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Abstract
We derive explicit inequalities for sums of eigenvalues of one-dimensional

Schrödinger operators on the whole line. In the case of the perturbed harmonic os-
cillator, these bounds converge to the corresponding traceformula in the limit as the
number of eigenvalues covers the whole spectrum.

1. Introduction

Consider the eigenvalue equation

(1.1) �u00(x)C V(x)u(x) D �u(x), x 2 (a, b) � R,

associated with a one-dimensional Schrödinger operatorH D �d2
=dx2

C V , where the
potential V W (a, b) ! R, and the boundary condition if (a, b) ¤ R, are chosen such
that the spectrum consists of a discrete sequence of eigenvalues {�k}. One possible
way of linking the behaviour of this sequence to properties of the potentialV is via
a regularized trace formula for the sum of the eigenvalues. The classical example is
the formula attributed to Gelfand and Levitan, which, if we take (a, b) D (0, �) with
Dirichlet boundary conditions on the endpoints, reads

(1.2)
1
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0
V(x) dx �

V(0)C V(�)

4

(see, e.g., the book [6], also for other similar formulae). Since the valuesk2 are in fact
the eigenvalues of the Dirichlet Laplacian, that is, the corresponding Schrödinger oper-
ator with zero potential, this is a comparison between the eigenvalues of the operators
H and H0 WD �d2

=dx2.
More recently it has also been shown that an analogous trace formula holds for

the eigenvalues of (1.1) on the whole line (a, b) D R [2, 7]. The comparison case is
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now provided by the quantum harmonic oscillator

(1.3) �u00(x)C x2u(x) D �u(x), x 2 R,

whose eigenvalues are given by�0
k D 2kC 1 for k 2 N. Writing the potential in (1.1)

as V(x) D x2
C q(x), that is, as a perturbed harmonic oscillator, if the perturbation

qW R! R is small enough in an appropriate sense, then the eigenvalues of (1.1), which
we denote by�k for k 2 N, satisfy the trace formula

(1.4)
1
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kD0

2

4

�k � �
0
k �

1

�

q

�

0
k

Z

R

q(x) dx

3

5

D �

Z0(1=2)

�

Z

R

q(x) dx,

where

(1.5) Z0(s) D (1� 2�s)� (s) D
1

X

kD1

1

(�0
k)s

is the spectral zeta function associated with (1.3), the second equality being valid for
Res > 1, and � ( � ) is the Riemann zeta function; see [2, Theorem 2] or [7, Equa-
tion (1.12)]. We refer to [8] for a wide-ranging general survey on the theory of regu-
larized traces.

In a separate paper [5] we show that formula (1.2) is in fact the limit asn!1 of
a sequence of inequalities for the (finite) sums of the firstn eigenvalues given in terms
of the Fourier coefficients of the potential, and that (1.2) can be proved by combining
these inequalities with knowledge of the asymptotic behaviour of the eigenvalues and
eigenfunctions [5]. In the present paper, which may be viewed as a continuation of [5],
we show that a similar family of inequalities is valid for theperturbed harmonic oscil-
lator assuming that the perturbationq is non-negative and of finiteL1(R)-norm. More
precisely, we shall prove in Theorem 3.1 below that there is asequence of inequalities
of the form

n
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kD0
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Z
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�n
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Z

R
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for all n 2 N if V(x) D x2
C q(x) with 0� q 2 L1(R), where the sequence�n, which

is given explicitly, depends only on properties of the eigenfunctions and eigenvalues
of the quantum harmonic oscillator (1.3) and converges to�Z0(1=2) like O(1=

p

n) as
n!1. A similar sequence of bounds will also be shown to hold for a certain class
of negative or indefinite potentials (see Theorem 4.1), and although the corresponding
bounding sequence we obtain is larger than�n, it is still explicit, and the order of
convergence to the known trace formula remains O(1=

p

n).
These results will be established via test function methods, using for this purpose the

eigenfunctions of (1.3) in a suitable Rayleigh quotient expression for the eigenvalues of
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the perturbed harmonic oscillator, and then combining thiswith properties of Hermite
polynomials to analyze the resulting expression. We believe one of these properties,
namely Lemma 3.3, which provides an upper bound for the function e�x2

