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Abstract

Let G be a compact Lie group and be a compact smootfs-manifold with
finitely many G-fixed points. We show that iK admits aG-equivariant hyperbolic
diffeomorphism having a certain convergence propertyettexists an open covering
of X indexed by theG-fixed points so that each open setGsinvariant andG-
equivariantly diffeomorphic to the tangenti@-representation at the corresponding
G-fixed point. We also show that the converse is also true ie @dsholomorphic
torus actions.

1. Introduction

It is known that there is a certain similarity between algéb€*-actions on smooth
complex projective varieties and smo@kactions on compact Riemannian manifolds aris-
ing from the negative gradient flows for Morse functions ($eeexample, [4, 2.4]). The
first similarity is that the both actions induce decompositi of acted spaces via affine
spaces, that is, the Biatynicki-Birula decompositions tr&lMorse decompositions.

On the other hand, a theorem of Biatynicki-Birula [2] statbat the existence of
an algebraicC*-action on a smooth complex projective variety implies tRestence of
an open covering of the variety so that each open set is iguiwto the affine space
having the same dimension and is invariant under@heaction. So, roughly speaking,
if a smooth complex projective variety has an algebr@itaction, it is covered by
representation spaces Gf*.

The aim of the present paper is to give a Morse theoretic couenteof the above
result of Bialynicki-Birula. More generally, we consider angpact smooth manifold
having an invariant hyperbolic diffeomorphism satisfyiagcertain convergence condi-
tion. Let us explain our result precisely.

Let G be a compact Lie group anX be a compact smootks-manifold with
finitely many G-fixed points. Letgp: X — X be a G-equivariant hyperbolic diffeo-
morphism of X. Then we say that the hyperbolic diffeomorphignsatisfying conver-
gence conditiorif the following three conditions are satisfied:
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(C1) the G-fixed point set coincides with the fixed point set f
(C2) for eachG-fixed point p, the intersection of the corresponding stable and unstable
manifolds is the singletorp},
(C3) for anyx € X, the sequence"(x) converges to &-fixed point whenn tends to
00 Or —o0.
Note that if ¢ is the hyperbolic diffeomorphism arising from the negatiyeadient
flow of a G-invariant Morse function relative to &-invariant Riemannian metric, it
satisfies the convergence condition. In particular, for egact torusT, every com-
pact HamiltonianT -space with finitely manyT -fixed points admits such a hyperbolic
diffeomorphism.

We next make the following definition:

DEFINITION. An open coveringy, | p € X®) of X indexed byG-fixed points
is called aG-representation coveringf X if each open set; is invariant under the
G-action and isG-equivariantly diffeomorphic to the tangenti@-representatiorm, X.

Under the above terminology, we will prove the following dinem:

Theorem 1.1. Assume that the compact smooth G-manifold X has a G-eqaidari
hyperbolic diffeomorphism satisfying the convergenceditmm. Then X admits a G-
representation covering.

Theorem 1.1 implies the following results:

Corollary 1.2. If X has a G-invariant Morse functignthere exists a G-
representation covering of X.

Corollary 1.3. Every compact Hamiltonian T-space with finitely many T -fixed
points admits a T -representation covering.

Concerning Theorem 1.1, a natural question arises: Doesdheerse of The-
orem 1.1 hold? The following second theorem gives a parffaireative answer, that
is, the converse is also true in case of holomorphic toruers:t

Theorem 1.4. Let T be a compact torus. Assume that a compact complex mani-
fold X with holomorphic T -action admits a T -representatemvering as a holomorphic
chart. Then it admits a T -equivariant hyperbolic diffeopitism satisfying the conver-
gence condition.

We explain the contents of the present paper. In Section 2ewgallrsome basic
definitions concerning hyperbolic diffeomorphisms and éngolic dynamical systems.
In Section 3, we prove Theorem 1.1. In Section 4, we give a atetio construct a
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hyperbolic dynamical system from torus actions and invari@most complex struc-
tures. Finally, in Section 5 we prove Theorem 1.4.

2. Hyperbolic dynamical systems

In this section we recall some fundamental definitions coming hyperbolic dy-
namical systems and hyperbolic diffeomorphisms. For thailde we refer [3], [11].

Let X be a compact manifold anél be a smooth vector field oX. Let ¢p: R x
X — X be the corresponding dynamical system. So the cd@ipg, X)}scr gives the
flow of & whose initial value isx.

