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Abstract

In this paper, we study the deformation of the three-dim@radi conformal struc-
tures by the Ricci flow. We drive the evolution equation of tbetton—York tensor
and theL!-norm of it under the Ricci flow. In particular, we investigahe behavior
of the L*-norm of the Cotton—York tensor under the Ricci flow on thdémensional
simply-connected Riemannian homogeneous spaces whicit admpact quotients.
For a non-homogeneous case, we also investigate the betwivibe L!-norm for
the product metric of the Rosenau solution for the Ricci flaws3 and the standard
metric of St

1. Introduction

Let M" be aC® manifold. A one-parameter family of Riemannian metrg($)
is called theRicci flowif it satisfies

ad .

ag = -2 Rig.

We are interested in the properties of the Ricci flow from thewypoint of three-
dimensional conformal geometry. More precisely, we studydéformation of the three-
dimensional conformal structures by the Ricci flow.

It is well known that the conformal flatness in dimensior> 4 is equivalent to
the vanishing of the Weyl tensor. In dimensian= 3, the Weyl tensor vanishes iden-
tically, and hence the conformal flathess cannot be detdmjeithe Weyl tensor. How-
ever, there is a conformally invariant tensor whichnin= 3 plays a role analogous to
that of the Weyl tensor im > 4. This tensor is called th€otton tensorand defined by

1
Cs = Cjjk :== ViRjk — VjRk — Z(Vi Rgik — ViRgk),

whereR;j is the Ricci tensorRis the scalar curvature andis the Levi-Civita connection.
It can be shown thats is conformally invariant and the conformal flatness is eglgimnt
to Cz = 0. By a direct computation, we can see that the following prtigs hold:
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1. Gijk +Cjik =0,

2. Gk +Cj + Cyj; =0,

3. ¢'Cijk = g*Cik = g’*Cijk = 0.

We can write the Cotton tensor in an algebraically equialerm which is called the
Cotton—York tensof17]

1 1
C:=GCj = gik8k'm(v| Rmj = 2 Vi Rgnj) = Egikgklmclmj,

where¢'i¥ is a tensor constructed by using the completely anti-symimnegnsor den-
sity nX™ of weight +1 with 23 = 1 and the determinant of the metric tengpffor
the given coordinate system:

The tensore satisfies the following:

1 gjke'™ = 8\ 87 — Mgy,

2. Eijk&‘ijl = Z(SL,

3. sijkaijk = 6,

4, Vi&‘jkl = Visjk| =0.

From the relationCijx = &iji g™Cmi We can see that the conformal flatness is equiva-
lent to C, = 0. The (2, 0)-tensofC, has the following properties:

1. C,i,i = Cji (symmetric),

2. g'G; =0 (trace-free),

3. VICjj = 0 (divergence-free/transverse),

4. |Cslg = V2ICalg,

where [Cs[5(x) = (g'°g'9g* Cijk Cpqr)(x) and |C2[3(x) = (g'Pg!9Ci; Cpg)(x). We con-
sider theL'-norm of the Cotton-York tensor on a closed Riemannian ro&hifM?, g)

C(g) = / ICalg A,
M3

wheredug is the volume element of. Note that theL!-norm of the Cotton tensor

differs from that of the Cotton-York tensor by'2 multiple. By the property of the
Cotton-York tensor, it is easy to see the conformal invagaof the L*-norm and the
equivalence between the vanishing of th&-norm and the conformal flatness. If the
manifold is non-compact, we consider thé-norm on an arbitrary compact st

cK(g):=/K|cz|gdug.

We are interested in the behavior of thé-norm under the Ricci flow.
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As a fundamental result of the Ricci flow by R. Hamilton [6],ist known that
the Ricci flow starting at an initial metric with positive Riccurvature on a three-
dimensional closed manifold converges to a constant aumvatetric up to scaling.
Since a constant curvature metric is conformally flat, we regyard this result as a con-
vergence to a conformally flat metric and a vanishing of tHenorm of the Cotton—
York tensor. In general, the Ricci flow develops singulastibut it is not clear whether
or not the conformal structure degenerates in the sensehiaat*-norm of the Cotton—
York tensor blows up. This observations have motivated ukd into the properties
of the Cotton—-York tensor under the Ricci flow.