[H2
nC1(x) �

Hn(x)HnC2(x)] to be new and interesting in its own right.
In fact, these results—and the corresponding proofs—differ from those in [5] in

that for them we do not use a decomposition of the potential interms of the eigen-
functions of the unperturbed problem. However, such an approach is also possible in
this case and we carry it out to obtain a different type of bound; see Theorem 5.1.
For this particular result we assume thatV 2 L2(R, e�x2

dx), that is, that the potential
is no longer necessarily a perturbation ofx2, but rather more generally merely square
integrable with respect to the weightedL2-measure most naturally associated with the
problem (1.3). The resulting bounds (which are once again explicit) are expressed in
terms of the Fourier-like coefficients ofV expanded as a sum of Hermite polynomials.
These are actually stronger than Theorems 3.1 and 4.1, as theonly inequality used now
is that which arises from the substitution of test functionsin the Rayleigh quotient (see
Remark 5.2 (i)). However, now the finite sums converging to the the left-hand side of
the trace formula (1.4) do not appear in a natural way; this will then be derived as
a simple corollary by writing the potentialV(x) as x2

C q(x) and using the Fourier
coefficients forq instead.

We also generalize Theorems 3.1 and 4.1 to obtain bounds on sums of powers of
the eigenvalues in Section 6.

2. Schrödinger operators on the real line

Throughout this paper we will consider one-dimensional Schrödinger operators on
the real line, that is, associated with the equation (1.1) for x 2 R, where the potential
V W R ! R is a locally measurable function on which we will impose various (and
varying) assumptions. We will always assume thatV(x) ! 1 as jxj ! 1, so that
the operator associated with the problem (1.1) considered as an operator onL2(R) has
discrete spectrum, and we will in general denote the associated eigenvalues by�0 <

�1 � � � � ! 1.
As is well known, the eigenvalues of the quantum harmonic oscillator (1.3), which

will play the role of our “default” problem, are given by�0
k D 2kC 1 for k 2 N, with

corresponding eigenfunctions k(x) D e�x2
=2Hk(x), which form an orthonormal basis

of L2(R). Here Hk denotes thekth Hermite polynomial (see, e.g., [10, Chapter 5]).
Of particular interest to us will be the perturbed harmonic oscillator

(2.1) �u00(x)C [x2
C q(x)]u(x) D �u(x), x 2 R,

which is easily seen to have discrete spectrum ifq 2 L p(R) for some p 2 [1,1].
For a general potentialV W R! R, we can characterize the associated eigenvalues

via classical variational methods. Denoting by' 2 H1(R)\ L2(R, V(x) dx) an arbitrary
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test function, we let

(2.2) R[V, '] WD

R

R

('0(x))2 dx C
R

R

V(x)'2(x) dx
R

R

'

2(x) dx

be the Rayleigh quotient associated with (the Schrödinger operator with potential)V at
'. A standard generalization of the usual minimax formula foreigenvalues states that
if '0, : : : ,'n is a collection ofnC1 such functions orthogonal inL2(R), for any n 2 N,
then

n
X

kD0

�k �

n
X

kD0

R[V, 'k]

(see, e.g., [3]), with equality being achieved when the'k are the firstnC1 eigenfunc-
tions. For us the most natural choice of test functions will be the eigenfunctions k of
the quantum harmonic operator.

3. Bounds for the perturbed harmonic oscillator with a non-negative
perturbation

In this section we will state and prove our main theorem, obtaining the aforemen-
tioned finite version of the trace formula (1.4) for the general perturbed harmonic os-
cillator (2.1).

Theorem 3.1. Let q be a non-negative potential defined on the real line having
finite L1(R) norm. Then the eigenvalues of(2.1) satisfy the inequalities

(3.1)
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�

n
X
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1
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0
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, n odd,

(nC 1)
0((nC 1)=2)

0(n=2C 1)
�

n
X

kD0

1
q

�

0
k

, n even.

Furthermore, �n D �Z0(1=2)CO(1=
p

n), where Z0(s) D (1� 2�s)� (s).

REMARK 3.2. (i) It is essential for our method of proof thatq be non-negative.
In Theorem 4.1 below, we weaken this assumption and obtain a slightly weaker set
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of inequalities which nevertheless still converge in the limit to the trace formula (1.4)
with the same order of convergence O(1=

p

n). It is not clear if the inequalities (3.1)
are true for arbitraryq 2 L1(R); the trace formula (1.4) is itself currently only known
to hold under stronger assumptions onq: in [2] a certain rate of decay ofq at infinity
is assumed, and in [7] it is assumedq has compact support. We remark however that
having convergence of order O(1=

p

n) is most probably optimal, since this is the rate
at which we have convergence of the sequence whose limit defines � (1=2) (cf. (3.9)
and (3.10)).

