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Abstract
Enriques varieties have been defined as higher–dimensional generalizations of Enriques sur-

faces. Bloch’s conjecture implies that Enriques varieties should have trivial Chow group of
zero–cycles. We prove this is the case for all known examples of irreducible Enriques varieties
of index larger than 2. The proof is based on results concerning the Chow motive of generalized
Kummer varieties.

1. Introduction

1. Introduction
For a smooth complex projective variety X, let AjX denote the Chow group of dimension

j algebraic cycles on X modulo rational equivalence. Let Ahom
j (X) ⊂ Aj(X) denote the

subgroup of homologically trivial cycles. Other than the case of divisors ( j = dim X −
1), Chow groups are in general still poorly understood. For example, there is the famous
conjecture of Bloch:

Conjecture 1.1 (Bloch [6]). Let X be a smooth projective complex variety. The following
are equivalent:
(i) the Albanese morphism Ahom

0 (X)→ Alb(X) is an isomorphism;
(ii) the Hodge numbers h j,0(X) are 0 for j ≥ 2.

The implication from (i) to (ii) is actually a theorem [21], [8]. The conjectural part is
the reverse implication, which has been verified for surfaces of Kodaira dimension less than
2 [7], but is wide open for surfaces of general type (cf. [24], [28] for some examples of
surfaces where Conjecture 1.1 is verified).

Interesting examples of varieties with vanishing Hodge numbers h j,0(X) = 0 for all j ≥ 1
are given by Enriques varieties. These varieties have been defined and studied by Boissière,
Nieper-Wißkirchen and Sarti in [9] (and independently, with a somewhat different defini-
tion, by Oguiso–Schröer in [23]). As the name suggests, Enriques varieties are higher–
dimensional generalizations of Enriques surfaces. In the same way that Enriques surfaces
are closely related to K3 surfaces, the study of Enriques varieties is intimately entwined with
that of hyperkähler varieties. By definition, an Enriques variety X has the property that some
multiple dKX of the canonical divisor is trivial; the smallest such positive integer d is called
the index of X.

It is natural to ask whether one can prove Bloch’s conjecture for these varieties, i.e.
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Conjecture 1.2. Let X be an Enriques variety (in the sense of [9]). Then

A0(X) = Z .

The main result of this note gives a partial answer to Conjecture 1.2:

Theorem (=Theorem 3.1). Let X be an Enriques variety of dimension ≤ 6. Assume X is
a quotient

X = K/G ,

where K = Kn(A) is a generalized Kummer variety and G is a group of automorphisms
acting freely and induced by a finite order automorphism of A. Then

A0(X) = Z .

Theorem 3.1 applies to all known examples of irreducible Enriques varieties with index
> 2 (these examples can be found in [9] and [23]). The proof of Theorem 3.1 is a straight-
forward application of results of Xu [30] and Lin [20], combined with Kimura’s theory of
finite–dimensional motives [19].

As a corollary (Corollary 3.9), varieties as in Theorem 3.1 verify certain cases of the
generalized Hodge conjecture.

Conventions 1. In this note, the word variety will refer to a reduced irreducible scheme
of finite type over C.

For any variety X, we will denote by AjX the Chow group of j–dimensional cycles on X,
and we will write

A j(X)Q := Aj(X) ⊗Z Q
for Chow groups with rational coefficients. For X smooth of dimension n the notations AjX
and An− jX will be used interchangeably.

The notations Aj
hom(X) and Aj

AJ(X) will be used to indicate the subgroups of homologi-
cally, resp. Abel–Jacobi trivial cycles. The contravariant category of Chow motives (i.e.,
pure motives with respect to rational equivalence as in [26], [22]) will be denoted rat. The
category of pure motives with respect to homological equivalence will be denoted hom.

2. Preliminary material

2. Preliminary material2.1. Quotient varieties.
2.1. Quotient varieties.

Definition 2.1. A projective quotient variety is a variety

X = Y/G ,

where Y is a smooth projective variety and G ⊂ Aut(Y) is a finite group.

Proposition 2.2 (Fulton [12]). Let X be a projective quotient variety of dimension n. Let
A∗(X) denote the operational Chow cohomology ring. The natural map

Ai(X)Q → An−i(X)Q

is an isomorphism for all i.
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Proof. This is [12, Example 17.4.10]. �

Remark 2.3. It follows from Proposition 2.2 that the formalism of correspondences goes
through unchanged for projective quotient varieties (this is also noted in [12, Example
16.1.13]). We can thus consider motives (X, p, 0) ∈ rat, where X is a projective quo-
tient variety and p ∈ An(X × X)Q is a projector. For a projective quotient variety X = Y/G,
one readily proves (using Manin’s identity principle) that there is an isomorphism

h(X) � h(Y)G := (Y,ΔG
Y , 0) in rat ,

where ΔG
Y denotes the idempotent 1

|G|
∑
g∈GΓg.