C. Mantegazza, S. Mongodi, and M. Rimoldi [10] described theutiam of the
Cotton tensorCs under the Ricci flow. By using this evolution equation, we ivker
the evolution equation of the Cotton-York teng®y and theL*-norm of C, (Propos-
ition 2.3 and Theorem 2.1). In particular, we investigate biehavior of theL'-norm of
the Cotton-York tensor on two separate contexts. The firstzadution of theL!-norm
under the Ricci flow on simply-connected three-dimensidRiaimannian homogeneous
spacesM = G/H which admit compact quotients. Hef@ is a transitive group of
diffeomorphisms ofM and H is the compact isotropy subgroup. We assume €has
minimal, i.e. no proper subgroup @ acts transitively onM. The second context is
for the product metric of the Rosenau solution [15] for thedriflow on S? (which
is ancient and shrinks to a round point tag” 0) and the standard metric &. Note
that the product metric 08? x St is also a solution to the Ricci flow. Recall the com-

plete list of the Riemannian homogeneous spadeg11], [16]): R3, SU(2), IQ(MZ/),

SL(2,R), the Heisenberg grougisom@®Y), H3, H2xR, and S2xR, where the tildes de-
note the universal covering spac@s, is the two-dimensional Minkowski spacH? is
three-dimensional hyperbolic space, d#ié is two-dimensional hyperbolic space. Since
homogeneous geometries BF¥, H2 xR, and S* xR are conformally flat, thet*-norm

of Cotton—York tensor for these geometries trivial. In thstfsix homogeneous spaces,
for an arbitrary left invariant metrigp, J. Milnor [11] provided a left invariant frame
field {F}? (called theMilnor frame for go) such that

0o = AOCU1 ® vt + Boa)2 ® w? + Coa)3 ® w®
where Ag, Bg, Cy are positive constants and
[Fo, Fs] = 2AF1, [F3, Fi] = 2uFs, [Fi, Fo] = 2vFs,

wherei,u,v € {—1,0,1 andA < u < v are satisfied. Recall that the value of the triplet
A, u, v completely determines the corresponding Lie group for tikehemogeneous
spaces. With respect to the Milnor frame, not oglybut also Rig, are diagonalized.
As go and Rig, remain diagonalized under the Ricci flow, it follows that tmetric
g(t) evolves as

g(t) = Al)o! ® o' + B(t)o® ® v? + C(t)w® ® »*
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Lie group | Behavior of theL!-norm C(g), Cx ()
SU(2) C(g) — 0 and it has a unique local extremumA§/By < 1/2.
C(g) \\0if1/2 < Ag/By<1orl< Ay/Bp.
C(g) =0 if Ay = By.
Isom®?) | Ck(g) \ O if Ag # Bo.
- Ck(9) =0 if Ag = By.
SL(2,R) Ck(g) \( 0.
Heisenberg| Ck(g) \ 0.
Isom®:) | Ck(9) \\O.
R3 Ck(g) =0.
Table 1. The behavior of the!-norm of the Cotton—York tensor.

and that the Ricci flow equation becomes a system of three ©D'for A(t), B(t),
and C(t). J. Isenberg and M. Jackson [7] studied the behavior of thalized Ricci
flow on all the homogeneous spaces. The behavior of the (omalized) Ricci flow on
those spaces was studied by D. Knopf and K. McLeod [8] (see [8B0 The Ricci
flow on RS2 is trivial. It becomes asymptotically round as” T < oo on SU(2). It

converges to the flat space fg” oo on Isom(R?). For the other Lie groups, the each
solution to the Ricci flow approaches a flat degenerate gegnoéteither two or one
dimensions ag " co. We follow the calculations as done in these previous works.

We suppose that in the case of SU(2) m, the initial metricgy satisfies
By = Cp. The results for the six homogeneous spaces are summarizée iTable 1
(Theorems 3.2, 3.4, 3.6, 3.8 and 3.10). The main conclusimashe following:

1. In all cases, the each'-norm of the Cotton—York tensor converges to zero.

2. If the initial metricgy on SU(2) satisfiedBg = Cy and Ag/By < 1/2, the L*-norm
has a unique local extremum &twith A(tp)/B(tg) = 1/2.

3. In other cases, the eadH-norm is strictly decreasing or identically zero.

The L!-norm of the Cotton—York tensor for the product metric of Resenau solution
and the standard metric @' is strictly decreasing and converges to zerotag' 0
(Theorem 3.11).

It is interesting that in these examples thé-norm of the solution to the Ricci
flow starting at the initial metric with non-positive scaleurvature is strictly decreas-
ing. The following are topics for further investigation:

e The monotonicity of thel.1-norm of the Cotton-York tensor (or the lack of it).
e The characterization of the Riemannian manifold at the timhéch the L'-norm
takes a local extremum.

