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Abstract
We extend an equivariant mountain pass theorem, due to Bartsch, Clapp and

Puppe for compact Lie groups to the setting of infinite discrete groups satisfying
a maximality condition on their finite subgroups.

Symmetries play a fundamental role in the analysis of critical points and sets of
functionals [2], [20], [12]. The development of equivariant algebraic topology, particu-
larly equivariant homotopy theory, has given a number of tools to conclude the exist-
ence of critical points in problems which are invariant under the action of a compact
Lie group, as investigated in [11].

In this work we discuss extensions of methods of equivariantalgebraic topology to
the setting of actions of infinite groups. The main result of this note is the modification of
a result by Bartsch, Clapp and Puppe originally proved for actions of compact Lie groups,
to infinite discrete groups with appropriate families of finite subgroups inside them.

Theorem 1.1 (Mountain pass theorem). Let G be an infinite discrete group act-
ing by bounded linear operators on a real Banach space E of infinite dimension. As-
sume that the action on E is proper outside0. Let � W E! R be a G-invariant func-
tional of classC2�. For any value a2 R, define the sublevel set�a

D {x 2 E j �(x) �
a} and the critical set KD

S

c2R Kc, where Kc is the critical set at level c, Kc D {u j
k�

0(u)k D 0, �(u) D c}. Suppose that
• There exist a2 R with �(0)� a and a linear subspaceOE � E of finite codimension
such that OE\�a is the disjoint union of two closed subspaces, one of which is bounded
and contains0.
• The functional� satisfies the orbitwise Palais–Smale condition1.3.
• The group G satisfies the maximal finite subgroups condition1.2.

Then, the equivariant Lusternik–Schnirelmann category of E relative to �

a,
G-cat(E, �a) is infinite. If moreover, the critical sets Kc are cocompact under the
group action, meaning that the quotient spaces GnKc are compact, then �(K ) is
unbounded above.
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Recall that given a natural numberr , the classCr� denotes the class of functions
whose derivatives up to orderr � 1 exist and are locally Lipschitz.

Condition 1.2 restricts maximal finite subgroups and their conjugacy relations.

CONDITION 1.2. LetG be a discrete group andMAX be a subset of finite sub-
groups.G satisfies the maximality condition if
• There exists a prime numberp such that every nontrivial finite subgroup is con-
tained in a unique maximalp-group M 2MAX .
• M 2MAX ! NG(M) D M, where NG(M) denotes the normalizer ofM in G.

Notice that in particular, the finite subgroups ofG are all finite p-groups.

These conditions are satisfied in several cases. Among them:
(1) Extensions 1! Z

n
! G! K ! 1 by a finite p-group given by a representation

K ! Gln(Z) acting freely outside from the origin [30], Lemma 6.3.
(2) Fuchsian groups, more generally NEC (non-euclidean crystallographic groups) for
which the isotropy consists only ofp-groups. [30].
(3) One relator groupsG D hqi j r i for which the family of finite subgroups consists
of p-groups. See [31], Propositions 5.17, 5.18 and 5.19, in pp. 107 and 108.

The orbitwise Palais–Smale condition was formulated by Ayala–Lasheras–Quintero
in [6] for complete Riemannian manifolds with a proper action of a Lie Group. For
our purposes, the following notion is more adequate.

CONDITION 1.3. Let G be a discrete group. Let M be aC2� Hilbert manifold
with a G-action by C1� diffeomorphisms which is proper. Assume thatM has aG-
invariant C1� Riemannian Metric. TheG-invariant functional8 of classC2� satisfies
the orbitwise Palais–Smale condition if given a sequence{xn} � M such thatj8(xn)j
is bounded andr8(xn) converges to 0, then the sequence of orbitsGxn contains a
convergent subsequence in the orbit spaceM=G.

This paper is organized as follows: in the second section, the usual facts concern-
ing the relation between critical points, Lusternik–Schnirelmann category and equivari-
ant deformation theorems are stated, being modified slightly from [6] and [15].

In the third section, we introduce the notion of universal proper length related to
a family of subgroups. We use some algebraic properties of the classifying space for
proper actions of groups with an appropriate family of maximal finite subgroups in
order to conclude the unboundedness of critical values.

This is done in the fourth section adapting a construction ofelements in the Burnside
ring of a finite group, originally due to Bartsch, Clapp and Puppe [12] to the infinite
group setting, using the Atiyah–Hirzebruch spectral sequence, as well as a version of the
Segal conjecture for families of finite groups inside discrete groups [23], [7].

This work was financially supported by the Hausdorff Center for Mathematics at
the University of Bonn, Wolfgang Lück’s Leibnizpreis and a CONACYT postdoctoral
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2. Proper Lusternik–Schnirelmann category and critical points

The notion of a properG-space provides an adequate setting for the study of non-
compact transformation groups.

DEFINITION 2.1. LetG be a second countable, Hausdorff locally compact group.
Let X be a second countable, locally Hausdorff space. Recall thata G-action is proper
if the map

G � X �!
�X

X � X

(g, x) 7! (x, gx)

is proper.

Ayala–Lasheras–Quintero [6] introduced the notion of equivariant Lusternik–
Schnirelman category for proper actions of Lie groups, extending previous work by
Marzantowicz [32] for compact Lie groups.

