Proposition 4.7, the reduced $L^{2}$-Burau map of $\sigma_{i} \in B_{n}$ is given by

$$
\overline{\mathcal{B}}_{t, \gamma}^{(2)}\left(\sigma_{i}\right)=I d^{\oplus(i-2)} \oplus\left(\begin{array}{ccc}
I d & t R_{\gamma\left(g_{i+1} g_{i}^{-1}\right)} & 0 \\
0 & -t R_{\gamma\left(g_{i+1} g_{i}^{-1}\right)} & 0 \\
0 & I d & I d
\end{array}\right) \oplus I d^{\oplus(n-i-2)}
$$

for $1<i<n-1$, and for $\sigma_{1}$ and $\sigma_{n-1}$ it is represented by

$$
\begin{aligned}
\overline{\mathcal{B}}_{t, \gamma}^{(2)}\left(\sigma_{1}\right) & =\left(\begin{array}{cc}
-t R_{\gamma\left(g_{2} g_{1}^{-1}\right)} & 0 \\
I d & I d
\end{array}\right) \oplus I d^{\oplus(n-3)}, \\
\overline{\mathcal{B}}_{t, \gamma}^{(2)}\left(\sigma_{n-1}\right) & =I d^{\oplus(n-3)} \oplus\left(\begin{array}{cc}
I d & t R_{\gamma\left(g_{n} g_{n-1}^{-1}\right)} \\
0 & -t R_{\gamma\left(g_{n} g_{n-1}^{-1}\right)}
\end{array}\right) .
\end{aligned}
$$

4.3. Relation to the $L^{2}$-Alexander torsions of links. In this subsection, we show how a particular $L^{2}$-Alexander torsion associated to a link can be computed from some reduced $L^{2}$-Burau maps. As an application, we exhibit two braids which are distinguished by the $L^{2}$-Burau maps but can not be told apart by the classical Burau representation.

Let $X_{\beta}$ be the exterior of a braid $\beta \in B_{n}$ in the cylinder $D^{2} \times[0,1]$, and recall that $\xi_{n}$ denotes the trivial braid with $n$ strands. The manifold obtained by gluing $X_{\beta}$ and $X_{\xi_{n}}$ along $D_{n} \sqcup D_{n}$ is nothing but the exterior of the link $L^{\prime}:=\hat{\beta} \cup \partial D_{n}$ in $S^{3}$. Identify the free group $F_{n}$ with $\pi_{1}\left(D_{n}\right)$ so that the free generators $x_{i}$ correspond to the loops described in Subsection 3.1. As in Subsection 4.2, the elements $g_{1}, g_{2}, \ldots, g_{n}$ then also form a free generating set of $\pi_{1}\left(D_{n}\right)$. If $x$ is a meridian of $\partial D_{n}$, then the fiberedness of $M_{L^{\prime}}$ implies that $G_{L^{\prime}}$ admits the presentation

$$
P^{\prime}=\left\langle g_{1}, \ldots, g_{n}, x \mid h_{\beta}\left(g_{1}\right)=x g_{1} x^{-1}, \ldots, h_{\beta}\left(g_{n}\right)=x g_{n} x^{-1}\right\rangle
$$

The exterior $M_{L}$ of $L=\hat{\beta}$ can now be recovered by canonically pasting a solid torus on the boundary component of $M_{L^{\prime}}$ corresponding to $\partial D_{n}$. Since $h_{\beta}\left(g_{n}\right)=g_{n}$ in the free group $F_{n}, G_{L}$ thus admits the following deficiency one presentation:

$$
P=\left\langle g_{1}, \ldots, g_{n} \mid h_{\beta}\left(g_{1}\right)=g_{1}, \ldots, h_{\beta}\left(g_{n-1}\right)=g_{n-1}\right\rangle
$$