2.2. Finite–dimensionality.
2.2. Finite–dimensionality. We refer to [19], [2], [22], [16] for basics on the notion of

finite–dimensional motive. An essential property of varieties with finite–dimensional motive
is embodied by the nilpotence theorem:

Theorem 2.4 (Kimura [19]). Let X be a smooth projective variety of dimension n with
finite–dimensional motive. Let Γ ∈ An(X × X)Q be a correspondence which is numerically
trivial. Then there is N ∈ N such that

Γ◦N = 0 ∈ An(X × X)Q .

Actually, the nilpotence property (for all powers of X) could serve as an alternative def-
inition of finite–dimensional motive, as shown by a result of Jannsen [16, Corollary 3.9].
Conjecturally, all smooth projective varieties have finite–dimensional motive [19]. We are
still far from knowing this, but at least there are quite a few non–trivial examples:

Remark 2.5. It is an embarassing fact that up till now, all examples of finite-dimensional
motives happen to lie in the tensor subcategory generated by Chow motives of curves, i.e.
they are “motives of abelian type” in the sense of [27]. On the other hand, there exist
many motives that lie outside this subcategory, e.g. the motive of a very general quintic
hypersurface in P3 [11, 7.6].

The notion of finite–dimensionality is easily extended to quotient varieties:

Definition 2.6. Let X = Y/G be a projective quotient variety. We say that X has finite–
dimensional motive if the motive

h(Y)G := (Y,ΔG
Y , 0) ∈rat

is finite–dimensional. (Here, ΔG
Y denotes the idempotent 1

|G|
∑
g∈GΓg ∈ An(Y × Y).)

Clearly, if Y has finite–dimensional motive then also X = Y/G has finite–dimensional
motive. The nilpotence theorem extends to this set–up:

Proposition 2.7. Let X = Y/G be a projective quotient variety of dimension n, and assume
X has finite–dimensional motive. Let Γ ∈ An

num(X × X)Q. Then there is N ∈ N such that

Γ◦N = 0 ∈ An(X × X)Q .
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Proof. Let p : Y → X denote the quotient morphism. We associate to Γ a correspondence
ΓY ∈ An(Y × Y)Q defined as

ΓY := tΓp ◦ Γ ◦ Γp ∈ An(Y × Y)Q .

By Lieberman’s lemma [27, Lemma 3.3], there is equality

ΓY = (p × p)∗Γ in An(Y × Y)Q ,

and so ΓY is G ×G–invariant:

ΔG
Y ◦ ΓY ◦ ΔG

Y = ΓY in An(Y × Y)Q .

This implies that

ΓY ∈ ΔG
Y ◦ An(Y × Y)Q ◦ ΔG

Y ,

and so

ΓY ∈ Endrat

(
h(Y)G) .

Since clearly ΓY is numerically trivial, and h(Y)G is finite–dimensional (by assumption),
there exists N ∈ N such that

(ΓY)◦N = tΓp ◦ Γ ◦ Γp ◦ tΓp ◦ · · · ◦ Γp = 0 in An(Y × Y)Q .

Using the relation Γp ◦ tΓp = dΔX , this boils down to

dN−1 tΓp ◦ Γ◦N ◦ Γp = 0 in An(Y × Y)Q .

From this, we deduce that also

Γ◦N =
1

dN+1Γp ◦
(
dN−1 tΓp ◦ Γ◦N ◦ Γp

)
◦ tΓp = 0 in An(X × X)Q .

�

2.3. Enriques varieties.
2.3. Enriques varieties.

Definition 2.8 [9]. A smooth projective variety is called Enriques variety if the following
hold:
(i) the holomorphic Euler characteristic χ(X,X) = 1;
(ii) there exists an integer d ≥ 2 (called the index of X) such that the canonical bundle KX

has order d in the Picard group of X, and the fundamental group π1(X) is cyclic of order d.

Definition 2.9 [9]. An Enriques variety is called irreducible if the holonomy representa-
tion of its universal cover is irreducible.

Theorem 2.10 ([9]). Let X be an irreducible Enriques variety of index > 2. Then X is the
quotient of an irreducible symplectic holomorphic manifold by a group of automorphisms
acting freely.