DEFINITION 2.2. Let X0

� X be paracompact properG-spaces. The relativeG-
category of (X, X0), denoted byG-cat(X, X0) is the smallest numberk such thatX can
be covered bykC 1 openG-subsetsX0, X1, : : : , Xk with the following properties:
• X0

� X0 and there is a homotopyH W (X0, X0) � I ! (X0, X0) starting with the
inclusion andH (x, 1) 2 X0.
• For everyi 2 {1,: : : ,k} there existG-maps�i W Xi ! Ai and�i W Ai ! Y with Ai a
G-orbit G=Hi such that the restriction off to Xi is G-homotopic to the composition
�i Æ �i .
If no such number exists, then we writeG-cat(X, X0) D1.

The Lusternik–Schnirelman method can be extended to functionals which are in-
variant under proper actions.

Lemma 2.3 (Equivariant deformation). Let G be a discrete group acting properly
on a Hilbert manifold of classC2�. Let 8 W X ! R be a G-invariantC2�-functional,
c 2 Kc D {x 2 X j 80(x) D 0, 8(x) D c}. For every c> a, every 0 < Æ < c� a and
every G-neighborhood U of Kc, there is an� > 0 and a homotopy�W 8cC�

� I !8

c��

which is the identity on8c�Æ
� I .

Proof. The gradient field�r8 is locally Lipschitz by assumption. The usual de-
formation method [35] worksG-equivariantly. See [6], Lemma 5.4 in p. 1130.

DEFINITION 2.4. In the situation of Lemma 2.3, we will say that the functional
8 satisfies the deformation property with respect to neighbourhoods of critical sets.
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Proposition 2.5. Let M be a paracompact Hilbert, C2�-manifold. Assume that the
discrete group G acts properly byC1� maps on M. Let8 W M ! R be a G-invariant
C2�-function satisfying the deformation property with respect to neighbourhoods of crit-
ical sets. Suppose that8 satisfies the orbitwise Palais–Smale condition1.3.
• If the function is bounded below, then the number of critical points of8 with
values> a in M is at least G-cat(M, 8a).
• If G-cat(M, 8a) is greater than the number of critical values of8 above a, then
there is at least one c> a such that the critical set Kc has positive covering dimension.
In particular 8 has infinitely many critical orbits with values above a.
• If G-cat(M, K ) D1, then8 has an unbounded sequence of critical values.

Proof. The proofs given in [15], Theorem 2.3 and Corollary 2.4, pp. 606 and 607,
and [16], Theorem 1.1 extend to the proper setting. The pointis that the equivariant
Lusternik–Schnirelmann category for proper spaces satisfies subadditivity, deformation
monotonicity, and continuity (Proposition 2.3 in [6] in theabsolute case, and the obvi-
ous modification extends to the relative category).

3. Universal cohomology length

We discuss now cohomology length in the context of equivariant cohomology the-
ories. We use for this the notion of a classifying space for a family of subgroups.

DEFINITION 3.1. Recall that aG-CW complex structure on the pair (X, A) con-
sists of a filtration of theG-spaceX D

S

�1�n Xn, X
�1 D ;, X0 D A and for which

every spaceXn is inductively obtained from the previous one by attaching cells in
pushout diagrams of the form

`

i Sn�1
� G=Hi Xn�1

`

i Dn
� G=Hi Xn.

 

!

 

!

 

!

 

!

We say that a properG-CW complex is finite if it consists of a finite number of cells
G=H � Dn.

DEFINITION 3.2. Let G be a discrete group. A metrizable properG-SpaceX is
an absolute neighbourhood retract if everyG-map Z! X from a closed subspaceZ of
a metrizableG-spaceY into X has an equivariant extensionU ! X to a G-invariant
neighbourhoodU of Z in Y.

It is proved in [4], Theorem 1.1 that properG-ANR are G-homotopy equivalent
to G-CW complexes whenG is a locally compact Hausdorff group.

We recall the notion of the classifying space for a family of subgroups.
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DEFINITION 3.3. LetF be a collection of subgroups in a discrete groupG, which
is closed under conjugation and intersection. A model for the classifying space for the
family F is a G-CW complexX satisfying
• All isotropy groups ofX lie in F .
• For any G-CW complexY with isotropy in F , there exists up toG-homotopy a
unique G-equivariant mapf W Y! X.

A model for the classifying space of the familyF will be usually denoted byEF (G).
Particularly relevant is the classifying space for proper actions, the classifying space

for the familyFIN of finite subgroups, denoted byEG.
The classifying space for proper actions always exists, is unique up toG-homotopy

and admits several models. The following list includes someexamples. We remit to
[27] for further discussion.
• If G is a compact group, then the singleton space is a model forEG.
• Let G be a group acting properly and co-compactly on a CAT(0) spaceX, in the
sense of [14]. ThenX is a model forEG.
• Let G be a Coxeter group. The Davis complex is a model forEG.
• Let G be a mapping class group of an orientable surface. The Teichmüller space
is a model forEG.

The spaces appearing in applications in analysis are not always G-CW complexes.
They satisfy more often numerability conditions.