Finally, denote by $\gamma_{L}: F_{n} \rightarrow G_{L}$ the resulting quotient map. This way, if one sets $\phi_{L}:=$
$(1, \ldots, 1) \circ \alpha_{L}$, then the map $\phi: \pi_{1}\left(D_{n}\right) \rightarrow \mathbb{Z}$ described in Subsection 4.1 factors as $\phi_{L} \circ \gamma_{L}$.
Theorem 4.9. Given an oriented link L obtained as the closure of a braid $\beta \in B_{n}$, one has

$$
T_{L,(1, \ldots, 1)}^{(2)}(i d)(t) \cdot \max (1, t)^{n} \doteq \operatorname{det}_{\mathcal{N}\left(G_{L}\right)}^{r}\left(\overline{\mathcal{B}}_{t, \gamma_{L}}^{(2)}(\beta)-I d^{\oplus(n-1)}\right)
$$

for all $t>0$.
Proof. Fix $t>0$ and assume that $L$ is non-split. Performing Fox calculus on the presentation $P$ yields

$$
\frac{\partial\left(h_{\beta}\left(g_{j}\right) g_{j}^{-1}\right)}{\partial g_{i}}=\frac{\partial\left(h_{\beta}\left(g_{j}\right)\right)}{\partial g_{i}}-\delta_{i j}
$$

Since $M_{L}$ is irreducible and the previously described presentation $P$ of $G_{L}$ has deficiency one, combining Proposition 3.3 with the definition of the reduced Burau representation then gives

$$
T^{(2)}\left(M_{L}, \phi_{L}, i d\right)(t) \doteq \frac{\operatorname{det}_{\mathcal{N}\left(G_{L}\right)}^{r}\left(\overline{\mathcal{B}}_{t, \gamma_{L}}^{(2)}(\beta)-I d^{\oplus(n-1)}\right)}{\operatorname{det}_{\mathcal{N}\left(G_{L}\right)}^{r}\left(t^{n} R_{g_{n}}-I d\right)}=\frac{\operatorname{det}_{\mathcal{N}\left(G_{L}\right)}^{r}\left(\overline{\mathcal{B}}_{t, \gamma_{L}}^{(2)}(\beta)-I d^{\oplus(n-1)}\right)}{\max (1, t)^{n}}
$$

which proves the theorem in the non-split case.
Next, assume that $L$ is split. Since Lemma 3.5 implies that $T_{L,(1, \ldots, 1)}^{(2)}(i d)(t)=0$, it only remains to prove that $\operatorname{det}^{r}{ }_{\mathcal{N}\left(G_{L}\right)}\left(\overline{\mathcal{B}}_{t, \gamma_{L}}^{(2)}(\beta)-I d^{\oplus(n-1)}\right)$ also vanishes. By Proposition 3.3, the latter claim reduces to proving that $C_{*}^{(2)}\left(W_{P}, \phi_{L}, i d, t\right)$ is not weakly acyclic. As $C_{*}^{(2)}\left(M_{L}, \phi_{L}, i d, t\right)$ is not weakly acyclic (by Lemma 3.5), the $L^{2}$-version of the Torres formula [2, Theorem 3.8] implies that $C_{*}^{(2)}\left(M_{L^{\prime}}, \phi_{L} \circ Q, Q, t\right)$ is not weakly acyclic either, where $Q: G_{L^{\prime}} \rightarrow G_{L}$ is the epimorphism induced by the inclusion $M_{L^{\prime}} \subset M_{L}$. Since $L^{\prime}$ is non split, $M_{L^{\prime}}$ is simply homotopy equivalent to $W_{P^{\prime}}$ (by Lemma 3.4) and it follows that $C_{*}^{(2)}\left(W_{P^{\prime}}, \phi_{L} \circ Q, Q, t\right)$ is not weakly acyclic, by [2, Theorem 2.12]. Let $v$ be the 0 -cell of $W_{P}, g_{1}, \ldots, g_{n}$ be its 1 -cells and $r_{1}, \ldots, r_{n-1}$ be its 2-cells. Similarly let $v^{\prime}$ be the 0 -cell of $W_{P^{\prime}}, g_{1}, \ldots, g_{n}, x$ be its 1 -cells and $r_{1}^{\prime}, \ldots, r_{n}^{\prime}$ be its 2-cells. Denote the lifts to the universal covers as in Subsection 3.3 and set $D_{1}=\ell^{2}(G) \widetilde{x}, D_{2}=\ell^{2}(G) \vec{r}_{n}^{\prime}$. A straightforward matrix computation involving Fox calculus now shows that