(ii) There do not exist corresponding lower bounds forfinite sums of eigenvalues:
for any fixed n � 0 is it always possible to find a function 0� q 2 L1(R) for which
the left-hand side of (3.1) is arbitrarily large negative; see Proposition 3.4 below. How-
ever, for afixed potential it is a natural question as to whether we can recover a lower
bound valid in the asymptotic limit. Indeed, it might be possible to extend our result
to give a new proof of the trace formula (1.4) for a different class of (non-negative)
potentialsq from those considered in [2, 7], namelyq 2 L1(R). The idea would be to
argue as in [4] (or [5]), to show that the degree of “error” which arises from using the
eigenfunctions k of the unperturbed problem as test functions becomes asymptotically
small ask!1: denoting by'k the eigenfunction associated with�k (corresponding
to the potentialV(x) D x2

C q(x)), we see that the trace formula holds whenever

(3.3) lim
n!1

n
X

kD0

(R[x2
C q(x), 'k] �R[x2

C q(x),  k]) D 0,

since by definitionR[x2
C q(x), 'k] D �k. We can rewrite (3.3) as a type of “change

of basis” formula

lim
n!1

n
X

kD0

(h'k, H'ki � h k, H ki) D 0,

where H W D(H ) � L2(R) ! L2(R) is the operator associated with the potentialx2
C

q(x). We expectthis to hold whenever the asymptotics for�k and'k are similar enough
to those of�0

k and k, respectively, whenk!1. This is, however, likely to be a diffi-
cult problem, and we shall not attempt an investigation of ithere.

For notational convenience, forn � 0 we define

(3.4) !n WD �n C
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kD0

1
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0(n=2C 1)
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(nC 1)
0((nC 1)=2)

0(n=2C 1)
, n even,

and we also set!
�1 WD 0.
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Proof of Theorem 3.1. Using the firstn C 1 eigenfunctions of the unperturbed
harmonic oscillator (1.3), given by k(x) D e�x2

=2Hk(x), k D 0, : : : , n, as test functions
in the Rayleigh quotient (2.2) forV(x) D x2

C q(x) yields

(3.5)
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From basic properties of Hermite polynomials we have the identity

(3.6)
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1

2kk!
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k (x) D
1

2nC1n!
[H2

nC1(x) � Hn(x)HnC2(x)].

This arises in the context of Turán’s inequality for Hermitepolynomials (cf. [9, p. 404]),
and can easily be derived directly by induction inn—see also, for instance, [10, p. 106].
By using the estimate of the function

(3.7) hn(x) WD e�x2
[H2

nC1(x) � Hn(x)HnC2(x)]

given in Lemma 3.3 below in (3.6) and inserting this into (3.5), we obtain
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which upon rearranging yields (3.1).
We now give the (routine) proof that�n D �Z0(1=2)C O(1=

p

n) as n!1. We
first note that

(3.9) � (s) D
n
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kD1

k�s
C s

Z
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bx
 � x C 1=2

xsC1
dx C

n1�s

s� 1
�
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2ns
,

valid for s> 0 (see [11], Equation (3.5.3), pp. 49–50). SettingsD 1=2 and passing to
the limit asn!1, this means we can write

(3.10) �Z0(1=2)D �
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1�
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an,
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where for ease of notation we have set

(3.11) an WD 2
p

n�
n
X

kD1

1
p

k

for n � 1. Now, recalling that�0
k D 2kC 1 for k 2 N, we have

(3.12) �n D !n �
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we wish to show that this converges to�Z0(1=2) asn!1. We first establish that

(3.13) !n D
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2nCO
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p
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,

using the following asymptotics for the quotient of two gamma functions (see [1], for-
mula 6.1.47, for instance):
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and evaluating the integrals. Substituting these two estimates into (3.12) yields

�n D
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2n�
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1�
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2

� n
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kD1
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2� 1)
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Letting s equal 1=2 in (3.9) and using�1< bx
 � x � 0 we obtain

�

1
p

n
< � (1=2)C an � 0,

from which it follows that

�n D �Z0(1=2)CO

�

1
p

n

�

,

as desired.