Proposition 2.11 ([9]). There exist irreducible Enriques varieties of dimension 4 and
index 3, and of dimension 6 and index 4.
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Proof. This is [9, Proposition 4.1], the idea of which is as follows. Let A be the product
of 2 elliptic curves, and let φ be a finite order automorphism of A. Consider the generalized
Kummer variety K = Kn(A) for n = 3, 4. For an appropriate choice of φ, the induced
automorphism ψ ∈ Aut(K) is such that the action on K is free, and the quotient

X = K/ < ψ >

is an Enriques variety. �

Remark 2.12. To the best of my knowledge, there are as yet no examples of Enriques
varieties with index > 4.

Remark 2.13. In [23], there is a definition of “Enriques manifold” which is a priori
slightly different from the definition of Enriques variety. (In [18, Remark 1.3(a)], it is ex-
plained there might potentially exist Enriques varieties that are not Enriques manifolds.)
However, the examples given in Proposition 2.11 are also Enriques manifolds (and actually,
these examples are also to be found in [23]).

2.4. Generalized Kummer varieties.
2.4. Generalized Kummer varieties.

Definition 2.14. Let A be an abelian surface. For any n ∈ N, let

π : A[n] → A(n)

denote the Hilbert–Chow morphism from the Hilbert scheme A[n] to the symmetric product
A(n). Let σ : A(n) → A denote the addition morphism. Consider the composition

s : A[n] π−→ A(n) σ−→ A .

The generalized Kummer variety is defined as the fibre

Kn(A) := s−1(0) .

Kn(A) is a hyperkähler variety of dimension 2n − 2.

Definition 2.15 [9]. An automorphism ψ ∈ Aut(Kn(A)) is natural if ψ is induced by
an automorphism of A. More precisely, let A[n] denote the n–torsion points of A, and let
AutZ(A) denote the group automorphisms of A. As explained in [9, Section 3.1], there is a
well–defined homomorphism

A[n] � AutZ(A) → Aut(Kn(A)) .

The group of natural automorphisms of Kn(A) is defined as the image of this homomorphism.

Theorem 2.16 (Boissière–Nieper-Wißkirchen–Sarti [9]). Let n ≥ 3. Let E denote the
exceptional divisor of the birational morphism (obtained from π by restriction)

π|Kn(A) : Kn(A) → K(n) := σ−1(0) .

An automorphism ψ ∈ Aut(Kn(A)) is natural if and only if ψ(E) = E.

Proof. This is [9, Theorem 3.1]. �
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2.5. Motive of a generalized Kummer variety.
2.5. Motive of a generalized Kummer variety.

Notation 2.17. For n ∈ N, let P(n) be the set of partitions of n. A partition λ ∈ P(n) can
be written

λ = (λ1, . . . , λ�λ) = 1a12a2 · · · rar ,

where �λ is the length of λ. We define e(λ) := gcd{λ1, . . . , λ�λ}.
For any λ ∈ P(n), we write

A(λ) := A(a1) × A(a2) × · · · × A(ar) .

Definition 2.18. A homomorphism of Chow motives Γ : M → N is split if Γ admits a left
inverse.

Theorem 2.19 (Xu [30]). Let K = Kn(A) be a generalized Kummer variety. There is a
split homomorphism of Chow motives

Γ : h(K) →
⊕
λ∈P(n)

⊕
τ∈A[e(λ)]

h(A(λ))(n − �λ − 2) in rat .

In particular, K has finite–dimensional motive, in the sense of [19] (and even: K has motive
of abelian type, in the sense of [27]).

Proof. This follows from [30, Corollary 2.8], which states more precisely that there is an
isomorphism

h(A × K) �
⊕
λ∈P(n)

⊕
τ∈A[e(λ)]

h(A(λ))(n − �λ) in rat .

Theorem 2.19 is obtained by composing with the split homomorphism

h(K) → h(A × K) → h(A × K)(−2) ,

where the first arrow is given by projection on the second summand, and the second arrow
is given by intersecting with x × K where x ∈ A. �

Remark 2.20. The fact that generalized Kummer varieties have finite–dimensional mo-
tive of abelian type (which was first stated explicitly in [30]) seems to have been folklore
knowledge for quite some time. Indeed, as noted in [14, Remark 7.10 and §6.1], this fact
follows readily from the results of de Cataldo–Migliorini [10].

We mention in passing that L. Fu, in the course of proving the Beauville–Voisin conjec-
ture for generalized Kummer varieties, had previously developed a motivic decomposition
for Kn(A) [13]. Parts of the argument of Xu [30] can already be found in [13].