DEFINITION 3.4. LetF be family of closed subgroups closed under conjugation
and intersection inside the locally compact second countable Hausdorff groupG. A G-
spaceX is said to be anF -numerable space if there exists an open covering{Ui j i 2
I } by G-subspaces such that there is for eachi 2 I a G-map Ui ! G=Gi for some
Gi 2 F and there is a locally finite partition of unity{ei ji2I } subordinate to{Ui } by
G-invariant functions. Notice that we do not require that theisotropy groups ofX lie
in F .

The slice theorem (Theorem 2.3.3, in p. 313 of [34]) implies that completely regu-
lar spaces carrying proper actions of Lie groups are precisely numerable spaces with
respect to the family of compact subgroups for which, in addition, the isotropy groups
of points are all compact subgroups.

Specializing to Lie groups acting properly onG-CW complexes, the conditions
boil down to the fact that all stabilizers are compact, see [24], Theorem 1.23. In par-
ticular for a cellular action of a discrete groupG on a G-CW complex, a proper action
reduces to the finiteness of all stabilizer groups. Notice that any (continuous) action of
a compact Lie group or a finite group on a locally compact, Hausdorff space is proper.

The following version of the classifying space for a family extends the notion to
F -numerable spaces.
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DEFINITION 3.5 (Numerable version for the classifying space of a family). Let
F be a family of subgroups. A modelJF (G) for the classifying numerableG-space
for the family F is a G-space which has the following properties:
• JF (G) is F -numerable.
• For any F -numerable spaceX there is up toG-homotopy precisely one map
X ! JF (G).

REMARK 3.6. There exists up toG-homotopy a uniqueG-equivariant mapEG!
JF (G). This map is proved to be aG-homotopy equivalence for a discrete group in
Theorem 3.7, part ii of [27].

Recall the notion of an equivariant cohomology theory, [26].

DEFINITION 3.7. Let G be a group and fix an associative ring with unitR. A
G-cohomology theory with values inR-modules is a collection of contravariant func-
tors Hn

G indexed by the integer numbersZ from the category ofG-CW pairs together
with natural transformations�n

G W H
n
G(A) WD Hn

G(A, ;) ! HnC1
G (X, A), such that the

following axioms are satisfied:
(i) If f0 and f1 areG-homotopic maps (X, A)! (Y, B) of G-CW pairs, thenHn

G( f0)D
Hn

G( f1) for all n.
(ii) Given a pair (X, A) of G-CW complexes, there is a long exact sequence

� � �

Hn�1
G (i )
����! Hn�1

G (A)
�

n�1
G
��! Hn

G(X, A)
Hn

G( j )
����! Hn

G(X)

Hn
G(i )
���! Hn

G(A)
�

n
G
�! HnC1

G (X, A)
HnC1( j )
�����! � � �

where i W A! X and j W X ! (X, A) are the inclusions.
(iii) Let ( X, A) be aG-CW pair and f W A! B be a cellular map. The canonical map
(F, f ) W (X, A)! (X [ f B, B) induces an isomorphism

Hn
G(X [ f B, B)

�

�! Hn
G(X, A)

(iv) Let {Xi j i 2 I} be a family ofG-CW-complexes and denote byji W Xi !
`

i2I Xi

the inclusion map. Then the map

5i2IH
n
G( ji ) W H

n
G

 

a

i

Xi

!

�

�! 5i2IH
n
G(Xi )

is bijective for eachn 2 Z.
A G-Cohomology Theory is said to have a multiplicative structure if there exist natural,
graded commutative[-products

Hn
G(X, A)
Hm

G(X, A)! HnCm
G (X, A).
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Let � W H ! G be a group homomorphism andX be a H -CW complex. The in-
duced space ind

�

X, is defined to be theG-CW complex defined as the quotient space
G � X by the right H -action given by (g, x) � h D (g�(h), h�1x).

An equivariant cohomology theory consists of a family ofG-cohomology theories
H�

G together with an induction structure determined by graded ring homomorphisms

Hn
G(ind

�

(X, A))! Hn
H (X, A)

which are isomorphisms for group homomorphisms�W H ! G whose kernel acts freely
on X satisfying the following conditions:
(i) For any n, �n

H Æ ind
�

D ind
�

Æ�

n
G.

(ii) For any group homomorphism� W G ! K such that ker� Æ � acts freely onX,
one has

ind
�Æ�

D Hn
K ( f1 Æ ind

�

Æ ind
�

) W Hn
K (ind

�Æ�

(X, A))! Hn
H (X, A)

where f1 W ind
�

ind
�

! ind
�Æ�

is the canonicalG-homeomorphism.
(iii) For any n 2 Z, any g 2 G, the homomorphism

indc(g) W G!G W H
n
G(ind)c(g) W G!G(X, A))! Hn

G(X, A)

agrees with the mapHn
G( f2), where f2W (X, A)! indc(g) W G!G sendsx to (1,g�1x) and

c(g) is the conjugation isomorphism inG.

REMARK 3.8 (Extensions ofG-cohomology theories to more general spaces).
Let H�

G be aG-cohomology theory defined on properG-CW complexes. Using a func-
torial G-CW approximation for properG-ANR as introduced in [4] for locally compact
Hausdorff groups, an equivariant cohomology theory may be extended to the category
of proper G-ANR.