Lemma 3.3. The function hn defined by(3.7) is positive and satisfies

hn(x) �

8

�

�

<

�

�

:

4nC1

2�

2nC 3

nC 1
0

2

�

n

2
C 1

�

, n odd,

4nC1

2�
(nC 1)02

�

nC 1

2

�
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Proof. Positivity ofhn is a direct consequence of (3.6). Taking derivatives inx
and using the propertyH 0

n(x) D 2nHn�1(x) yields

h0n(x) D e�x2
{�2x[H2

nC1(x) � Hn(x)HnC2(x)]

C 2HnC1(x)H 0

nC1(x) � H 0

n(x)HnC2(x) � Hn(x)H 0

nC2(x)}

D e�x2
{2HnC1(x)[�x HnC1(x)C 2(nC 1)Hn(x)]

C 2x Hn(x)HnC2(x) � 2nHn�1(x)HnC2(x)

� 2(nC 2)Hn(x)HnC1(x)}

D e�x2
{2HnC1(x)[�x HnC1(x)C nHn(x)]

C 2HnC2[x Hn(x) � nHn�1(x)]}.

Using the identityHnC1(x) D 2x Hn(x) � 2nHn�1(x) in the above expression yields

h0n(x) D �2e�x2
Hn(x)HnC1(x),
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which integrated between zero andx becomes

hn(x) � hn(0)D �2
Z x

0
e�t2

Hn(t)HnC1(t) dt

D �
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Z x
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D �
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nC1(x) � H2
nC1(0)C 2

Z x

0
te�t2

H2
nC1(t) dt

�
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Noting that the terms which depend onx on the right-hand side above are non-positive,
we obtain

(3.15) hn(x) � hn(0)�
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2(nC 1)
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nC1(0).

For oddn, hn(0)D H2
nC1(0) and the above becomes
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For even values ofn the right-hand side of (3.15) vanishes and we obtain

hn(x) � hn(0)D
4nC1

2�
(nC 1)02

�

nC 1

2

�

.

We will now construct an example showing that no lower bound of the same form
as in Theorem 3.1 is possible.

Proposition 3.4. For any n� 0 and any N> 0, there exists0 � q 2 L1(R)
such that
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kD0
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�k � �
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q
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0
k

Z

R

q(x) dx

3

5

� �N.

Before giving the proof, we note two points: firstly, that there existsa potential for
which the corresponding firstn eigenvalues are arbitrarily large negative is trivial; the
key point here is thatq satisfies the same assumptions as in Theorem 3.1. Secondly,
the sum here has to be regularized, since for anyq � 0 we automatically have�k � �

0
k

for all k � 0.
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Proof. Fix n � 0 and N > 0. If we use thenC 1 functions k(x) D e�x2
=2Hk(x)

for k D 1, 3, : : : , 2nC 1, as test functions in the Rayleigh quotient, then for any 0�
q 2 L1(R) we obtain after a certain amount of rearranging

(3.16)
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where the constant

Cn WD

n
X

kD0

�

0
2kC1 �

n
X

kD0

�

0
k � 0

depends only onn � 0. We will show that we can findq for which the first sum on
the right-hand side of (3.16) is arbitrarily small, while the second sum is arbitrarily
large. The idea is to chooseq to have support in a very small neighbourhood of 0 and
use that all odd Hermite polynomialsH2kC1 satisfy H2kC1(0)D 0 (and hence are very
small close to 0). We start by fixingK D K (n, N) > 0 large enough that

(3.17) Cn C 1� K
n
X

kD0

1

�

q

�

0
k

< �N

and for givenÆ > 0, to be specified later, we chooseq
Æ

(x) WD K Æ�1
�

Æ

(x), where�
Æ

is the indicator function of the set [�Æ=2, Æ=2]. Then obviouslyq
Æ

� 0 has L1-norm
equal toK for any Æ > 0. Since, as mentioned,H2

2kC1(0)D 0 for all k D 0, : : : , n, and
H2

2kC1 is obviously continuous, for any" > 0, there existsÆ D Æ(", n) > 0 such that

0�
e�x2

H2
2kC1(x)

2kC1(2kC 1)!
p

�

< "

for all x 2 [�Æ=2, Æ=2] and all k D 0, : : : , n. It follows that for thisÆ, we have

n
X

kD0

Z
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e�x2
q
Æ

(x)
H2

2kC1(x)

2kC1(2kC 1)!
p

�

dx < "(nC 1)< 1,

if we choose" < 1=(n C 1). Inserting this estimate together with (3.17) into (3.16)
yields the proposition.
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4. Bounds for the perturbed harmonic oscillator with an integrable
perturbation

Here we generalize Theorem 3.1 to allow for a class of perturbationsq which may
now take on negative values. Although the resulting estimate is not quite as tight as
in Theorem 3.1, we still have convergence to the trace formula (1.4) at the same rate
as before.