2. The evolution equation of theL!-norm of the Cotton-York tensor

For any tensorT, S such asTj, §;, we define(T, S)g := g'Pgl9Tij Spq, T2 :=
Tikg“ Ty, divg T := V' Tj, and AqT := g V; V; Ti;. Our goal in this section is to derive



COTTON TENSOR UNDER THE Riccl FLow 519

the following evolution equation.

Theorem 2.1. Let (M3, g(t)), 0 <t < T be a solution of the Ricci flow on a
closed manifold. Suppose the norm of the Cotton—York te@sodoes not vanish in
M x [0, T). Then the E-norm of G satisfies the following evolution equation

d
dat /M|Cz|gdﬂg

1
= [ —/——(A4|Cs]2 — 2|VC,|2 — 16(Ric, C2)4 + 6R|Cy|?
., 2y (alCals ~ 21VCals — 16(Ric, G + GRIC

— 4(Ric, divg D)q + 4(Ric?, divg C3)q — 2(VR, divg(divg Cs))g) dug,
where D= Dijk = Cijpgquqk.

The evolution equation of the Cotton tengBg under the Ricci flow is obtained
by Mantegazza, Mongodi, and Rimoldi.

Proposition 2.2 ([10]). Let (M3, g(t)) be a solution of the Ricci flow. Then the
Cotton tensor @ satisfies the following evolution equation

%Cijk = A¢Cijk + 9P9Rpj(Ckgi + Ciig) + 53”9 RkpCjiq + 9PRpi(Cakj + Cikq)
+ 2RGji + 299" RprCsjq0ki — 29719" Rpr CsiqQk
+ S (ViIRIOR)GG — 571 IRIR)G + o (V) R — (Vi R)g
+ 29P9Rpi Vi Rgk — 207 Rp; Vi Rk + R ViIR— Ra Vi R.

By using Proposition 2.2, we obtain the evolution equatiérihe Cotton-York tensor
C, under the Ricci flow.

Proposition 2.3. Let (M3, g(t)) be a solution of the Ricci flow. Then the Cotton—
York tensor G satisfies the following evolution equation

a .
acij = A¢Gjj — 59quiquj — Sgquiq Rpj + 2(Cy, Ric)ggij + 4RG;

1 ) R
+ Egikgjmsklmvl |Ric|3 + EgikgjlsklmeR + 201k g9 ™ Ry Vim Ry

+ gike“"RimVIR.
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Corollary 2.4. Let (M3, g(t)) be a solution of the Ricci flow. Then the squared
norm of the Cotton—York tensor,Gatisfies the following evolution equation

3 .
a|c:2|§ = Ag|Cal5 — 2|VCa|; — 16(Ric, C)g + 8RIC2]
— 4(Ric, divg D)g + 4(Ric?, divg Cs)g — 2(VR, divg(divg C3))g.
Proof of Proposition 2.3. Note that
igklm — nglm‘

ot
Indeed,

3 im 9 ™ /— kim:
T at( /det@;) det(g.J -(FRydet@)) ¢

By this equation and Proposition 2.2,
acij = E(agik)g "Cimj + égik(ae ™)Cimj + Egike m ﬁclmj
1 1
= —Rke“"™Cim;j + 2 ik ReMMCimj + Egiksklm
X {Agclmj + gM Rpm(quI + leq) + 5gPd RipCrmig + gPd RpI(qum + ijq)
+ 2RGpmj + 2gP9g™ RprCsme@j1 — 2gP9g"® RprCsigQjm
1 . 1 . R R
+ E(VI |Ric|3)gjm — E(Vm|R|c|5)gjl + E(Vm R)gji — E(VI R)Qjm

+ ngq Rp|Vm qu — ngqumV| qu + ijV| R — Rj| VmR}.

We compute each term by using the identi@s = (1/2)gike"™Cim;, Cijk = &iji 9" Cmk,
and the properties d€3, Cy, ¢

(1st term of RHS)= —Ri&"'MeimpgPICqj = —Ri - 285gPICq; = —2RpgPCy;,
(2nd)= RG;j,

1 klm 1 klm
(3rd) = Egikg AgCimj = Aq Egiké‘ Cimj | = AgCij,

1 kim pg 1 kim 4 pg
(4th) = S9ke"'g RomCiq = SGke™g Rpm(—Cqij — Cijq)