More generally, theČech expansion of [33] provides ǎCech extension of aG-
cohomology theory to arbitrary pairs of properG-spaces. That is, a family ofR-mod
valued functors LHn

G defined on pairs of properG-spaces and natural transformations

Æ

n
X,A W H

n
G(A, ;)! HnC1

G (X, A) satisfying the axioms:
• G-homotopy invariance.
• Long exact sequences forG-pairs.
• Excision. Let X1, X2 � X be properG- invariant spaces such that

X2 � X1 \ X1 � X2 D ; D X2 � X1 \ X1 � X2.

Then, the inclusion map (X2, X1\ X2)! (X1[ X2, X1) induces a natural isomorphism.
• Axioms (i)–(iii) for the induction structure.

For the purposes of this work we need an extension of a specificcohomology the-
ory to a certain properG-ANR which is contractible after forgetting the action and
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is exhausted by finiteG-CW complexes. This is done by an ad-hoc construction, see
Definition 5.1.

Recall [17], [26], that for any equivariant cohomology theory H� on finite G-CW
complexes there exists a spectral sequence withE2-term given by Bredon cohomology

Ep,q
2 D H p

ZOr (G)(X, H�q
G (G=H ))

converging toH�

G(X).
The following result will be used later:

Proposition 3.9. Let X be an l-dimensional G-CW complex. Suppose that for
r D 2, 3, : : : the differential appearing in the Atiyah–Hirzebruch spectral sequence for
X andH�

G vanishes rationally. Then, for any element

x 2 H0
ZOr (G)(X, H0

G(G=?))

there exists some positive integer k such that xk is contained in the image ofH0
G(X)

under the edge homomorphism

EdgeG W H
0
G(X)! H0

ZOr (G)(X, H0
G(G=?)).

Proof. Let x 2 H0
ZOr (G)(X, H0(G=?)). The proof reduces to construct inductively

positive integersk2, : : : , kl�1 such that the productx
Qr

iD2 ki survives toE0,0
rC1 for r D

1, : : : , l � 1, in the sense thatkr d0,0
r (x

Qr�1
iD2 ki ) D 0 for r D 2, : : : , l � 1. Sincex 2 E0,0

2 ,
we pick k2 such thatk2d2(x) D d2(xk2) D 0 (this is possible by the rational vanishing
of the differentials).

Assume inductively that there arek2, : : : , kr�1 and x
Qr�1

iD2 ki which survive to the

2 E0,0
r -term. Choosekr such thatkr d0,0

r (x
Qr�1

iD2) D 0. This is possible by the rational
vanishing of differentials again.

Now, d0,0
r (x

Qr
iD2) D kr d0,0

r ((x
Qr�1

iD2))(x
Qr�1

iD2)kr�1. And since x
Qr

iD2
2 E0,0

rC1 for k D
Ql�1

iD2ki , the l -dimensionality ofX implies xk
2 E0,0

1

and hence it is on the image under
the edge homomorphism.

DEFINITION 3.10 (Universal cohomology length relative to a family of subgroups).
Let AD {G=Hi } be a collection of orbit spaces representing all homogeneous G-spaces
with isotropy in some familyF of subgroups ofG. Let M be a module over the
graded ringH�

G(EF (G)). The HA-length of the moduleM is the smallest numberk
such that there exist spacesA1, : : : , Ak 2 A such that for any
 2 M and !i in the
kernel of the map

H0
G(EF (G))! H0

G(G=Hi )
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given by the up toG-equivariant homotopy unique mapG=H ! EF (G), one has


!1 � � � !k D 0.

Given a map f W X! Y, betweenA-numerable spaces, theHA-length of f is the
HA length of the image, considered asH�

G(EF (G))-module.

4. Computations in Burnside rings

We specialize now to equivariant stable cohomotopy for proper actions.
We give a quick summary of important facts involving equivariant stable co-

homotopy for finite groups.

Theorem 4.1. Let G be a finite group. Then
• The 0-th equivariant cohomotopy group of a point, �0

G({�}) is isomorphic to the
Burnside ring,denoted by A(G), the Grothendieck ring of isomorphism classes of finite
G-sets.
• The Burnside ring A(G) is provided with maps'H W A(G) ! Z, each one for
every conjugacy class of subgroups in G. These extend to an injective map A(G) !
Q

H in ccs(G) Z, where ccs(G) denotes the set of conjugacy classes of subgroups in G.
• The prime ideals in A(G) are given by the setsPK , p D {x j 'H (x)� 0(p)}, PH,0D

{x j 'H (x) D 0}, where p is a prime number. The augmentation ideal IG is defined as
the ideal{x j 'e(x) D 0}.
• There exists an element, the Bartsch element 0¤ x 2 A(G) with the property that
'H (x) D 0 for every subgroup H.
• If p is a prime number and G is a finite p-group, then the completion map A(G)!
A(G)

OIG
is injective and the IG-adical topology and the p-adical topologies coincide.