Theorem 4.1. Given the function q2 L1(R), suppose that there exists a non-
negative constant qm for which q(x)Cqme�x2

is non-negative for almost all real values
of x. Then the eigenvalues of the corresponding perturbed harmonic oscillator (2.1)
satisfy the inequalities

(4.1)
n
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�

for n D 0, 1, : : :, where

(4.2) "n D !n �
p

2
0(nC 3=2)

0(nC 1)
� 0

and �n and !n are given by(3.2) and (3.4), respectively. Moreover, "n D O(1=
p

n) as
n!1.

Proof. We supposeqm � 0 is as in the statement of the theorem, and mimic the
proof of Theorem 3.1 to obtain

n
X

kD0

�k �

n
X

kD0

�

0
k C

Z

R

e�x2
q(x)

n
X

kD0

1

2kk!
p

�

H2
k (x) dx

D

n
X

kD0

�

0
k C

Z

R

e�x2
[q(x)C qme�x2

]
n
X

kD0

1

2kk!
p

�

H2
k (x) dx

�

qm
p

�

n
X

kD0

1

2kk!

Z

R

e�2x2
H2

k (x) dx.

Sinceq(x)Cqme�x2
2 L1(R) is positive by assumption, we may proceed as in the proof

of Theorem 3.1 to obtain

Z

R

e�x2
[q(x)C qme�x2

]
n
X

kD0

1

2kk!
p

�

H2
k (x) dx �

!n

�

Z

R

q(x)C qme�x2
dx

D

!n

�

Z

R

q(x) dx C
qm
p

�

!n.
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Meanwhile, since
Z

R

e�2x2
H2

k (x) dx D 2k�1=2
0

�

kC
1

2

�

,

we have

n
X

kD0

1

2kk!

Z

R

e�2x2
H2

k (x) dx D
1
p

2

n
X

kD0

0(kC 1=2)

k!
D

p

2
0(nC 3=2)

0(nC 1)
.

Combining the above expressions yields (4.1). The asymptotic behaviour of"n is an
immediate consequence of (3.13) together with the expansion (3.14).

Although "n can be computed explicitly, to see that it is positive we use the follow-
ing easier, indirect argument: if for a givenq 2 L1(R), (4.1) holds for someqm � 0,
then the above proof shows that it also holds for allc � qm. This is only possible if
"n � 0 for all n � 0.

5. A bound for a general potential in terms of Hermite polynomials

Here we will consider the general problem (1.1), supposing only that the potential
V W R! R admits a series expansion in terms of Hermite polynomials inthe manner
of an eigenfunction decomposition

V(x) D
1

X

jD0

v j H j (x),

where we now assume thatV(x) 2 L2(R, e�x2
dx), or equivalently, since theH j form

an orthonormal basis ofL2(R) with respect to this measure, that the sequencev j is
square summable. We will prove the following explicit estimate for the�k D �k(V)
based on the Fourier-type coefficientsv j .

Theorem 5.1. Under the above conditions on the potential V, for every n2 N,
the nth eigenvalue of(1.1) with (a, b) D R satisfies

(5.1)
n
X

kD0

�k �

n
X

kD0

2k(2k)!

k!

�

nC 1

kC 1

�

v2k C
1

2
(nC 1)2.

REMARK 5.2. (i) This theorem will be proved by using the eigenfunctions of
the quantum harmonic oscillator as test functions in the Rayleigh quotient, as was done
in Theorem 3.1. The difference is that there we used an estimate for the sum of Her-
mite polynomials resulting from the test functions (Lemma 3.3), whereas here we ex-
pand out the potential as a Fourier series in Hermite polynomials and multiply this
against our test functions, in the spirit of the arguments used in [5]. Since the only
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inequality we use here is that which results from inserting the test functions into the
Rayleigh quotient, and there is no other estimate involved,it follows that the right-hand
side of (5.1) must necessarily be smaller than the right-hand side of (3.8) if V is of
the form V(x) D x2

C q(x) for some 0� q 2 L1(R) (indeed, it must be equal to the
right-hand side of (3.5), i.e. the middle expression in (3.8)). However, in practice the
two estimates are fundamentally different in nature; for example, it is not easy to see
any relation between the right-hand side of (5.1) and the trace formula (1.4). See also
Corollary 5.3 below.