Let p be a fixed point ofp. Recall that the differentiald¢),: T,X — TpX is
an R-linear transformation defined as follow: for a local fratbg ..., &, € ['(TU)
(n =dim X) on an open neighborhodd of p, the representation matrix o), with
respect to the ordered basg)p, ..., (5n)p is given by [&), f;]i,; where fi: U — R
are C*-function satisfyingé|y = > .-, fi&. It is straightforward to check that the
definition is independent of choice of local frame.

DEFINITION. (1) A fixed point p of ¢ is called ahyperbolic fixed poinbf ¢ if
the differential §&), has no complex eigenvalues whose real parts are zero.
(2) We say that is a hyperbolic vector fieldf all fixed points of ¢ are hyperbolic.

Let & be a hyperbolic vector field ang be a hyperbolic fixed point. Thetable
and unstable manifoldbf p are defined by

W(p) = {x e x | im p(s.x) = p}
and
wep)i= fx e x| im (s, = p)

respectively.
We next explain the notion of hyperbolic diffeomorphismsetly: X — X be a
diffeomorphism of X.

DEerFINITION. (1) A fixed point p of ¢ is called hyperbolic fixed poinof ¢ if
the differential ¢),: T, X — TpX has no complex eigenvalues whose absolute values
are 1.
(2) We say thatp is a hyperbolic diffeomorphisnof X if all fixed points of ¢ are
hyperbolic.
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Let ¢ be a hyperbolic diffeomorphism oK and p be a hyperbolic fixed point.
The stable and unstable manifoldof p are defined by

WE(p) = {x e x| fim 400 = p}
and

wep)i= fxe x| im ¢ = pl

respectively. Thestable manifold theorermstates that they are injectively immersed sub-
manifold of X.
We summarize the facts which will be needed in the later gpsti

Lemma 2.1. Leté& be a vector field on X ang: R x X — X be the correspond-
ing dynamical system.
(1) & is hyperbolic if and only if the diffeomorphisgy: X — X defined byps(x) :=
¢(s, X) is hyperbolic for all se R \ {0}.
(2) If the limits lims_.~ @(S, X) and limgs_,_ ¢(s, X) exist for all xe X, then the lim-
its liMmp_ @5(X) = p and lim,__,, ¢J(X) = p exist for all se R, x € X. Alsq the
corresponding stable and unstable manifolds coincide.

Proof. For (1), we refer [3, p. 113, Lemma 4.19]. (2) is clear. ]

3. Representation covering

Let G be a compact Lie group and be a compact smoots-manifold with fi-
nitely many G-fixed points. We introduce our main subject in this papeat tis, the
notion of G-representation coverings of:

DEFINITION. We say that a smoot-manifold X has aG-representation cover-
ing if there exists an open coveringJg|p € X®) of X indexed byG-fixed points
such that
(1) eachUy is G-invariant,

(2) Up = TpX as G-manifolds.

We give three examples of smooBrmanifolds admitting representation coverings.
EXAMPLE. Let
X="={(z1,...,20,9) €C"XR | |zaP + -+ |za]?+ * = 1}
be the &-dimensional sphere. We define an actionTot= (SH)" on S by

(tl, “ ey tn) . (Zl, ey Zn, S) = (tlZ]_, e ,thn, S).
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Then one can construct B-representation covering of the pai®¥, T) as follow:
Let " = Ug U Uy, Ug = {S # 1}, Uy = {s # —1} be the standard -invariant
open covering.
Then the maps

¢o: U = Tp,..00S",
¢t Uss = To,.0-1)S™

given by
_(A, &
©o(z1, ...,2n,8) = (1_5,..., 1_5),
_( 4 Zn
OoolZ1, .- -1 Zn, S) = (—1+S,...,—1+S)

are T-equivariant. Note that the former is the composition of stereographic projec-
tion and the componentwise complex conjugatieq (. ., z,) — (Z1, ..., Zn).

EXAMPLE. Let
X=CP"={[z0:21: 2] | (20, 21, . .., Z0) € C""1\ {(0, 0,..., O)}}

be the complex projective space of complex dimensioWe define an action of =
(SH" by

t, ... ) [o:zr:--z0] =[20: 1211 -+ - thzZn].

Then one can construct B-representation covering & P" as follow:
Let U; be an open set of P" defined by

U :={[z0:21:---:2]€CP" |z #0} (0<i <n).