1 1
= —Egiksklmgpq Rpméqir 9 °Csj — —gik8k|mgpq Rpméijr 9"°Csq

1
= —5Gk0™g" (55" — 883 RomCs; + g.kgpqg”(aksm 88 RomCsq
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1 1 1 . 1
= —59°RiCsj + 5RGj + 5(Ca, Ric)ggij — 597Cig Ry,
1 1
(5th) = Ecv;iksk'mgpqRpmcjlq = E(\;ikgk'mgpq Rpméjir §°Csq
1 pg~rssckem k ¢m 1 pgn~rs 1 pPg~rs
= 599719 (578" = 6767 )RpmCsq = 501979 Ror Csq — 50 919" Rp; Csq
1 . 1
= 5(Ca, Ric)gg;j — Egpqciq Rpj.
5 5
(6th) = Egiksk'mgpq Ripemirg*Csq = _EgikgpqgrS : 28:( RipCsq = —59"Ciq Ry},
1 klm ~pq 1 klm ~ pq
(7th) = SGikeTg RpiCqjm = —59keg RpiCjgm = (4th),

(8th) = %QikSngqumijq = —%gikt?klmgpq RpiCjmq = (5th),

(9th) = 2RG;,

(10th) = gike*'™gPIg" Ry £sma0 Coq0ji = —Gikg49"°07°gj1 (368} — 858%) Rpr Cog
= =" RpiCjq + 97Cig Ryj,

1 1
(11th)= EgikﬁkmI - (=2)9"99"° Ryt Csmq@ji = Egiksklm - 29799 Ry Csmq9j1 = (10th),
1
12th) = =g gime“"MV||Ric|?,
29K9i
1 1 . 1 1 .
(13th) = Egikgklm' (—Evm|R|C|s)gjl = égikrSkml : E(Vm|R|C|S)ng = (12th),
R kim
(14th) = 2 9k9i¢ ViR,

1 R 1 R
(15th) = Sge"" - (—Evl R)gim = SGke™ - Z(VIR)gm = (14th),

(16th) = gikgpqgklm Rpi VinRygj

1 1

(17th) = Egik8klm -(=2)9""RpmVI Rgj = égikekml - 2¢PRpm VI Ryj = (16th),
1

(18th) = Sgke""Rim ViR
1 kim 1 kml

(19th)= Egiké‘ -(-1)R; VmR = Egiké‘ Rji VmR = (18th).

Hence, we obtain the result. U]
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Proof of Corollary 2.4. By Proposition 2.3,
d

—1C,|?

at| 2lg

0 .. - S 0
= Z(aglllz)ghlzciljlcizjz + Zg|1|29J1]2 (&Cilh)cizjz
= 4Ri1i2Ci 4+ ZgiliZQJIjz

1l2

X {Agciljl - SgquilpCQJl - 59pqci1q Rpil + 2(Co, Ric)@lgilh + 4RCi1J1
1 . R
+ Egilkgjlmgklmvl IRicl3 + Egilkgjllgklmva + 20,kgP%eM ™ Ry Vi Ry,

=+ gilksk'mRth R} X Ciziz-

We compute each term by using/@)gike“™Cimj, Cijk = &ij 9'™Cmk, and the properties
of Cs, Cy, &.

(st term of RHS)= 4(Ric, C2)g,
(2nd) = 2g'2g112(A4C;,},)Ci,j, = 2(ACs, Ca)g = Ag|Calj — 2|VCy[3,
(3rd) = —10g"2gPR,,CZ, = —10(Ric, C3)g,
(4th) = —10g'112gPICZ, Ry, = —10(C3, Ric)g,
(5th) = 4(C;, Ric)4g'?2Ci,;, = 4(Cy, Ric)4tryCz = 0,
(6th) = 8RG, },g"'?g"12Ci,j, = 8RIC,7,
(7th) = 828126V |Ric|2Ci,j, = €™ (V) |Ric|2)Cim = O,
(8th) = 5126* Re"™V,,RG,j, = Re“™(VinR)Cyy = 0,
(9th) = 4g'izglti2g; . gPIeM™ Ry (Vin Ryjy) - %gigaearscrsjz
= 29P9' M g;, s Rpi (Vi Rgj, )™ = 2gP9(8! 81" — 658 Rpi (Vi Ry, )C'S2
= —4gPIR, CSV R, q = —4gPIRy Vs(CS R q) + 4gP9R (VsC )R q
= —4(Ric, divyg D)4 + 4(Ric?, divg Ca)g,
(10th) = 2g''>gleg, ™Ry, m(Vi R) - %gigagarscrsjg
= £?Mei,rs Rum(Vi R)IC™ = (8] 87 — 8L6™) Ry,m(Vi R)C1
= 2(V'R)Crsj, R°% = 2(V; R)(=VIVPCpqr)
= —2(VR, divg(divg C3))g,

where we use the identity! VI Cijx = —CumR'™ (see for example [1, p.9]). Hence,
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we obtain the result. O
Theorem 2.1 follows from Corollary 2.4 and (dt) dug = —R dug.