(ii) As a trivial example to show that the above theorem is sharp, if V(x) D x2,
then the only two nonzero coefficients in the Fourier expansion of V are v2 D 1=4,
v0 D 1=2, and it can easily be seen that (5.1) reduces to an equality.

Proof of Theorem 5.1. As mentioned, we will use the functions k(x) WD
e�x2

=2Hk(x) as test functions in the Rayleigh quotient. In order to do so, we shall need
some more fairly standard facts about integrals of Hermite polynomials Hk, which may
be found in [10], for instance: forn, m 2 N,

(5.2)
Z

R

e�x2
Hn(x)Hm(x) dx D Æmn

p

�2nn!

where Æ jk is the Kronecker delta; and, for�, �, 
 , s 2 N with � C � C 
 D 2s even
and s� �, �, 
 , we have

(5.3)
Z

R

e�x2
H
�

(x)H
�

(x)H



(x) dx D
p

�

2s
�! �! 
 !

(s� �)! (s� �)! (s� 
 )!
I

under any other conditions on�, �, 
 and s, this integral is 0. We also note that,
combining a standard integration by parts, (5.2) and the formula H 0

n(x) D 2nHn�1(x),
we obtain easily that

(5.4)

Z

R

e�x2
x2H2

k (x) dx D
1

2

Z

R

e�x2
H2

k (x) dx C 2k2
Z

R

e�x2
H2

k�1(x) dx

D

p

�2k�1k! C
p

�2kkk!.

So, using the k as test functions, as well the convergence of thev j to interchange

integration and summation (noting that the functionsV(x), H2
k (x) 2 L2(R, e�x2

dx), the
latter being in span{H0(x), H2(x), : : : , H2k(x)}) together with (5.2),

n
X

kD0

�k �

n
X

kD0

R

R

[(d=dx)[e�x2
=2Hk(x)]]2

C e�x2
V(x)H2

k (x) dx
R

R

e�x2 H2
k (x) dx

D

n
X

kD0

�

�

0
k �

R

R

e�x2
x2H2

k (x) dx
R

R

e�x2 H2
k (x) dx

�

C

n
X

kD0

1

X

jD0

v j
R

R

e�x2
(x)H j (x)H2

k (x) dx

2kk!
p

�

.
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Using (5.2) and (5.4),
R

R

e�x2
x2H2

k (x) dx
R

R

e�x2 H2
k (x) dx

D kC
1

2
,

while (5.3) with� D � D k and
 D j implies
R

R

e�x2
(x)H j (x)H2

k (x)dx ¤ 0 if and only
if j is even andj � 2k, and under these conditions, writingj DW 2m for mD 0, : : : , k,

Z

R

e�x2
(x)H2m(x)H2

k (x) dx D
p

�

2kCm(k!)2(2m)!

(m!)2(k �m)!
D

p

�

2kCmk! (2m)!

m!

�

k

m

�

.

Combining the above yields

n
X

kD0

�k �

n
X

kD0

�

�

0
k � k �

1

2

�

C

n
X

kD0

k
X

mD0

2m(2m)!

m!

�

k

m

�

v2m.

To simplify this last sum, since
�a

b

�

D 0 for b > a, we may just as well summ from
0 to n, giving the sum as

n
X

mD0

2m(2m)!

m!
v2m

 

n
X

kD0

�

k

m

�

!

D

n
X

mD0

2m(2m)!

m!

�

nC 1

mC 1

�

v2m,

using a standard formula for binomial coefficients. This establishes the theorem.

We shall now assume explicitly that the potentialV is a perturbation of the har-
monic potential and thus return to writing it asV(x) D x2

C q(x), where we will as-
sume thatq is integrable. By adding the terms which are missing in the right-hand
side of (5.1) in order to obtain a sequence which converges tothe right-hand side of
the trace formula (1.4), and expressing the coefficients in the left-hand side in terms of
the Fourier coefficients of the functionq, we obtain the following result.

Corollary 5.3.

(5.5)

n
X

kD0

2

4

�k � �
0
k �

1

�

q

�

0
k

Z

R

q(x) dx

3

5

�

n
X

kD0

2

4

2k(2k)!

k!