Then the open covering( | 0 <i < n) gives aT-representation covering. The
same construction is possible for arbitrary toric manifdleé., complete non-singular
toric variety with the Hausdorff topology (see [5]).

ExAMPLE. Let G be a connected reductive algebraic group aeand B be a
Borel subgroup ofG. We take X and T as the flag manifold5/B and the compact
real form of the maximal torus o6 contained inB, respectively.

Then one can construct B-representation covering of the paiG(B, T) as fol-
low: Let X(wg) be the Bruhat cell corresponding to the longest elemanof W. We
setU, := wwytX(wo) (w € W). Then [12, p.149, 8.5.1. Proposition (ii)] and [12,
p.152, 8.5.10. Excercise (1)] imply that the open sgis | w € W} of X gives an
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open covering of the flag manifold and eachJ,, is T-equivariantly diffeomorphic to

P oo

aeAT

Here, A* is the set of positive roots corresponding to the Borel solpgB andg_,,
is the root space for the roetw . «.

To state our result, we make the following definition:

DEFINITION. We say that aG-equivariant hyperbolic diffeomorphism
p: X—> X

has convergence propertif it satisfies the following three properties:
(C1) XC C Fix(p),

(C2) W!(p) NW=(p) = {p} for all p e XC,

(C3) the limits lim_ ¢"(x) and lim,_,_,, ¢"(X) converge to somés-fixed points of
X for all x € X.

The following is our main theorem in this section:

Theorem 3.1. If X admits a G-equivariant hyperbolic diffeomorphism haycon-
vergence properfythen there exists a G-representation covering of X.

As a corollary one finds that the existence ofarepresentation covering gives an
obstruction for the existence @-invariant Morse functions:

Corollary 3.2. If X admits a G-invariant Morse functignthere exists a G-
representation covering of X.

Proof. Take a G-invariant Riemannian metric on X. L@t R x X — X be the
hyperbolic dynamical system associated to the negativeligm& vector field of the
G-invariant Morse function relative to the G-invariant Riannian metric. Then the
hyperbolic diffeomorphismp: X — X defined byp(x) := ¢(1,x) gives a G-equivariant
hyperbolic diffeomorphism having convergence property. ]

Corollary 3.2 implies the following. LeT be a compact torus.

Corollary 3.3. Every compact Hamiltonian T-manifold X with finitely many T-
fixed points admits a T -representation covering.

Proof. Let ®: X — (Lie(T))* be the moment map. Then for a generie hie(T),
the contraction®,: X — R, ®,(X) := (®(x))(a) give a T-invariant Morse function as
well known(see for exampl¢10]). ]
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REMARK. It is known a similarity between algebra€*-actions on smooth com-
plex projective varieties and thR-actions arising from negative gradient flows associ-
ated to Morse functions on compact manifolds (for example, [de 2.4]). A theorem
of Bialynicki-Birula [2] states that every smooth complerojective variety with an
algebraicC*-action has a Zariski open covering so that each Zariski oyegnis C*-
invariant and is isomorphic to an algebraic-representation. From this point of view,
Theorem 3.1 (or Corollary 3.2) can be thought as a Morse ttieareunterpart of the
above theorem of Bialynicki-Birula.

The rest of this section is devoted to the proof of Theorem 8/& begin by the
following lemma:

Lemma 3.4. Let E be a Banach spacé&) be an open neighborhood & € E
and f: U - E be a C°-map such that ) = 0, (df), = ide. If a positive real
number r> 0 satisfies that by measuring the operator nonmeg — (df)x| < 1/2 for
any x € By (0), then the restriction of f induces a°Gdiffeomorphism

f71(Br2(0)) N B (0) — B 2(0).

Proof. This follows from the proof of the inverse mappingdrem given in [8].
O

Let N be aG-manifold (not necessary compacy),be aG-fixed point of N and
¢: N = N be aG-equivariant hyperbolic diffeomorphism dfi having the following
properties:

e N®=Fix(p) = (p},
e pis the global attractor, i.eN = W3(p).

We fix a G-invariant Riemannian metric dfl and denote byj-|| the corresponding
fiberwise norm ofT N. For a positive real number > 0, we denote byB, (0) the open
ball in T,N which is centered at O and have radiusvith respect to the nornf - |.
We note that since the norh- || is G-invariant, eachB; (0) is invariant under thes-
action onTyN. The set{B;(0) | r > 0} forms a fundamental neighborhood system of
0€ TpN.