Things simplify if one is only interested in zero–cycles:

Corollary 2.21. Let K = Kn(A) be a generalized Kummer variety. There is a split injec-
tion

Γ∗ : A0(K)Q → A0(A(n))Q .
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Proof. This is a consequence of Theorem 2.19; all summands with �λ < n vanish for
dimension reasons. �

Theorem 2.22 (Lin [20]). Let K = Kn(A) be a generalized Kummer variety. There ex-
ists a Chow–Künneth decomposition for K, i.e. a set of mutually orthogonal idempotents
ΠK

0 , . . . ,Π
K
4n−4 in A2n−2(K × K)Q lifting the Künneth components. Moreover, this decompo-

sition satisfies
(
ΠK

0 + Π
K
2 + Π

K
4 + · · · + ΠK

4n−4
)
∗ = id : A0(K)Q → A0(K)Q .

Proof. This is essentially [20, Proposition 4.5]. It follows from Theorem 2.19 that K
is motivated by A (in the sense of Arapura [3]). Thus, [3, Lemma 4.2] implies K verifies
the standard Lefschetz conjecture, and so in particular the Künneth components of K are
algebraic. Finite–dimensionality then gives a Chow–Künneth decomposition [15, Lemma
5.4]. As for the last statement, this follows from the fact that the Beauville filtration on
Chow groups of abelian varieties induces a decomposition

A0(K)Q =
2n−2⊕
j=0

A( j)
0 (K)Q

such that

A( j)
0 (K)Q =

⎧⎪⎪⎨⎪⎪⎩
(ΠK

4n−4− j)∗A0(K)Q if j is even;

0 if j is odd

[20, Theorem 1.4]. �

Using the existence of a Chow–Künneth decomposition, Corollary 2.21 can be made
more precise:

Corollary 2.23. Let K = Kn(A) be a generalized Kummer variety. Let ΠK
j (resp. ΠA(n)

j ) be
any Chow–Künneth decomposition of K (resp. of A(n)). For any j, there are split injections

Γ∗ : (ΠK
j )∗A0(K)Q → (ΠA(n)

j+4)∗A0(A(n))Q .

Proof. Let Ψ denote a left inverse to the homomorphism

Γ : h(K) → N in rat ,

where N ∈rat is a short–hand for the right–hand side of Theorem 2.19. As a consequence
of Theorem 2.19, there are decompositions

Γ = Γ0 + Γ1 : h(K) → h(A(n)) ⊕ N1 ,

Ψ = (Ψ0,Ψ1) : h(A(n)) ⊕ N1 → h(K) in rat

satisfying

Ψ ◦ Γ = Ψ0 ◦ Γ0 + Ψ1 ◦ Γ1 = id : h(K) → h(K) in rat .

Since Γ0 sends H j(K,Q) to H j+4(A(n),Q), there is a homological equivalence

L := ΠK
j ◦ Ψ0 ◦ Γ0 ◦ ΠK

j = Π
K
j ◦ Ψ0 ◦ ΠA(n)

j+4 ◦ Γ0 ◦ ΠK
j =: R in H4n−4(K × K,Q) .
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Since K has finite–dimensional motive, this means the difference L − R is nilpotent. Upon
developing, this implies

L◦N = Q1 + Q2 + · · · + QN in A2n−2(K × K)Q ,

where Qj is a composition of L and R in which R occurs at least once.
Applying this to 0–cycles, we obtain in particular

(L◦N)∗ =
(
Q1 + · · · + QN

)
∗ : A0(K)Q → A0(K)Q .

Now we note that

L∗ = (ΠK
j )∗ : A0(K)Q → A0(K)Q

thanks to Corollary 2.21. It follows that

(ΠK
j )∗ = ((ΠK

j )◦N)∗ = (L◦N)∗ =
(
Q1 + · · · + QN

)
∗

=
(
(something) ◦ R ◦ ΠK

j
)
∗

=
(
(something) ◦ ΠA(n)

j+4 ◦ Γ0 ◦ ΠK
j
)
∗ : A0(K)Q → A0(K)Q .

It follows that

id =
(
(something) ◦ ΠA(n)

j+4 ◦ Γ0
)
∗ : (ΠK

j )∗A0(K)Q → (ΠK
j )∗A0(K)Q .

This proves Corollary 2.23. �

3. Main result

3. Main resultTheorem 3.1. Let X be an Enriques variety that is a quotient

X = K/G ,

where K = Kn(A) is a generalized Kummer variety with n ≤ 4, and G is a group of automor-
phisms acting freely and induced by a finite order automorphism of A. Then

A0(X) = Z .