Proof. • This is well known. See [37], [38].
• See [38], Chapter II, Section 8, pp. 155–160. The image is characterized by a set
of congruences for the number of generators of cyclic subgroups of theWeyl groups
N H=H for every conjugacy class of subgroupsH in G [38], Section 5 Chapter IV,
p. 256. Alternatively, Theorem 1.3 in [21], p. 41.
• This is proven in [21], p. 43, [18].
• This is done in [12]. The element is constructed as follows: let K be a proper
subgroup ofG. Put uK D [G=K ] � jG=K jK [G=G]. The elementx is defined as the
product of all suchuK , each one for every conjugacy class of subgroups inK .
• For a detailed proof see [21]. The first result, Corollary 1.11 in [21], follows from
the fact that in this situation the kernel of the completion map,

T

n I n
G coincides with

T

ker('U ), whereU ranges among allp-Sylow groups. The second result follows from
Frobenius reciprocity and an analysis of the congruences defining the Burnside ring as
subring inside

Q

H in ccs(G) Z, Proposition 1.12 in [21], p. 44.
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Equivariant cohomotopy for proper actions of infinite discrete groups on finiteG-
CW complexes was defined in [25] via finite dimensional equivariant vector bundles
for proper, finiteG-CW complexes. Alternative approaches are given by a construction
using nonlinear Fredholm cocycles, which allow actions of noncompact Lie groups on
finite G-CW complexes [9], as well as a spectra version [8]. These approaches are
compared in [7]. For convenience, we give the definition from[25]:

DEFINITION 4.2. A G-vector bundle over aG-CW-complex X consists of a real
vector bundle� W E ! X together with aG-action on E such that� is equivariant
and eachg 2 G acts onE and X via vector bundle isomorphisms. LetS� denote its
fibrewise one-point compactification.

DEFINITION 4.3. Let X be a properG-CW-complex. LetSPHBG(X) be the
category with
• Ob(SPHBG(X)) D {G-vector bundles overX}; and
• a morphism from a vector bundle� W E! X to vector bundle�W F ! X is given
by a bundle mapuW S� ! S� which covers the identityid W X! X and fiberwise pre-
serves the basepoint. (It is not required thatu is a fiberwise homotopy equivalence.)

Let Rk denote the trivial vector bundleX � Rk
! X.

DEFINITION 4.4. Fix n 2 Z. Let �0, �1 be two G-vector bundles overX, and let
k0 and k1 be two non-negative integers such thatki C n � 0 for i D 0, 1. Then two
morphisms

ui W S�i�R
ki
! S�i�R

kiCn

are called equivalent, if there are objects�i in SPHBG(X) for i D 0, 1 and iso-
morphisms ofG-vector bundlesv W �0� �0 � �1� �1 such that the following diagram
in SPHBG commutes up to homotopy

S�0�R
k1
^X S�0�R

k0 S�0�R
k1
^X S�0�R

k0Cn

S�0��0�R
k0Ck1 S�0��0�R

k0Ck1Cn

S�1�R
k0
^X S�1�R

k1 S�1�R
k0
^X S�1�R

k1Cn
.

 

!

id^Xu0

 

!

 

!

 

!

 

!

 

!

id^Xu1

DEFINITION 4.5. For a properG-CW-complex X define

�

n
G(X) D {equivalence classes of morphismsu as above}.
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By introducing triviality conditions on aG-CW pair, (considering morphisms which
are fibrewise constant with the value the point at infinity), equivariant cohomotopy groups
are extended to an equivariant cohomology theory with multiplicative structure.

We introduce a Burnside ring for infinite groups, making out of Segal’s remark,
part 1 in Theorem 4.1, our definition for finite groups:

DEFINITION 4.6. Let G be a group with a finite model for the classifying space
for proper actionsE(G). The Burnside ring forG is the 0-th equivariant cohomotopy
ring of the classifying space for proper actions. In symbols

A(G) D �0
G(E(G)).

Denote byAlim(G)D limH2FIN A(H ) the inverse limit of the Burnside rings of the
finite subgroups ofG. Notice that this agrees with the 0, 0-entry of theE2-term of the
equivariant Atiyah–Hirzebruch spectral sequence. The following relations between the
Burnside ring and the inverse-limit Burnside ring are easy consequences of the rational
collapse of the Atiyah–Hirzebruch spectral sequence:

Lemma 4.7. Let G be a discrete group admitting a finite model for the classify-
ing space for proper actions EG.
(i) The edge Homomorphism eW A(G) ! Alim(G) has nilpotent kernel and cokernel.
Its kernel is the nilradical.
(ii) The edge homomorphism gives an isomorphism between the set of prime ideals in
A(G) and Alim(G) (in fact an homeomorphism in the Zariski topology), by assigning
a prime ideal I� Alim(H ) its inverse image e�1(I ) 2 A(G).
(iii) The rationalized Burnside ring�0

G(E(G))
Q does not contain nilpotent elements.

In the rest of the section we will describe a completion theorem for families of
p-groups inside finite subgroups of discrete groups, which isthe main computational
tool for the computation of equivariant cohomology lengthsneeded for the proof of
Theorem 1.1. This amounts to a generalization of the Segal conjecture for families
[1]. The result was proved in [7], Theorem 13 in p. 58, although similar results have
been proved in [28], [29] and [23], from where the crucial ideas and methods come.