By focusing on the exponential map with respect to Génvariant Riemannian
metric, one can find a positive real numbRr> 0, a T-invariant open neighborhood
U of p and aG-equivariant diffeomorphism

¥:U — Br(0) (C TpN).
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We define aG-equivariant diffeomorphism

g: ¥(U N HU)) = ¥ (U NeU))
by
g:= ‘ﬁlunw(U) o </)|unqu(U) o 1/f_1|1//(Uﬂ¢7*1(U))-
In the rest of this section we s& := T,N for simplicity. We note that the vector
spaceE can be viewed as &-representation, i.e., the tangential representatiop. at

Let us define aC*-mapu: E — E by u(¢) = p(]|€]|)¢ where p is a C>-function
p: R — R depicted by the following picture:

P
A

N\

We note that since the fiberwise norm || is G-invariant and sinces acts onE
as a representation, th@*-mapu is G-equivariant.
Let A be the differential dg)o: E — E of g at 0 and we set

Y
=}

®:=Alog:yU NelU)) — E.

Since G acts onE as aG-representation, both oA and ® are G-equivariant. In
the rest of this section, we s&t := (U N ¢~1(U)) for simplicity.

What we first want to show is that the germ of the ngpy (U N ¢~1(U)) - E
at 0 coincides with the germ of &-equivariant diffeomorphisnin: E — E at 0, that
is, the maps coincide on an open neighborhood of 0.

For the proof of Theorem 3.1, we need to go back to the proothefdo-called
stable manifold theorem. We should remark that our argusnentemmas 3.5 and 3.6
are greatly influenced on the paper of Abbondandolo—Majer [1]

Under the above notations, we next show the following lemma:

Lemma 3.5. There exist positive real numbers ¥ 0, § > 0 and C*-maps
X:[0, 1] x B;2(0) = E, Y: [0, 1] x Bs;(0) — E satisfying the following conditions
(1) Y(0, 1] x Bs(0)) C B 2(0),

(2) Y(0,&) =¢& and (3Y/at)(t, &) = X(t, Y(t, &)) for all (t, &) € [0, 1] x B;s(0),
(3) Y(1,¢&) = ®(&) for all £ € Bs(0),
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(4) X and Y are G-equivariant with respect to the second compgsnen
(5) X(t,0)= 0, (D2Xt)o = 0 for each te [0, 1]. Here X is given by X(&) = X(t, &).

Proof. We follow up [1, Lemma 4.8]. We defineG*-mapY:[0,1]xV — E
by Y(t, &) = t®(&) + (1 —t)é and setY(§) := Y(t, §). Note that since the mag is
G-equivariant ands acts onE as a realG-representation, the mayj is G-equivariant
for eacht € [0, 1].

Let us consider a continuous mgj [0, 1] x V — R given by B(t, &) := |idg —
(dY)el. Since @Y;)o = ide for anyt € [0, 1], one finds that the set }({se R | s <
1/2}) is an open neighborhood of [0, ¥ {0} in [0, 1] x V. In particular, for each
t € [0, 1], we can choose an open neighborhaddof t in [0, 1] and a positive real
numberr, > 0 so thatU; x By, (0) C B71({s € R | s < 1/2}). Thanks to the compactness
of the closed interval [0, 1], there exist finitely many realmbersty, ..., t, € [0, 1]
so that [0, 1] is covered byU; | 1 <i < n}. We define a positive real number> 0
by r := mimn<j<nry,. Then one can easily deduce that [0x1Byx (0) C B71({s € R |
s < 1/2)).

Therefore we have thdidge — (dVY;)e| < 1/2 for all (t, &) € [0, 1] x B (0). Thus
by Lemma 3.4, we can conclude that there exists a positiverigaberr > 0 which
is independent of the parametee [0, 1] so that for each € [0, 1], the restriction of
Y; induces aC*-diffeomorphism

Y 4(Br 12(0)) N By (0) — Br 2(0).