Proof. The theorem is true for n = 2, so we will suppose from now on that n ≥ 3. Thanks
to Rojtman [25], we only need to prove that A0(X)Q = Q.

Write G =< ψ > where ψ ∈ Aut(K) is an automorphism (of order d = index(X)) induced
by a finite order automorphism

φ ∈ A[n] � AutZ(A) ⊂ Aut(A) .

We will write φ = t ◦ φ0, where t is a translation on A and φ0 is a group automorphism. Let

A′ := A/ < φ0 > .

The surface A′ has at most quotient singularities (note that φ and φ0 might well have fixpoints
even though ψ is fixpoint free). The action of φ0 must be non–symplectic (for otherwise
pg(X) = 1), and so pg(A′) = 0.

We have seen that the Künneth components of X are algebraic (this follows from Theorem
2.19, or from the results of [10]). Combined with the fact that X has finite–dimensional
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motive, this implies [15, Lemma 5.4] that there exists a Chow–Künneth decompositionΠX
j ∈

A2n−2(X × X)Q for X. To prove Theorem 3.1, it suffices to prove

(1) (ΠX
j )∗Ahom

0 (X)Q = 0 for all j .

The next lemma enables us to change the Chow–Künneth projectors to our convenience;
we are not stuck with one particular Chow–Künneth decomposition.

Lemma 3.2. Let X be a variety with finite–dimensional motive, and such that the Künneth
components of X are algebraic. Let ΠX

j and Π̂X
j be two Chow–Künneth decompositions for

X. Then for any i and j, there is equivalence

(ΠX
j )∗Ahom

i (X)Q = 0 ⇔ (Π̂X
j )∗Ahom

i (X)Q = 0 .

Proof. This is well–known, and easily proven. For later use, we prove a slightly more
general statement. �

Lemma 3.3. Let X be as in Lemma 3.2. Let ΠX
j be a Chow–Künneth decomposition, and

let π̂X
j be any (not necessarily idempotent, or orthogonal) cycles mapping to the Künneth

components π j ∈ H∗(X × X,Q). Then for any i and j, we have

(π̂X
j )∗Ahom

i (X)Q = 0 ⇒ (ΠX
j )∗Ahom

i (X)Q = 0 .

Proof. We have

(ΠX
j − π̂X

j ) = 0 in H2m(X × X,Q)

(where m := dim X). From Kimura’s nilpotence theorem [19], it follows that there exists
N ∈ N such that

(ΠX
j − π̂X

j )◦N = 0 in Am(X × X,Q) .

Developing this expression, we obtain

ΠX
j = (ΠX

j )◦N = P1 + P2 + · · · + Pm in Am(X × X)Q ,

where each Pj is a composition of correspondences containing at least one copy of π̂X
j . But

then the right–hand side acts trivially on Ahom
i (X)Q (by hypothesis), and hence so does the

left–hand side. �

Let us now return to the Enriques variety X = K/G, and let us define cycles

π̂X
j :=

1
d
Γp ◦ ΠK

j ◦ tΓp ∈ An(X × X)Q ,

where p : K → X is the quotient morphism, and the ΠK
j are as in Theorem 2.22. It follows

from Theorem 2.22 that

(π̂X
j )∗A0(X)Q ⊂ (ΠK

j )∗A0(K)Q = 0 for j odd .

In view of Lemma 3.3, it follows that the vanishing (1) holds for all odd j.
It remains to establish the vanishing (1) for even j. The next lemma establishes two easy

cases of (1):



432 R. Laterveer

Lemma 3.4. Set–up as in Theorem 3.1. Then

(ΠX
j )∗Ahom

0 (X)Q = 0 for j ≥ 4n − 6.

Proof. (In view of Lemma 3.2, if the lemma is true for one Chow–Künneth decomposi-
tion, it is true for all Chow–Künneth decompositions.)

The case j = 4n − 4 is obvious (indeed, ΠX
4n−4 is just X × x for x ∈ X, and so the action

factors over Ahom
0 (x)Q = 0). As for the second case, we observe that H2(X,X) = 0 so that

H2(X,Q) is algebraic. By hard Lefschetz, H4n−6(X,Q) is also algebraic. This implies that
the Künneth component πX

4n−6 in cohomology is supported on D ×C ⊂ X × X, where D ⊂ X
is a (possibly reducible) divisor and C ⊂ X is a (possibly reducible) curve. The action of
πX

4n−6 on Aj(X)Q factors over Aj(D̃)Q (where D̃→ D is a desingularisation), hence πX
4n−6 acts

trivially A0(X)Q. Applying Lemma 3.3, the same holds for any Chow–Künneth projector
ΠX

4n−6. �

We now state an equivariant version of Corollaries 2.21 and 2.23:

Proposition 3.5. Assumptions as in Theorem 3.1.
(i) There is a split injection

Γ∗ : A0(X)Q = A0(K)G
Q → A0((A′)(n))Q .