3. Examples of behavior of theL!-norm

3.1. The Lie group SU(2). We consider the Ricci flowg(t) starting at a left
invariant metricgp on SU(2), and fix a Milnor frame fogy such thath = u =v =

—1. Note that SU(2) is identified topologically with standdhdee-sphere of radius one
embedded irR*.

The Ricci tensor ofg is

B® + C?— A?
R(F, F)=4—2— "~ "
(F1, F1) BC

C?+ A?—B?
R(Fo, F)=4—2—"" "~
(F2, F2) CA

B2+ A2 - C?2
R(F3, Fg)=4—2— " —~
(Fs, Fa) 5 A

Then the Ricci flow equation is equivalent to the system of GDE

d B2 C2_ A2
QA gpgo T A
at + BC
d C24 A2 B2
g gt A —B
at + CA
d B2 4 AZ—C2
oo gqgo A"
dt + BA

Proposition 3.1 ([3, Proposition 1.17]) For any choice of initial data 4 By,
Co > 0, the unique solution @) exists for a maximal finite time interv@ <t < T <
oco. The metric §t) becomes asymptotically round ast T.

Now we are interested in the behavior of thé-norm of the Cotton-York tensor
C,. Since theL!-norm is very complicated for general initial data, we assutiat
By = Cp. Then B(t) = C(t) holds from the symmetry in the Ricci flow equation.

Theorem 3.2. For any choice of initial data 4§ By = Cy > 0, the behavior of
the L*-norm C(g) of the Cotton—York is the following
1. If 0< Ay/By < 1/2, C(g) has a unique local extremum af with A(tg)/B(tp) =
1/2 and converges to zero as—+ T.

2. If 1/2< Ag/Bp <1 or 1< Ay/By, C(g) is strictly decreasing and converges to
zero as t—T.

3. If Ap = Bg, C(g) is identically zero.
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Proof. In this case, the Ricci flow equation is reduced to

d A\? d A
aA_—4(§), B=-8+435,

and the scalar curvature is
B 2(4B — A)

R 52

Note thatAg/By = 1, Ag/Bg < 1, and Ag/By > 1 are preserved under the Ricci flow,
and lim ~r A=Ilim{ »r B =0 in all cases.
The Cotton-York tensor is

A2 (A A2 A
Co(F1, F1) =8—( 5 —1), Ca(F2 F2) = Cy(F3, Fg) =4—(1—- < ).
2(F1, F1) 52 (B ) 2(F2, F2) = Co(Fs, Fs3) B( B)

Then for an arbitrary compact sét,
AlA
/K|C2(t)|g(t) dugw) = 4\/EEE - 1‘ Vol(K, gss),

where gs is the standard metric of radius one 8. In particular,

/ ColOle dptay — 4 4VOA/BA—A/B)VOK(S’, @), 0< Ao/By < 1,
o 2l Hgt) = 4VBA/B(A/B — 1) VoI(S?, gss), 1< Ao/Bo.

If Ag = By, C(g) is identically zero. We assume thAp # By. We show thatas /' T,
A/B /7 1if Ag/Bo <1 andA/B N\ 1 if Ay/Bp > 1. Indeed,

d A —4(A/B)?B — A(-8 + 4(A/B)) A A
——= = =8—=(1-—),

dt B B2 B2 B

hence A/B is strictly increasing ifAq/By < 1 and strictly decreasing if\/By > 1.
Since A/B is bounded and monotone, it converges to some constast 0. By
I'Héspital’ rule,

im A —4(A/B)? — 42
o = _—= = .
t/TB t/T-8+4(A/B) —-8+4a

Hence we obtainy = 1.
We define the functiond andh on R respectively as

f(x):=x(1—x) and h(x):=x(x —1).
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Since A/B 7 1 if Ay/By < 1, the function f(A/B) has a maximal value &b with
Alto)/B(tg) = 1/2 and f (A/B) — 0 if Ag/Bg < 1/2, andf(A/B) \(0if1/2 < Ag/Bpy <
1. SinceA/B N\ 1 if 1 < Ag/Byg, the functionh(A/B) N\ 0 if 1 < Ag/By. Hence if
0 < Ay/By < 1/2, theL'-norm C(g) has a maximal value ag with A(to)/B(to) = 1/2
and converges to zero &s> T. If 1/2 < Ag/Bg < 1 or 1< Ag/By, it is strictly decreas-
ing and converges to zero &s> T. ]

3.2. The Lie grouplsom(R?). We consider the Ricci flovg(t) starting at a left

invariant metricgo on Isom@®?), and fix a Milnor frame forgy such thatr = u = —1
andv = 0.
The Ricci tensor ofg

B2 — A2 A2 — B2 (A— B)?
R(F, F1) = =2 . R(Fp, Fp) =2 , R(Fs, F3) = 22—~
(F1, F1) BC (F2, F2) AC (Fs, Fa) AB
and the scalar curvature of is
A — B)?
R 2A-BS
ABC

Then the Ricci flow equation is equivalent to the system of GDE

d B2 — A2

—A=4 :
dt BC

d A? — B?