We can choose the real numhberso thatB;(0) C V by takingr smaller if necessary.
Denote byY; the aboveC>-diffeomorphism and define &>-map H: [0, 1] x
Br,2(0) = E by H(t, &) := 7;1(5). It is easy to check thaH is T-equivariant with
respect to the second component.
We next claim that

[ Yo' (Br2(0) = Yo (B 2(0) N Yy (B 2(0)).
tel0,1]

Clearly the LHS is contained in the RHS. §f belongs to the RHS, one hgs=
Yo(¢) € Br2(0) and ®(£) = Y1(¢) € Br2(0). Thus by the convexity of the open ball
Br,2(0), we have thaty;(§) = t®(§) + (1 —t)¢ € B;»(0) for all t € [0, 1], as desired.

As a consequence, there exists a positive real nurfibe0 so that

Bs(Q) C () Yi'(Br2(0)N B (0)NV.
te[0,1]

Then eachY; induces an injectiorB;(0) — B 2(0). In particular, for eacht(£) €
[0, 1] x Bs(0) we haveY(t, &) € B ,2(0) and haveH(t, Y(t, §)) = &.
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Since we have chosen> 0 so thatB; (0) C V, the image ofH: [0,1]x Bs(0) — E
is contained inV. This allows us to define £°-map X: [0, 1] x B;,2(0) — E by
X(t, &) = ®(H(t, §)) — H(t, &§). It is clear thatX is G-equivariant with respect to the
second component.

In the above arguments, we have constructed G¥o-maps

X: [0, 1] x B /5(0) > E, Y: [0, 1] x By(0) — E.

It is straightforward to check that the positive real nunste and the above two
maps X, Y satisfy our desired properties. ]

Lemma 3.6. There exists a positive real number- 0 and a G-equivariant -
diffeomorphism h E — E satisfying the following conditions
(1) Be(0) C V N Bgr(0),
(2) hle.0) = 9l.(0)
(3) for each xe N, there exists a non-negative integefxh so that H®(x) € B,(0).

Proof. We follow up [1, Proposition 4.7]. LeX: [0, 1] x B,»(0) — E and
Y: [0, 1] x Bs(0) > E as in Lemma 3.5.

Since the functiono is identity on an open neighborhood ofe0R and has com-
pact support, there exist two positive real numbers € < ro so thatu|BSo(0) = idBSO(o)
and u(E) c B,(0). By the condition (5) in Lemma 3.5 and the Tayler's formuthe
argument presented in Lemma 3.5 shows that there exisiveos#al numbergy,r; > 0
so thate" /|| A|| < 1 and|X(t, &)| < €|&| for all (t, &) € [0, 1] x B;,(0). Let us define
i: E— E and X: [0, 1] x E — E by

a(e) = :—;u([—js) K(t, £) = X(t, U(e)).

Note thati|g,o) = idg, ) for s := (r1S)/ro, and G(E) C By, (0). Also note thati is
G-equivariant andX is G-equivariant with respect to the second component.

We claim that|X(t, £)| < e1(ro/So)|€] for all (t, &) € [0, 1] x E. If £ € Bs(0), the
estimate holds sinc&(t, £) = X(t, £). If & ¢ Bs(0), we have thatX(t, £)| < e1|d] <
er1 < e1(r1/9)|&| = ex(ro/o)|&|. As a consequence, for each- 0, X(t, &) is bounded
velocity on [0, 1]x B(0) in sense of [6, p.178].

Thus, [6, p.179, 1.1. Theorem] implies that there exists #&ue diffeotopy
Y:[0,1] x E — E. So we have thatd(f/at)(t, £) = X(t, Y(t, £)) and Y(0, &) = &.
Thanks to theG-equivariancy ofX, the mapg™-Y(t, g- &) is also the solution of
this equation for eacly € G. Thus one finds tha¥ is G-equivariant with respect to
the second component.
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We next show that the estimal¥(t,£)| < e/} |¢| holds for all ¢,£) € [0,1]xE.
From the defining equation of (t, &), we have

- - - tay t
Vit £)—¢ =Y(t,s)—v(o,5)=/o 6 S)d5=/o X(s, ¥(s, &) ds.
From this, one also has

~ t ~ ~
¥t £)] = ‘s RO

t ~ ~
s|s|+/0 IX(s, (s, £))] ds
t ~
< |&] +/0 €1(ro/s0)|Y (s, &)| ds.

By applying Gronwall’s integral inequality, we obtain thesited inequality.

Moreover, sinceX and X coincide locally, the argument presented in Lemma 3.11
shows that there exists a positive real number0 so thatY andY coincide on [0, 1k
B.(0), and B.(0) c V N Bg(0) N B;s(0).