(ii) For any j, there are split injections

(ΠX
j )∗A0(X)Q → (Π(A′)(n)

j+4 )∗A0((A′)(n))Q

(here, ΠX
j and Π(A′)(n)

j denote Chow–Künneth decompositions of X, resp. of (A′)(n)).

Proof. To prove this, one needs to delve a bit into the proof of Theorem 2.19, i.e. one
needs to understand Xu’s result [30].

By construction of K, there is a commutative diagram (where vertical arrows are closed
inclusions)

K = Kn(A) → K(n)(A) := σ−1(0) → 0
↓ ↓ ↓

A[n] → A(n) σ−→ A .

For any λ ∈ P(n), let Kλ := ker(sλ) where

sλ : Aa1 × · · · × Aar → A ,

(x1, . . . , x�λ) �→
�λ∑

i=1

λixi .

We have a stratification

Kλ =
∐

τ∈A[e(λ)]

Kλ
τ ,

where

Kλ
τ :=
{
(x1, . . . , x�λ) ∈ A�λ |

�λ∑
i=1

λi

e(λ)
xi = τ

}
.
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Let S a denote the symmetric group on a elements. The action of S λ := S a1 × · · · × S ar on
Aλ := Aa1 × · · · × Aar restricts to Kλ (and to the Kλ

τ ); the quotient is denoted K(λ) (resp. K(λ)
τ ).

The natural morphism

A(λ) := Aλ/S λ → A(n)

induces morphisms

K(λ)
τ → K(n)(A) .

Then one defines correspondences

Θ̂λτ := (K(λ)
τ ×K(n)(A) K)red ∈ A∗(K(λ)

τ × K)

(here ()red means one takes the subvariety with the reduced scheme structure), and

Δλ,τ :=
1

dλ,τ
Θ̂λτ ◦ tΘ̂λτ ∈ A2n−2(K × K)Q

(where dλ,τ ∈ Q is some constant). One can then prove (using the Beilinson–Bernstein–
Deligne decomposition theorem) there is a decomposition

ΔK =
∑
λ∈P(n)

∑
τ∈A[e(λ)]

Δλ,τ in A2n−2(K × K)Q

[30, Lemma 2.5]. This gives rise to an isomorphism of Chow motives

(2) h(K) �
⊕
λ∈P(n)

⊕
τ∈A[e(λ)]

h(K(λ)
τ )(n − �λ) in rat

[30, Theorem 2.7].
Next, one considers the natural morphism

ϕ : A × K(λ)
τ → A(λ) ,

(x, z) �→ tx(z)

(where tx is the translation by x), and one proves ϕ induces an isomorphism of Chow motives

(3) Γϕ : h(A × K(λ)
τ ) � h(A(λ)) in rat

[30, Corollary 2.8]. Combining isomorphisms (3) and (2) gives Theorem 2.19.
Consider now the Enriques variety

X = K/G ,

where G is a group acting freely on K and induced by a finite order automorphism φ. Since
we are only interested in 0–cycles, we only need to consider the one partition of length n,
i.e. λ = (1n). We have that

K((1n)) = K((1n))
0

is invariant under the automorphism of A(n) induced by φ; we write K((1n))
0 /G for the quotient.

Fibre product gives rise to correspondences
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Θ̂
(1n)
0 (G) := (K((1n))

0 /G × K(n)(A)
G

X)red ∈ A∗(K((1n))
0 /G × X) ,

ΔG
(1n),0 :=

1
d(1n),0

Θ̂λ0(G) ◦ tΘ̂λ0(G) ∈ A2n−2(X × X)Q .

Taking 0–cycles, we get a commutative diagram

A0(K)Q � (Δ(1n),0)∗A0(K)Q
(tΘ̂

(1n)
0 )∗−−−−−−→ A0(K((1n))

0 )Q

−→ ←−

A0(X)Q � (ΔG
(1n),0)∗A0(X)Q

(tΘ̂
(1n)
0 (G))∗−−−−−−−−→ A0(K((1n))

0 /G)Q

By (2), the upper horizontal arrow is an isomorphism (with inverse given by (Θ̂(1n)
0 )∗). The

vertical arrows are split injections. It follows that the lower horizontal arrow is an isomor-
phism (with inverse given by (Θ̂(1n)

0 (G))∗).
One checks that the morphism φ ∈ Aut(A) induces a morphism

ϕ′ : A/ < φ > × K((1n))
0 /G → (A′)(n) .