�

nC 1

kC 1

�

q2k �
1

�

q

�

0
k

Z

R

q(x) dx

3

5.
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Proof. FromV(x) D q(x)C x2 we obtain the relations

v j D

8

�

�

�

�

<

�

�

�

�

:

q0C
1

2
, j D 0,

q2C
1

4
, j D 2,

qk, j ¤ 0, 2.

Replacing this in (5.1) and adding and subtracting the term

��

0
k �

1

�

q

�

0
k

Z

R

q(x) dx

inside the summation on the left-hand side of (5.1), we obtain, after some manipula-
tions, the desired result.

REMARK 5.4. Clearly the integral term appearing inside both sums can be can-
celled. However, in this way not only do we obtain an expression where the left-hand
side converges in the limit asn goes to infinity (under additional assumptions onq as
in [2, 7]), but since as noted in Remark 5.1 (i) the right-handside of (5.5) is necessar-
ily smaller than the right-hand side of (3.1) (or (4.1), depending onq), it follows that
it must converge to the right-hand side of the trace formula (1.4) and at least as fast
as O(1=

p

n).

6. Power generalizations of Theorems 3.1 and 4.1

In this section we generalize the summation bounds obtainedin Theorems 3.1
and 4.1 to allow for the summands (arranged in various ways) to be raised to a given
negative power. We keep the notation and assumptions of Sections 3 and 4, and start
with the case where the perturbationq is non-negative.

Theorem 6.1. Under the assumptions and notation ofTheorem 3.1,with !n as
in (3.4), for all n � 0 and s> 0,

(6.1)

�

1

nC 1

� n
X

kD0

(�k � �
0
k)�s
�

�

!n

(nC 1)�

Z

R

q(x) dx

�

�s

.

Under certain additional assumptions on the potential, we can rearrange the order
of the terms in the above bounds somewhat.
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Proposition 6.2. If
R

R

q(x) dx < 32
p

� , then for all n� 0 and s> 0,

(6.2)
n
X

kD0

�k
�s
�

n
X

kD0

�

�

0
k C

!k � !k�1

�

Z

R

q(x) dx

�

�s

.

We next consider the situation covered by Theorem 4.1, wherethe perturbation
q may take on negative values, provided its negative part decays rapidly enough at
infinity. For simplicity, we consider the special case whereq has zero mean.

Theorem 6.3. Suppose in addition to the assumptions ofTheorem 4.1 that
R

R

q(x) dx D 0. Then for all n� 0 and s> 0,

(6.3)
n
X

kD0

�

�s
k � (sC 1)

n
X

kD0

(�0
k)�s
� sqm

n
X

kD0

(�0
k)�s�1("k � "k�1),

where qm � 0 is defined inTheorem 4.1. Here "n � 0 is given by(4.2) for n � 0 and
we set"

�1 WD 0.

These results will be proved by combining generic results onarbitrary increasing
or decreasing sequences of real numbers (see Lemma 6.5 and what follows it) with the
following particular properties of the!n.

Lemma 6.4. The sequence{!n}n2N is positive and strictly increasing, while
{�n}n2N given by�n WD !nC1 � !n is positive and non-increasing.

Proof. The!n are obviously all positive. Using the formulae

0

�

zC 1

2

�

D

z!
p

�

2z(z=2)!
, 0

� z

2
C 1

�

D

� z

2

�

!

for z 2 N even, if we assumen � 0 is even and set

Cn WD (nC 1)
0((nC 1)=2)

0(n=2C 1)
D

(nC 1)!
p

�

2n[(n=2)!]2
> 0,

then an elementary calculation shows that

!nC1 � !n D
Cn

2(nC 2)
,

!nC2 � !nC1 D
Cn

2(nC 2)
,

!nC3 � !nC2 D
(nC 3)Cn

2(nC 2)(nC 4)
,
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from which we see that!n is increasing inn, while �n D !nC1 � !n is positive and
weakly decreasing.

The following lemma appeared in [5], but for the sake of completeness we state
and prove it here as well. Here and throughout, we will use thenotation [y]

C

, y 2 R,
to denote the expression taking on the valuey if y� 0 and zero otherwise; [f (x)]g(x)�y

will represent f (x) if g(x) � y and zero otherwise.

Lemma 6.5. Suppose the sequences(ak)k2N and (bk)k2N are positive, with (bk)k2N

non-decreasing in k� 0. Suppose also that the sequence(ck)k2N satisfies

(6.4)
m
X

kD0

ak �

m
X

kD0

ck

for all m � 0. Then for all s> 0 and all n� 0 we have

(6.5)
n
X

kD0

(ak)�s
�

n
X

kD0

[(sC 1)(bk)�s
� s(bk)�s�1ck].