Let us define a diffeomorphisnd: E — E by ®(¢) := Y(1, £). Then we claim
that a maph: E — E defined byh := Ao ® is the desired diffeomorphism. Note that
h is clearly G-equivariant.

The condition (1) is clear. The condition (2) holds sin¢él, §) = (&) for all
£ € B5(0) andY and Y coincide locally. Finally, since

&) < IA]|DE)] < || Alle/2)g|

and || Al|es:(o/%) < 1, the condition (3) holds.
The proof is now complete. ]

Proposition 3.7. There exists a G-equivariant Gdiffeomorphism §JN — N.

Proof. This follows from a standard argument and Lemma 3W&.describe the
proof to check theG-equivariancy.

Take aG-equivariantC>-diffeomorphismh: E — E as in Lemma 3.6. Let us define
a mapg: N — E as follow. For a pointk € N, one can find a non-negative integeso
that ¢"(x) € ¥ 1(B.(0)). By using the integen, we defineg(x) := h="(y(¢"(x))). We
claim that the valuey(x) is independent of the integerwheneverp"(x) € ¥ (B, (0)).
To prove the claim, we first note that(¢"(x)) € B.(0). Since we have chosen the
diffeomorphismh so thath|g, ) = 9lg, (), 0ne obtains thal(y (¢"(x))) = 9(¥ (¢"(X))).
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Henceforth we have that

h="(y (¢"(x))) = K=" D(h(y (" (x))))
= h " gy (9" ()))
= h" (Y o g oy H (Y (" ()))
= h™ "Dy (" (x)).

This completes the proof of the well-definedness¢of Note that¢ is clearly G-
equivariant.

We next construct the inverse ¢f Foré& € E, one can find a non-negative integer
n so thath"(¢) € B.(0). Then we defings: E — N by ¢(&) := ¢ "(v 1(h"(&))). The
same argument shows that the vaigig) is independent of the integer whenever
h"(¢) € B.(0).

Since¢ clearly gives the inverse ap, the proof is now complete. ]

We go to the next step. L& be a finite dimensional redb-representation and
w: E — W be a smoothG-equivariant vector bundle ova/. Let V: I'(TW)xI'(E) —
I'(E) be aG-equivariant covariant derivative, that is, a covariantivdgive having the
property that

(Vge(9-9))(g-x) = g- ((Ves)(x))

forall ge G, £§ e '(TW), se I'(E), x € W. Note that such a covariant derivative
exists since for a fixed covariant derivati%¥ one can construct &-equivariant co-
variant derivativeV by averaging as follow:

(Ve9)(x) = / [0! Vge(g- 9))(X) dg

geG

Heredg is the Haar measure @& normalized so tha}fgeG dg = 1.

For a pointx € W, we define a curve,: [0, 1] > W by c(t) := (1 —t)x. We
denote byP, : 771(x) — 7~%(0) the parallel transport associated to the curyeand
the covariant derivativev. Let I'(cs) be the set of smooth sections & along the
curve cx. Note that an elemerg € G induces a mam.: I'(cx) — I'(cyx) defined by
(9:9)(t) := g- (s(t)).

Recall from elementary differential geometry that thereistsx an R-linear
transformation

D
a: I'(cx) — I'(cx)

which is characterized by the following two properties:
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(1) (D/dt)(fs) = (df/dt)s+ f(Ds/dt) (f € C=([0, 1]), s € I'(cx)),
(2) if seI'(cx) is given bys(t) = 3(ck(t)) (t € (a, b)) for somes € T'(E) and two real
numbers 0< a < b <1, then we have

D
d_ts(t) = Ved (te(@ b))

Lemma 3.8. The diagram

P(c) —% T(cy)

o e

F(Cg.x) W F(Cg.x)
commutes for all ¢ G, x e W.

Proof. Takes € I'(ck) andty € [0, 1]. Then by considering a local frame &
aroundcy(tp), one can take a global sectiéne I'(E) and two real numbers 8 a <
b <1 so thats(t) = 5(ck(t)) for all t € (a, b).

Then one has that

Ds -
(9* a) (to) = 9- (Ve t)9)

= Ve, )(9-5) (asV is G-equivariant).
On the other hand, since
(9-9)(Cgx(1)) = g~ (5(g "~ (cgx(M)))) = g~ (3(ex(1)) = g (S(t)) = (g:)(1),

we have that

D(9-9)
dt

Ve, t)(9-8) = (to).