(Indeed, write φ = t ◦ φ0, where t is a translation on A and φ0 is a group automorphism. It is
readily checked that φ0 commutes with ϕ, i.e. there is a commutative diagram

A × K((1n))
0

ϕ−→ A(n)

↓ φ0×φ(n)
0 ↓ φ(n)

0

A × K((1n))
0

ϕ−→ A(n) ,

where φ(n)
0 is the morphism induced by φ0. As for the translation t = ta, where a ∈ A[n], we

have a commutative diagram

A × K((1n))
0

ϕ−→ A(n)

↓ t−a×t(n) ↓ id

A × K((1n))
0

ϕ−→ A(n) .

This proves the existence of ϕ′.)
Taking 0–cycles, we get a commutative diagram

A0(A × K((1n))
0 )Q

ϕ∗−→ A0(A(n))Q
↑ ↑

A0(A/ < φ > ×K((1n))
0 /G)Q

(ϕ′)∗−−−→ A0((A′)(n))Q .

By (3), the upper horizontal arrow is an isomorphism (with inverse given by a multiple of
ϕ∗). The vertical arrows are split injections. It follows that the lower horizontal arrow is an
isomorphism. To prove (i) of Proposition 3.5, we consider the composition

A0(X)Q
(tΘ̂

(1n)
0 (G))∗−−−−−−−−→ A0(K((1n))

0 /G)Q −→ A0(A/ < φ > ×K((1n))
0 /G)Q

(ϕ′)∗−−−→ A0((A′)(n))Q ,

where the first and last arrow are isomorphisms, and the second arrow (defined in the obvious
way) is a split injection.

Statement (ii) of Proposition 3.5 is deduced from (i) using finite–dimensionality; this is
the same argument as Corollary 2.23. �
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Using Proposition 3.5, we can establish the required vanishing (1) in some further cases:

Lemma 3.6. Set–up as in Theorem 3.1. Then

(ΠX
j )∗Ahom

0 (X)Q = 0 for j < 3n − 4.

Moreover, if n = 4 then

(ΠX
8 )∗Ahom

0 (X)Q = 0 .

Proof. (Again, in view of Lemma 3.2, if the lemma is true for one Chow–Künneth de-
composition, it is true for all Chow–Künneth decompositions.)

Thanks to Proposition 3.5(ii), it suffices to prove

(Π(A′)(n)

k )∗A0((A′)(n))Q = 0 for all k < 3n .

Let

ΔA′ = Π
A′
0 + Π

A′
1 + Π

A′
2 + Π

A′
3 + Π

A′
4 in A2(A′ × A′)Q

be a Chow–Künneth decomposition for A′. Since pg(A′) = 0 and A′ has finite–dimensional
motive, we may suppose ΠA′

2 is supported on D × D, with D ⊂ A′ a divisor (in other words,
the “transcendental part of the motive” of A′ is 0, in the language of [17]). Also we may
suppose that ΠA′

0 = x × A′ for x ∈ A′ and ΠA′
1 is supported on D × A′, with D ⊂ A′ a divisor

(these are general facts, for the Chow–Künneth decomposition of any surface [17]).
As is well–known, the correspondences Π(A′)(n)

k are induced by correspondences

Π
(A′)n

k :=
∑

k1+···+kn=k

ΠA′
k1
× · · · × ΠA′

kn
∈ A2n((A′)n × (A′)n) ,

which define an S n–invariant Chow–Künneth decomposition of (A′)n.
There is a commutative diagram

A0((A′)n)Q
(Π(A′)n

k )∗−−−−−−→ A0((A′)n)Q

−→ ←−

A0((A′)(n))Q
(Π(A′)(n)

k )∗−−−−−−−→ A0((A′)(n))Q

Suppose now j < 3n. Then each summand occurring in the definition of Π(A′)n

k contains
at least one ΠA′

k�
with k� ≤ 2. But this means (by the choice of ΠA′∗ we have made above) that

Π
(A′)n

k is supported on (divisor) × (A′)n and so acts trivially 0–cycles:

(Π(A′)(n)

k )∗A0((A′)(n))Q = 0 for all k < 3n .

It only remains to treat the case n = 4 and k = 12. All the summands containing at least
one ΠA′

k�
with k� ≤ 2 act trivially on 0–cycles (for the same reason as above). So we may

suppose all the k� are 3, and we need to prove that(
ΠA′

3 × ΠA′
3 × ΠA′

3 × ΠA′
3

)
∗A0((A′)(4))Q = 0 .