—B=4——,
dt AC

d _ 2
Ao _4A=B"
dt AB

By the direct computation, we can shod/@t)(AB) = (d/dt)(C(A + B)) = 0.

Proposition 3.3 ([8]). For any choice of initial data & By, Co > 0, the unique
solution dt) exists for all positive time. For any > 0, there exists I> 0 such that

Co Ag Bo
C—?<\/;+ \/g>§8

forallt > T,. Moreoverast oo, B/A 7 11if Bo/Ay <1, B/AN1if 1< By/Ao,
and B/A=1if By/Ao = 1.

|A— Vv AoBo| =&, |B—+vABo| =e¢,

The behavior of theL'-norm of the Cotton-York tensof, is given by the
next result.
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Theorem 3.4. For any choice of initial data & By, Co > 0, the behavior of
the L'-norm Gk (g) of the Cotton-York tensor on an arbitrary compact set K is the
following:

1. If Ag # Bo, Ck(Q) is strictly decreasing and converges to zero as too.
2. If Ag = By, Ck(Q) is identically zero.

Proof. The Cotton—York tensor is

4A
Cy(F1, F1) = (ABO)? (2A% — B® — A?B),
4B 3_ A3 2
Co(F, Fp) = —(ABC)3/2(28 - A’— AB?),
C
Co(F3, F3) = _—(ABC)3/2(A+ B)(A — B).

Then for an arbitrary compact sé&t,

[|02|g dMg
K

(o) o) o)) ) A2
s« HPoBo) Vol(K, h)

whereh = 0! ® w! + W? ® w? + w? ® ws.
If Ag = By, Ck(Q) is identically zero. We assume thaf # By. We define the
function f on R as

1\3 1\2 1 1/2
f(x):= (6(—) - 6(—) + 2(—) + 6x3 — 6x2 + 2x — 4) :
X X X
The function f is strictly decreasing if 6< x <1 and strictly increasing if k x. By
Proposition 3.3, as /" oo, f(B/A) N\ 0 if By/Ag <1 andf(B/A) \ 0 if 1 < By/Ap.

Clearly 1/C is strictly decreasing, hendgg () is strictly decreasing and converges to
zero ast — oo. O]

3.3. The Lie group m We consider the Ricci flovg(t) starting at a left

invariant metricgy on §E(7_/]R) and fix a Milnor frame such that = —1 andu =
v=1.
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The Ricci tensor ofg is

(B—C)?— A?
R(Fy, F) = —2——"
(F1, F1) BC

(A+C)?—B?
R(Fp Fp) = —2-———7
(F2, F2) AC ,

(A+ B)>—-C?
R(Fs, Fg) = —2~————2 ——
(Fs, F3) AB

Then the Ricci flow equation is equivalent to the system of GDE

d (B—C)2— A
—A=4—— "
dt BC
d (A+C)2— B2
—B=4—" 2 "=
dt AC
d (A+ B)2—C2
—C=4-""7">
atC AB

Proposition 3.5 ([8]). For any choice of initial data & By, Co > 0, the unique
solution dt) exists for all positive time. There exists,A= A(Ag, Bo, Co) > 0 such
that for anye > 0, there exists I> 0 such that

<e¢

d d
A-Aul<e, |—-B-8l<e |—C-8
A= Axl=e ‘dt ‘ ¢ ‘dt

forallt > T,.

Now we are interested in the behavior of thé-norm of the Cotton-York tensor
C,. Since theL-norm is very complicated for general initial data, we assuitmat
By = Cy. Then B(t) = C(t) holds from the symmetry in the Ricci flow equation.

Theorem 3.6. For any choice of initial data § By = Cp > 0, the L*-norm C« (g)

of the Cotton—York tensor on an arbitrary compact set K ig8yr decreasing and con-
verges to zero as+ oo.

Proof. In this case, the Ricci flow equation is reduced to

d A\? d A
“a=-42), ZB=4"1s,
dt (B) dt BT

and the scalar curvature is

_2(A+4B)

R= 52
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The Cotton—York tensor is

8A3(A + B)

AA’B(A + B)
(ABZ)3/2 !