$$
0 \rightarrow C_{*}^{(2)}\left(W_{P}, \phi_{L}, i d, t\right) \xrightarrow{\iota} C_{*}^{(2)}\left(W_{P^{\prime}}, \phi_{L} \circ Q, Q, t\right) \xrightarrow{\rho} D_{*} \rightarrow 0
$$

is an exact sequence of finite Hilbert $\mathcal{N}\left(G_{L}\right)$-chain complexes, where $\iota_{1}\left(\widetilde{g}_{i}\right)=\widetilde{g}_{i}^{\prime}, \iota_{2}\left(\widetilde{r}_{i}\right)=\widetilde{r}_{i}^{\prime}$ for $i=1, \ldots, n-1$ and $\rho_{1}, \rho_{2}$ are the obvious projections. As the boundary operator $D_{2} \rightarrow$ $D_{1}$ is given by the injective operator $I d-t^{n} R_{g_{n}}$, the chain complex $D_{*}$ is weakly acyclic. Since $C_{*}^{(2)}\left(W_{P^{\prime}}, \phi_{L} \circ Q, Q, t\right)$ is not weakly acyclic, neither is $C_{*}^{(2)}\left(W_{P}, \phi_{L}, i d, t\right)$ by Proposition 2.2. This concludes the proof.

Remark 4.10. If $L$ is a knot $K$, then Theorem 4.9 can be expressed as

$$
\Delta_{K}^{(2)}(t) \cdot \max (1, t)^{n-1} \doteq \operatorname{det}_{\mathcal{N}\left(G_{K}\right)}^{r}\left(\overline{\mathcal{B}}_{t, \gamma_{K}}^{(2)}(\beta)-I d^{\oplus(n-1)}\right)
$$

where $\Delta_{K}^{(2)}(t)$ is the $L^{2}$-Alexander invariant of $K$ defined by Li-Zhang [16].


Fig.4. The braid $\beta \in B_{6}$.
Corollary 4.11. There exist two braids which have the same image under the classical Burau representation but have different images under an $L^{2}$-Burau map with a non-injective $\gamma$.

Proof. Long and Paton [17] proved that the braid $\beta \in B_{6}$ depicted in Figure 4 has the same image under the classical Burau representation as the trivial braid $\xi_{6} \in B_{6}$. Taking any $t>0$, we will prove that $\mathcal{B}_{t, \gamma_{\hat{\beta}}}^{(2)}(\beta) \neq \mathcal{B}_{t, \gamma_{\hat{\beta}}}^{(2)}\left(\xi_{6}\right)$, and to do this we will show that $\overline{\mathcal{B}}_{t, \gamma_{\hat{\beta}}}^{(2)}(\beta) \neq \overline{\mathcal{B}}_{t, \gamma_{\hat{\beta}}}^{(2)}\left(\xi_{6}\right)$ : this is enough since the reduced $L^{2}$-Burau map is the upper left matricial part of the $L^{2}$-Burau map expressed in the basis of the $\widetilde{g}_{i}$. We claim that the closure $L$ of $\beta$ is a 6-component nonsplit link. To see this, define $\Gamma(L)$ to be the graph whose vertices are the components $L_{i}$ of $L$ and such that there is an edge between $L_{i}$ and $L_{j}$ when there exists a third component $L_{k}$ such that $L_{i} \cup L_{j} \cup L_{k}$ is a non-split link. Since $L$ being split implies $\Gamma(L)$ being disconnected, it suffices to show that $\Gamma(L)$ is connected. One can observe that all sublinks of $L$ with three components are either trivial or the non-split link $L_{10 a 140}$, and there are enough of the second type so that $\Gamma(L)$ is connected.