But there is a natural isomorphism
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A0((A′)(4))Q �
(∑
σ∈S 4

Γσ
)
∗A0((A′)4)Q ⊂ A0((A′)4)Q .

One can check that the correspondences
∑
σ∈S 4

Γσ and ΠA′
3 × ΠA′

3 × ΠA′
3 × ΠA′

3 commute [19,

Lemma 3.4]. It follows that(
ΠA′

3 × ΠA′
3 × ΠA′

3 × ΠA′
3

)
∗A0((A′)(4))Q � (Sym4ΠA′

3 )∗A0((A′)4)Q ,

where Sym4ΠA′
3 is the projector defining the Chow motive Sym4h3(A′) in the language of

[19, Definition 3.5]. The action of the correspondence Sym4ΠA′
3 on cohomology is projec-

tion to ∧4H3(A′,Q), which is one–dimensional (since dim H3(A′,Q) = 4 ) and consists of
Hodge classes:

∧4H3(A′,Q) ⊂ H12((A′)4,Q) ∩ F6 ,

where F∗ denotes the Hodge filtration. This implies that

Sym4ΠA′
3 ∈

(
H4((A′)4,Q) ∩ F2

)
⊗
(
H12((A′)4,Q) ∩ F6

)
⊂ H16((A′)4 × (A′)4),Q) .

Next, we note that the Hodge conjecture is known to be true for self–products of abelian
surfaces [1, 7.2.2]. This implies the same is true for the quotient variety (A′)4. (Indeed, let
p : A4 → (A′)4 denote the quotient morphism, and assume a ∈ H∗((A′)4,Q) is a Hodge class.
Then p∗(a) is a cycle class. It follows that p∗p∗(a) is a cycle class, and p∗p∗(a) is a multiple
of a because of the isomorphism Hi((A′)4,Q) � H8−i((A′)4,Q).)

Using the truth of the Hodge conjecture, we find that there is a cohomological equality

Sym4ΠA′
3 = γ in H16((A′)4 × (A′)4,Q) ,

where γ is a cycle supported on V ×W for closed subvarieties V,W ⊂ (A′)4 of codimension
2 resp. 6. Since (A′)4 has finite–dimensional motive, this implies (Proposition 2.7) there
exists N ∈ N such that (

Sym4ΠA′
3 − γ

)◦N
= 0 in A8((A′)4 × (A′)4)Q .

Developing this expression (and noting that Sym4ΠA′
3 is idempotent), this gives a rational

equivalence

Sym4ΠA′
3 = (Sym4ΠA′

3 )◦N = S 1 + · · · + S m in A8((A′)4 × (A′)4)Q ,

where each S i is a composition of correspondences in which γ occurs at least once. But
γ acts trivially on 0–cycles (for dimension reasons) and so the right–hand side also acts
trivially on 0–cycles, and we are done. �

Theorem 3.1 can now be proven by combining Lemmas 3.4 and 3.6. Indeed, suppose
n = 3 or n = 4. Then all even integers j ∈ [0, 4n − 4] are either covered by Lemma 3.4
or covered by Lemma 3.6. It follows there is no Chow–Künneth projector ΠX

j acting non–
trivially on Ahom

0 (X)Q (i.e., the vanishing (1) is proven), and so this group is trivial. �

Remark 3.7. Clearly, Theorem 3.1 applies to the examples furnished by Proposition 2.11.
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Remark 3.8. Note that the assumption on the group G in Theorem 3.1 is more restrictive
than just asking that G is a group of natural automorphisms. Also, the dimension hypothesis
n ≤ 4 was merely made for commodity, and is perhaps not really necessary. However, in
view of the fact that all known examples of Enriques varieties dominated by generalized
Kummer varieties (are given by Proposition 2.11 and so) fit in with these hypotheses, it
seems trifling to worry too much about these restrictions.

As a corollary, some cases of the generalized Hodge conjecture are verified:

Corollary 3.9. Let X be an Enriques variety as in Theorem 3.1. Then H j(X,Q) is sup-
ported on a divisor for all j > 0.

Proof. As is well–known [8], this holds for any variety with trivial Chow group of zero–
cycles. �

One can also say something about codimension 2 cycles:

Corollary 3.10. Let X be an Enriques variety as in Theorem 3.1. Then A2
AJ(X)Q = 0.

Proof. Again, this is true for any variety with trivial Chow group of zero–cycles [8]. �
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