Co(Fy1, Fy) = (AB?)372

Ca(F2, F2) = Ca(F3, F3) = —
Then for an arbitrary compact sét,
A A
/ |Calg dug = 4v6—( 1+ = ) VOI(K, h),
K B B

whereh = 0! ® 0! + ©? @ w? + w® ® w°.
The function A/B is strictly decreasing and converges to zerd as oco. Indeed,

d A —4(A/B)°B — A{4(A/B) + 8} A (A )
— = =-8— 1) <0,
dt B B2 B2

5t

and lim_(A/B) = A, /oo = 0. HenceCk(g) is strictly decreasing and converges to
zero ast — oo. Ul

3.4. The Heisenberg group. We consider the Ricci flowg(t) starting at a left
invariant metricgyp on the Heisenberg group, and fix a Milnor frame fgr such that
A=—-1landu =v =0.

The Ricci tensor ofg is

2

A A A
R(F1, F1) = 20—, R(Fs F2) = —22, R(Fa, Fa) = —2_,
(F1, F1) BC (F2, F2) C (Fs, F3) 5

and the scalar curvature gf is
A

R=—2——.
BC

Then the Ricci flow equation is equivalent to the system of GDE

d A2



COTTON TENSOR UNDER THE Riccl FLow 529

Proposition 3.7 ([8]). For any choice of initial data 4 Bg, Co > 0, the unique
solution dt) exists for all positive time. Moreovahe above system of OD¥Es solved
explicitly:

B.C -1/3
A=A§/3B§/3c§/3(1z+ > 0) ,

_ Co\ Y3

B C 1/3
C = A/’B, 1/305/3(12 + —BOAOO)

for t € (—ByCo/ Ag, 00).

The behavior of theL!-norm of the Cotton-York tenso€, is given by the
following:

Theorem 3.8. For any choice of initial data 4 Bo, Co > 0, the L*-norm Cc(g)
of the Cotton—York tensor on an arbitrary compact set K isc8yr decreasing and

converges to zero as-t oco.

Proof. The Cotton—York tensor is

8A? A 4A2 4A2
Co(F1, F1) = =/ =, Co(Fa, F2) = ——————, Cp(Fs, Fag) = ————.
AP P =gey e P2 P C+ABC 2AFs, Fs) BVABC

Then for an arbitrary compact sét,

A2
/ |C2(t) gy ditgry = 2v/6—— VoI(K, h)
K BC

—4/3
B;fo) Vol(K, h),

= 2v6AY° 83/303/3(12 +

whereh = 0! ® 0! + 0? ® w? + W @ wd.
HenceCk (g) is strictly decreasing and converges to zera as oco. ]

3.5. The Lie groupIsom(R}). We consider the Ricci flovg(t) starting at a left
invariant metricgo on Isom®}), and fix a Milnor frame forgy such thatr = —1,
w =0, andv = 1.

The Ricci tensorg is

C2— A2 A+ CY A2 — 2

R(Fy, F1) = 2 R(F, F2) = R(Fs, F3) = 2
(Fy, Fo) BC (F2, F2) A (Fs, F3) AB
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and the scalar curvature gf is

A+ OP

R= ABC

Then the Ricci flow equation is equivalent to the system of GDE

d C2— A

—A=4"—",
dt BC

d (A4 C)?
—B=4— "
dt AC

d 2_ 02

~C =4u_
dt AB

By the direct computation, we can shod/{t)(AC) = (d/dt)(B(C — A)) = 0.

Proposition 3.9 ([8]). For any choice of initial data 4 By, Co > 0, the unique
solution dt) exists for all positive time. For any > 0, there exists I> 0 such that

<e

IA— VAdCol <&, IC — v/AoCol < e, ‘%B—le

for all t > T,. Moreoverast oo, A/C 7 1if Ag/Co <1, A/C\(1if 1< Ay/Cy,
and A/C =1if Ao/CO =1

Now we are interested in the behavior of thé-norm of the Cotton—York ten-

sor Co.

Theorem 3.10. For any choice of initial data 4 By, Co > 0, the behavior of the
L'-norm G¢(g) of the Cotton-York tensor on an arbitrary compact set K isctyr

decreasing and converges to zero as>too.

Proof. The Cotton-York tensor is
Co(Fy, F1) = AQ(A—«/%?(ZQ + % - 1),
Co(F2, F2) = ZKAA—\/%?(% - g)
ColFa, F2) = —“E(A—J%?(z% T 1).