Let G be a discrete group andF be a family of finite subgroups ofG, closed
under conjugation and under subgroups. Fix a finite properG-CW complex X and a
finite dimensional properG-CW complex Z whose isotropy subgroups lie inF . Let
f W X ! Z be a G-map. Regard�0

G(X) as a module over�0
G(Z).

DEFINITION 4.8. The augmentation ideal with respect to the familyF is defined
as the kernel of the homomorphism

I D IG,F ,Z D

 

�

0
G(Z)

resH
G Æi �

����!

Y

H2F

�

0
H (Z0)

!

.
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Proposition 4.9. Let F be a family of finite p-subgroups. Assume that there is
an upper bound for the order of subgroups inF .

Let P � �0
H ({�}) be a prime ideal.

Then, the ideal

I H,F\H,{�} WD ker�0
H ({�})!

Y

K2F

�

0
K\H ({�})

is contained inP if P contains the image of the structure map for H

�H W lim
K2F

�

0
K ({�})! �

0
H ({�}).

Proof. Let m be a positive integer number divided by all orders of subgroups in
F . For a given subgroupK in the family, LetuD {u1, : : : ,um} be a finite set of cardi-
nality m with a freeK -action. For example,u may be chosen to be a disjoint union of
m=jK j copies of K . This gives an injective homomorphism into the symmetric group
in m letters,� W K ! Sm. For a primep, let Sylp be the p-Sylow subgroup ofSm.

Let Sm[�] be the setSm with the freeK -action given byk,s 7! �(h)(s) andSm=Sylp
be the set with the inducedK -action. Notice that the fixed point setSm=SylLp is nonempty
if and only if L is a p-subgroup. This construction is compatible with morphismsbe-
tween subgroups inF in the sense that an homomorphismK ! K 0 between groups in
the family induces a map taking the freeK 0-set Sm to the freeK -set Sm and the same
for the homogeneous setSm=Sylp.

Consider the elements

{(Sm � jSmjK=K )}K2F ,

{(Sm=Sylp � jSm=SylpjK=K )}K2F .

Let P be a a prime ideal containing the image of the structure map under �H .
By the structure of the prime ideal spectrum,P is of the formP(M, p), where M is
a subgroup ofH and p is a prime number or zero. By assumption,P contains the
image under the structure map of the elements above. Since'

M (Sm � jSmj) D jSmj

and 'M (Sm=Sylp � Sm=Sylp) D jSm=Sylpj
M
� jSm=Sylpj and both elements belong to

pZ, becauseSm=Sylp has order prime top, we conclude that eitherp D 0 or M is a
p-group.

If M is a p-group, thenP(M, p) D P({e}, p) � P({e}, 0)� IF ,H,{�}. If p=0, then
jSM
j � jSmj D 0, and henceM D {e}. For any subgroupK 0 of every elementK 2

F \ H , P(K 0, 0)D P({e}, 0), sinceK 0 is a p-group, henceP contains the intersection
of all such ideals, which isIF ,H,{�}.

Proposition 4.10. Let L be an n-dimensional G-CW complex with isotropy in
the family F consisting of finite p-subgroups inside the discrete group G. Let
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f W G=H ! L be a G-map andP � �0
H ({�}) be a prime ideal. Then IF\H,{�} WD

ker�0
H ({�})!

Q

K2F �
0
K\H ({�}) is contained inP if P contains the image of IF ,Z

under indH!G Æ f � W �0
G(L)! �

0
H ({�}).

Proof. LetP be a prime ideal containingIF ,H,{�}. By the previous proposition,
we can assume thatP contains the image of the structural map�H .

Let  W H0
ZOr (G)(EF (G), �G(G=?))! limK �

0
K ({�}) be the isomorphism given by

assigning to an elementx 2 H0
ZOr (G)(EF (G)I �0

K ({�})) the element whose component
under the structural map�K is the image image under the map induced by the (G-
homotopically) unique mapuK W G=K ! EF (G), followed by the induction isomorphism

H0
ZOr (G)(EF (G)I �0

G(G=?))!

H0
ZOr (G)(G=K , �0

G(G=?))! H0
ZOr (K )({�}, �

0
K (K=?))� �0

K ({�}).

Given an elementa 2 limK IF\K ,{�}, denote byx its image under �1. By Propos-
ition 3.9, there exist a positive integerk and an elementy 2 �0

G(EF (G)) such that
edge(y) D xk, which is furthermore an element ofIF ,G,L .

The structure map�H W lim �

0
K ({�}) ! �

0
H ({�}) mapsak to P. BecauseP is a

prime ideal, the map indÆ f � mapsa to P.

Theorem 4.11(Segal conjecture for families of finitep-subgroups). Let G be a
discrete group andF be a family of subgroups of order p of G closed under conju-
gation and subgroups. Fix a finite proper G-CW complex X and a finite dimensional
proper G-CW complex Z whose isotropy subgroups lie inF and have bounded order.
Let f W X ! Z be a G-map. Regard�0

G(X) as a module over�0
G(Z) and set

I D IF ,Z D ker

 

�

0
G(Z)

resH
G Æi �

����!