If the sequence(ck)k2N is itself positive and non-decreasing in k� 0, then the right-
hand side of(6.5) is maximized when bk D ck for all 0 � k � n, in which case(6.5)
simplifies to

n
X

kD0

(ak)�s
�

n
X

kD0

(ck)�s.

An examination of the proof shows that if we want (6.5) to holdfor some fixed
n � 0, then for the proof to work we need (6.4) to hold for all 0� m� n.

Proof of Lemma 6.5. For� > 0, we use the identity, valid for alls> 0,

(6.6) �

�s
D s(sC 1)

Z

1

0
�

�s�2[� � �]
C

d�.

Hence forn � 0, s> 0 arbitrary,
n
X

kD0

(a�s
k � b�s

k ) D s(sC 1)
Z

1

0
�

�s�2
n
X

kD0

([� � ak]
C

� [� � bk]
C

) d�

� s(sC 1)
Z

1

0
�

�s�2
n
X

kD0

[bk � ak]
��bk d�

� s(sC 1)
Z

1

0
�

�s�2
n
X

kD0

[bk � ck]
��bk d�

D

n
X

kD0

s(sC 1)(bk � ck)
Z

1

ak

�

�s�2 d�,
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which after simplification and rearrangement gives us (6.5). For the maximizing prop-
erty we consider each term on the right-hand side of (6.5) as afunction of bk

gk(bk) WD (sC 1)(bk)�s
� s(bk)�s�1ck.

Differentiating in bk shows thatgk reaches its unique maximum whenbk D ck.

Proof of Proposition 6.2. Lemma 6.5 may be applied directly to prove Propos-
ition 6.2 in the obvious way; for (6.2), it merely remains to be confirmed that the
sequence

�

�

0
k C

!k � !k�1

�

Z

R

q(x) dx

�

k2N

is positive and non-decreasing. Now since�0
kC1 � �

0
k D 2 for all k � 0, we need

R

R

q(x) dx (which we assume to be nonzero and hence strictly positive) to be small
enough that

!kC2 � 2!kC1C !k � �
2�

R

R

q(x) dx

for all k � 0. If k is even, then the left-hand side is identically zero, as follows from
the proof of Lemma 6.4. Otherwise, forkC 1 odd, we have

!kC3 � 2!kC2C !kC1 D
(kC 3)Ck

2(kC 2)(kC 4)
�

Ck

2(kC 2)
,

which, using the definition ofCk, may be rearranged to give

�

p

�

2(kC 4)
�

kC 1

kC 2
�

k � 1

k � 2
� � �

3

4
�

1

2
,

which we see is negative and increasing ink C 1 � 1 odd. Thus!kC3 � 2!kC2 �

!kC1 reaches its largest negative value, namely�C0=16D �
p

�=16, whenk D 0. The
requirement onq(x) is therefore that

�

p

�

16
� �

2�
R

R

q(x) dx
,

that is, we have shown the required sequence is increasing when
R

R

q(x) dx � 32
p

� .

Proof of Theorem 6.1. To prove (6.1) we use a similar idea to the one in
Lemma 6.5, but since the right-hand side of (3.1) is not a sequence, the method needs
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to be adapted slightly to this situation. Namely, starting with the representation (6.6)
of � DW �k � �

0
k,

(6.7)
n
X

kD0

(�k � �
0
k)�s
� s(sC 1)

Z

1

0
�

�s�2
n
X

kD0

[� � �k C �
0
k]
��M d�

for all M 2 R; we make the choiceM WD (!n=((n C 1)�))
R

R

q(x) dx. Using (3.1),
which, when rearranged, says that

(6.8)
n
X

kD0

(�k � �
0
k) �

!n

�

Z

R

q(x) dx,

we have

n
X

kD0

[� � �k C �
0
k](��!n=((nC1)�))

R

R

q(x) dx � (nC 1)

�

� �

!n

(nC 1)�

Z

R

q(x) dx

�

C

.

Substituting this into (6.7) and applying (6.6) yields (6.1).

Proof of Theorem 6.3. This follows directly from Theorem 4.1and Lemma 6.5,
where we takeak D �k, bk D �

0
k and ck D �

0
k C ("k � "k�1)qm (with "

�1 WD 0).
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