Consequently, as $L$ is non-split, $T_{L,(1, \ldots, 1)}^{(2)}(t)$ is non-zero for all $t>0$ (by Lemma 3.5) and thus Theorem 4.9 implies that the operator $\overline{\mathcal{B}}_{t, \gamma_{L}}^{(2)}(\beta)-I d^{\oplus(n-1)}$ has non-zero regular FugledeKadison determinant and is thus injective. The result follows immediately.

Acknowledgements. The first author was supported by the Swiss National Science Foundation, subsidy 200021_162431, at the Université de Genève. The second author was supported by the NCCR SwissMAP, funded by the Swiss National Science Foundation. We thank David Cimasoni and Stefan Friedl for helpful conversations.

## References

[1] M. Aschenbrenner, S. Friedl and H. Wilton: 3-Manifold groups, EMS series of lectures in mathematics, European Mathematical Society (EMS), Zürich, 2015.
[2] F. Ben Aribi: A study of properties and computation techniques of the $L^{2}$-Alexander invariant in knot theory, PhD thesis, Université Paris Diderot, 2015.
[3] F. Ben Aribi: The $L^{2}$-Alexander invariant detects the unknot, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), XV (2016), 683-708.
[4] F. Ben Aribi: The $L^{2}$-Alexander invariant is stronger than the genus and the simplicial volume, arXiv:1606.07003, 2016.
[5] S. Bigelow: The Burau representation is not faithful for $n=5$, Geom. Topol. 3 (1999), 397-404.
[6] J.S. Birman: Braids, Links, and Mapping Class Groups, Annals of Mathematics Studies 82, Princeton University Press, Princeton, N.J. and University of Tokyo Press, Tokyo, 1974.
[7] W. Burau: Über Zopfgruppen und gleichsinnig verdrillte Verkettungen, Abh. Math. Sem. Univ. Hamburg 11 (1935), 179-186.
[8] G. Burde, H. Zieschang and M. Heusener: Knots, extended edition, De Gruyter Studies in Mathematics 5, De Gruyter, Berlin, 2014.
[9] T.A. Chapman: Topological invariance of Whitehead torsion, Amer. J. Math. 96 (1974), 488-497.
[10] A. Conway: Burau maps and twisted Alexander polynomials, Proc. Edinb. Math. Soc. (2) to appear.
[11] J. Dubois, S. Friedl and W. Lück: The L²-Alexander torsion is symmetric, Algebr. Geom. Topol. 15 (2015), 3599-3612.
[12] J. Dubois, S. Friedl and W. Lück: The $L^{2}$-Alexander torsions of 3-manifolds, C. R. Math. Acad. Sci. Paris 353 (2015), 69-73.
[13] R.H. Fox: Free differential calculus. II. The isomorphism problem of groups, Ann. of Math. (2), 59 (1954), 196-210.
[14] S. Friedl and W. Lück: The $L^{2}$-torsion function and the Thurston norm of 3-manifolds, arXiv:1510.00264, 2015.
[15] J.A. Hillman: Four-manifolds, Geometries and Knots, Geometry \& Topology Monographs 5, Geometry \& Topology Publications, Coventry, 2002.
[16] W. Li and W. Zhang: An L2-Alexander invariant for knots, Commun. Contemp. Math. 8 (2006), 167-187.
[17] D.D. Long and M. Paton: The Burau representation is not faithful for $n \geq 6$, Topology 32 (1993), 439-447.
[18] W. Lück: $L^{2}$-Invariants: Theory and Applications to Geometry and $K$-Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge 44, Springer-Verlag, Berlin, 2002.
[19] W. Lück: Twisting L2-invariants with finite-dimensional representations, arXiv:1510.00057, 2015.

Fathi Ben Aribi
Université de Genève
Section de mathématiques
$2-4$ rue du Lièvre
1211 Genève 4
Switzerland
e-mail: fathi.benaribi@unige.ch
Anthony Conway
Université de Genève
Section de mathématiques
2-4 rue du Lièvre
1211 Genève 4
Switzerland
e-mail: anthony.conway@unige.ch