Y

H2F

�

0
H (Z0)

!

then

�

m
X,F , f W {�

m
G (X)=I n

� �

m
G (X)} ! {�m

G (EF (G) � Xn�1)}

is an isomorphism of pro-groups. Also, the inverse system

{�m
G ((EF (G) � X)n)}n�1

satisfies the Mittag-Leffler condition. In particular

lim1
�

m
G ((EF (G) � X)n) D 0

and �X,F , f induces an isomorphism

�

m
G (X)I

�

�! �

m
G (EF (G) � X) � lim

n
�

m
G ((EF (G) � X)n).
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Proof. Since both functors have Mayer–Vietoris sequences, both of the systems
satisfy the Mittag-Leffler condition and in view of the 5-lemma for pro-modules, [5],
Section 2, an inductive argument can be used to reduce the problem to the situation of
X D G=H , and whereH is a finite group.

In this case, there exists a commutative diagram

�

0
G(Z) �

m
G (G=H )

A(H ) �

0
H ({�}).

 

!

 

!

f �

 

!ind�H!G

 

!

�

Hence, the map of pro-modules

�

m
X,F , f W {�

m
G (X)=I n

� �

m
G (X)} ! {�m

G (EF (G) � Xn�1)}

factorizes as follows

{�m
G (G=H )=I n

� �

m
G (G=H )} {�m

H ({�})=Jn}

{�m
G (EF (G) � G=Hn�1)} {�0

H ({�})=I n
F\H,H,{�}}.

 

!

 

!

 

!

 

!

�

Where J is the ideal generated by the image ofI under indÆ f � and the lower
horizontal map is an isomorphism due to the completion theorem for families inside
finite groups of [1], the right vertical map is induced byf . Due to Proposition 4.10,
the prime ideals containingJ and IF\H,h,{�} agree and the right vertical map is an
isomorphism.

Corollary 4.12. Let p be a prime number. For any group satisfying conditions
1.2 for which the maximal finite subgroups are finite p-groups, the groups�0

G(EG)

Z

Op and �n
G(EG)

O

IG,MAX
are isomorphic.

Proof. The morphism of pro-groups{�m
G (X)=pn

�

n
G(X)}! {�m

G (X�EMAX )n�1)}
is proved to be an isomorphism forX D G=H with H a p-group. The prime ideals in
�

0
H ({�}) containing IMAX\H,H,{�} and the one generated by the image ofIMAX ,G,G=H

under indÆ f � agree by the previous argument. BecauseH is a p-group, these agree
with the ones containingIT R,G,G=H for the trivial family. Due to part 5 of Theorem 4.1,
these agree with the ones containingp.

Since both functors have Mayer–Vietoris sequences, the result follows by induction
on the dimension ofX.

Proposition 4.13. Let G be a discrete group satisfying conditions1.2.
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There exists a“Generalized Bartsch element” w 2 �

0
G(EG) for which the map

�

0
G(EG)! H0

Z(Or(G))(EG,�0
? ({�})D limK2Sub(G)�

0
K ({�})

 M
��! �

0
M ({�}) given by the com-

position of the edge homomorphism and the structural map forthe inverse limit maps
w to a power of the element constructed inTheorem 4.1for any maximal subgroup M.

Proof. Let XMi 2 �
0
Mi

({�}) be the Bartsch element constructed in Theorem 4.1,

part 4. Putx D {xMi } 2 limH �
0
H ({�}). Choose an elementw and a powerk such that

w is mapped toxk under the edge homomorphism.

5. End of the proof

DEFINITION 5.1. Let OX be a proper and paracompactG-ANR, which is con-
tractible after forgetting the group action. Assume that there is a mapX ! OX from a
properG-CW complex of finite typeX D

S

Xn inducing a weakG-homotopy equiva-

lence (a map restricting to weak homotopy equivalencesOXH
! XH for all subgroups

H ). Define

O�

�

G( OX) D lim
n
�

�

G(Xn)
Q
Op.

Proposition 5.2. Let G be a discrete group satisfyingCondition 1.2. Let X be
a paracompact proper G-ANR, which is contractible after forgetting the group action.
Assume that there is a map X! OX from a proper G-CW complex of finite type XD
S

Xn inducing a weak G-homotopy equivalence.
The maps Xn ! EG together with the G-homotopy equivalence EG! JFIN (G)

induce isomorphisms

O�

0
G(JFIN (G))! O�0

G(EG)
�

�! lim �

0
G(Xn).

Proof. The point is the existence of long exact sequences forthe functor O��G(X, A),
which is guaranteed by the natural equivalence with the equivariant cohomology theory
defined by (X, A) 7! �

m
G ((EMAX (G), ;) � (X, A)) on finite G-CW pairs.

Proposition 5.3. Let G be a group satisfying conditions1.2. Let OX be a proper
G-ANR as inDefinition 5.1. Then, there exists an elementw 2 �0

G(EG)
Q such that
• w 2 ker�0

G(EG)
Q! �

0
G(G=H )
Q for all finite H.

• w 2 ker�0
G(EG)
Q! �

0
G(X0)
Q.

• For every k> 0 there exists an n> 0 such that the image ifwk under O�0
G(EG)!

�

0
G(Xn)
Q

Op is not zero.

Proof. Letv 2 �0
G(EG)
Q � 5H2MAX A(H )
Q be the image of the element

constructed in Proposition 4.13 under the rationalized edge homomorphism.
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Let m D G-cat(X0) and putw D vm. As in [12], the following diagram commutes:

�

0
G(EG)
Q

Op limn �
0
G(Xn)
Q

Op

�

0
G(EG)

O

IG,MAX

Q O�

0
G(EG) O�

0
G(X)

 

!