Then for an arbitrary compact sét,

_A4A+C)[(A[A c/c 12
/K|c2|gdug_T(66(6—1)+6K(—A— )+8) VoI(K, h),
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whereh = 0! ® 0! + 0? ® w? + 0 @ wd.
We show that A + C)/B is strictly decreasing and converges to zerad as co.
Indeed,

d A+C

dt B

_ {4(C? - A?)/(BC) — 4(A? — C?)/(AB)}B — (A + C){(A+ C)?/(AC)}
- -

8(A3 + A2C + AC? + C3)
= — < 0,
AB2C

and lim_ (A + C)/B = 2/AgCp/00 = 0.
If Ag = Co, the L1-norm Ck(g) is reduced to

fKICng dug = %;rc) Vol(K, h).

HenceCk (g) is strictly decreasing and converges to zerot as co. We assume that
Ay # Cp. We define the functionf on R as

1/1 12
f(x)::(6x(x—1)+6;(;—1)+8) .

The function f is strictly decreasing if 6< x <1 and strictly increasing if k x. By
Proposition 3.9, ag " oo, f(A/C) \\ 2+/2 if Ay/Co < 1 and f(A/C) \ 2+/2 if
1 < Ag/Cop. HenceCk(g) is strictly decreasing and converges to zera as oco. [

3.6. The product metric of the Rosenau solution and the staratd metric
of S'. Let (R x S*(2),dx? + d6?) denote the flat cylinder, whee e S'(2) = R/4n Z.
We define a solutiorg(x, 0, t) for t < 0 to the Ricci flow onR x S'(2) by

sinh(-t)

—— 7 (dx® + do?).
coshx + cosht( + )

g(x, 0,1) = u(x, 0, t)([dx? + do?) =

It is known that the solutiorg(x, 6, t) extends to the complete ancient solution to the
Ricci flow on S (see [4, pp. 162-164], [3, pp.31-34]). This solution &his called
the Rosenau solutianWe denote this extended solution Qyas well. The scalar curva-
ture of g on R x S'(2) is

cosht - coshx + 1 -
sinh(=t)(coshx + cosht)

R(x, 0,1) =

and the scalar curvaturB(+o0, t) at the polesx = ¢ is

. cosht - coshx + 1
R(£o0,t) = | - = coth(-t 0.
(oo, 1) = M ShCt)(coshx + coshp — COEY >
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Moreover, the curvaturé(+oo, t) at the poles is the maximum curvature & (g(t))
for all t < 0, since we have
0 sinhx - sinh(-t
5 )

3x . (coshx + cosht)? ~

for all x > 0. Since lim o R(xoo, t) = co, the Rosenau solution is ancient but not
eternal. Due to the fact that for alk(0) € R x S'(2)

R(x,0,t) cosht-coshx +1
t,70 R(o0,t)  t70 cosht(coshx + cosht)

the solution shrinks to a round point.
Using the Rousenau solution, we define the Ricci flowSBx St by h(t) = g(t) +
dg? for t < 0, wheredg? is the standard metric of radius one Gh.

Theorem 3.11. The L*-norm C(h) of the Cotton-York tensor Cfor the product
metric h of the Rosenau solution for the Ricci flow ohaBd the standard metric of
St is strictly decreasing and converges to zero as-t0.

Proof. On the local coordinate{, x?, x°) := (x, 8, ¢), the Ricci tensor is

_cosht - coshx + 1 __cosht - coshx + 1
~ 2(coshx + cosht)2’ 22 2(coshx + cosht)2’

Rs3 =0,

11

and the scalar curvature is

. cosht - coshx + 1
~ sinh(~t)(coshx + cosht)’

The Cotton—York tenso€, is

sinhx - sinh(-t)

Cyp3=C3 = .
23 32 4(coshx + cosht)?

Then L'-norm is given by the following:

/ |Co(t) |hty ditncy =/ (/ IC2(t) |hery dl/«g(t)) ditgy?
xSt St 2

=2n / 1C2(t) Inyd Hux, by +do2)
RxSH(2)

—2r | ( [ 1exhoutc. v dudxz) djuqee
St(2) \/R

82 / 1 [ sink x-sinh(-t) sinh(-t) dx
= OTT .
r 2+/2 | (coshx + cosht)® coshx + cosht
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:4\@”2/“’ \/sinhzx-sinh(—t) sinh(-t)
0

(coshx + cosht)3 " coshx + cosht

= 4+/272 /oo \/ sintP(-t) -sinhx dx
0

(coshx + cosht)®

_ , [ | sink(-t)
= 4v/or /1 (y + cosht)5 dy

_ 8V27%( sinh(t) \¥?
3 (1+coshet)) '

HenceC(h) is strictly decreasing and converges to zera as 0. ]
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