 

!

 

!

 

!

�  

!

�

as the left and right vertical maps are isomorphisms, and there are no nilpotent elem-
ents in the rationalized Burnside ring�0

G(EG) 
 Q, there are no nilpotent elements
in �

0
G(EG) 
 Q

Op, and so there exists a natural numbern such that the third condi-
tion holds.

Let OE � E be aG-invariant linear subspace with a finite dimensional,G-invariant
complementF0 satisfying the mountain pass condition 1 in Theorem 1.1. Forany finite
dimensional subspaceOF , the sumF D F0� OF satisfies

F � Br (F) � �a.

Lemma 5.4. There is a G-map f such that the diagram

(F, F � Br (F)) (E � {0}, �a)

(F, F � S(F0� F) (E � {0}, S( OE))

 

! i F

 

!

 

! f

 

!

jF

commutes, where iF and jF are given by inclusions.

Proof. Compare Lemma 5.2 in [16]. Define a mapf W E ! OE by sending the
bounded closed subspaceA in Theorem 1.1 to 0, mappingOE\�a into OE� Br ( OE) and
extending to all ofE, since OE is a proper,G-absolute retract, Theorem 3.9 in p. 1953
of [3].

The same argument as in Proposition 5.3, [16], p. 17 yields:

Proposition 5.5. For any equivariant cohomology theory, H�

G,

G-cat(E, �a) � H�

G lenght(S(F0� F)! S(F0� OE, S(F0)).

We now finish the proof of Theorem 1.1. This follows the proof of Proposition 3.2
in [12].

Proposition 5.6.

G-cat(E, �a) D1.
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Proof. Let Fn be an increasing sequence of finite dimensional linearG-subspaces
of OE such that OF D

S

Fn is infinite dimensional. as in [12], theO��
FIN

-length of the
inclusion

S(F0� Fn)! S(F0� OE, S(F0))

becomes arbitrarily large asn tends to infinity.
The properG-ANR S( OE) satisfies the hypothesis of Proposition 5.2.
Hence, there is an elementw 2 �0

G(EG) satisfying conditions 1 to 3 in Propos-
ition 5.2. let v and vn be the images ofw along the homomorphism induced by the
universal mapsS(F0� OE)! EG, respectivelyS(F0� OFn)! EG. Since the diagram

�

0
G(S(F0� OFn)) �

0
G(S(F0� OE), S(F0))

�

0
G(S(F0� OE)

 

!

j �
 

!

j �n

 

!

commutes up to homotopy,vn 2 im( j �n ), and Proposition 5.2 yields that for anyk there
is an n with O��

FIN
� lenght jn � k.

6. Concluding remarks

Paraphrasing Willem, [39], p. 3 minimax-type theorems usually consist of different
parts:
• Deformation lemma using some (pseudo)-gradient vector field.
• Construction of Palais–Smale typical sequences, which converge either due to some
a priori compactness condition, or which give critical points usingadditionala posteriori
information, typicallytopological intersection properties, like the intermediate value the-
orem, the Borsuk–Ulam theorem, degree notions, etc.

In this work, the proof given by Bartsch–Clapp Puppe was adapted using a Borsuk–
Ulam-type theorem, which may be deduced from Propositions 5.5 and 5.3. The prob-
lem of classifying the groups satisfying equivariant Borsuk–Ulam-type theorems has de-
served particular attention [10], [22], among others.

Let G be a discrete, linear group which acts properly and linearlyon finite dimen-
sional representation spheresSV . Define the Borsuk–Ulam functionbG(n) as the max-
imal natural numberk such that if there exists aG-map SV

! SW where dimV � n,
then dimW � k

PROBLEM 6.1. Classify all linear, discrete groups satisfying

lim
n!1

bG(n) D1

as in [10], [22], and in this work, Condition 1.2, the answer should involve restrictions
for the number of primes dividing the cardinality of the isotropy groups.
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REMARK 6.2 (Topological noncompact groups of symmetry). In the context of
Hamiltonian systems, some proper actions of non-compact Lie groups appear [36].
Equivariant cohomotopy theory has been extended in [7], [9]for these class of sym-
metries. The use of equivariant algebraic topology, particularly equivariant cohomotopy
may be useful. However, in this context, the Segal conjecture (which was the main
homotopy theoretical input of Theorem 1.1, crucially in theproof of the Borsuk–Ulam-
type result) is not true, as it is not even true for compact Liegroups, see [19], [13].

REMARK 6.3 (Equivariant degree notions for infinite discrete groups). In [7], an
equivariant degree notion for proper actions of discrete group is defined. This assigns
to a quadruple (E, F, T,c) consisting of locally trivialG-Hilbert bundles over a proper,
cocompactG-CW complex, a fibrewise Fredholm operatorT and a fibrewise compact
nonlinearity satisfying the property that the mapTxCcxW Ex! Fx defined on the fibers
Ex, Fx over each pointx is proper, an element in the equivariant cohomotopy�

�

G(X),
as introduced in Definition 4.3.
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