This completes the proof. ]

Corollary 3.9. We have that £ (g-v) = g- (P, (v)) for all g € G, x e W,
v e 7 (x).

Proof. Lets € I'(ck) be the parallel section along to the curge (so one has
Ds/dt = 0).
By the definition of the parallel transport, we have tb@) = v and P, (v) = s(1).
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Then the curvey.s € I'(cyx) satisfies that

(9:5)(0)=9g-(s(0)) =g-v
and
D(g:s)  Ds
at ¥ =0

by Lemma 3.8.
Thus we have that

Pegx (9 1) = (9:5)(1) = g (s(1)) = g (P, (v))
as desired. ]

Proposition 3.10. E is isomorphic to Wk ~1(0) as a G-equivariant smooth vec-
tor bundle over W. Here the G-action on ¥Wr~1(0) is given by the diagonal one.

Proof. We define a mag: E — W x 7~%(0) by ¥(u) := ((u), Pe,,(U)). Then
the mapW gives an isomorphism of smooth vector bundles andsiequivariant by
Lemma 3.9. O

We are now in the position to prove Theorem 3.1.

Proof of Theorem 3.1. By the assumption (C2Y3(p) and WY(p) are embed-
ded G-invariant submanifold ofX (see, for example, [3, p.115, Lemma 4.20]). Thus
one can applyG-equivariant tubular neighborhood theorem [7, p.178, Tér04.8]
to W3(p), and has aG-invariant open neighborhood, of W3(p) in X which is G-
equivariantly diffeomorphic to the normal bundle

Vp 1= T X|Ws(p)/T VVS(p)
of W5(p) in X.
On the other hand, we have the following seriesse&quivariant diffeomorphisms:
Vp ~T X|Ws(p)/T V\/S(p)
=~ WS(p) x (ToX/TpWS3(p)) (as Proposition 3.7 and 3.10)
= W3(p) x T,WY(p) (as TpX = T,W3(p) & T,W"(p))
~ ToWS(p) x T,W"(p) (as Proposition 3.7)
=~ TpX.
Since X is decomposed into stable manifoldl¢*(p) by the assumption (C3), the

family (Up | p € X©) of G-stable open sets gives a desit@erepresentation covering
of X. O
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4. Topological generators and hyperbolicity

In the previous section, we have shown that if a smddtmanifold admits a cer-
tain equivariant hyperbolic diffeomorphism, it also adsnitG-representation covering.
Then the following natural question arise: “Does the coseeof Theorem 3.1
hold?”. Unfortunately, the author do not have any satisigcanswer to the question.

The aim of this and the next section is to give a partial afftiveaanswer for the
above question. Roughly speaking, we will show that the em® is also true in case
of holomorphic torus actions.

In this section we give a method to construct hyperbolic dyisal systems from
torus actions with invariant almost complex structures.

Let T = (SY" be the compact torus of rarmkand X be a smooth @-dimensional
T-manifold with an almost complex structute compatible with theT -action (the term
“compatible” means that for eadche T, x € X, the induced map,: TyX — T« X is
C-linear with respect tal, and J;.x).

To construct a hyperbolic dynamical system from the torusoacwe focus on a
topological generatory of T (by the definition, the cyclic grouptg | k € Z} generated
by tp is a dense subset of the compact tofils We also take an elememt of the
Lie algebrat of T so that expdy) = tg. Let us denote by, the fundamental vector
field associated t@y. By the definition we have

d
(o)t = S d(exp6a) - X)
S s=0
for all smooth functiong: X — R andx € X.
We set&; := —J&, and denote by zerg{) and zerofj) the set of zero points of
£ and & respectively.

Lemma 4.1. We have the following
Jy —yT
zero;) = zerogp) = X'.

Proof. The first equality and the inclusion zegg)(> X' are clear. To see the
inverse inclusion zergg) c X', let p € zero ). Sincety is a topological generator
of T, it is enough to show that - p = p.

Assume thatty - p #% p. Then there exists a smooth functign X — R which

separateso - p and p, that is, ¢(to - p) # ¢(p).
We define a smooth functiogy: R — R by

$o(S) = d(expEay) - p)-
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We also define a diffeomorphismy: X — X by po(x) = (exp&dp)) - X. Then we have

d

d
d—scbo(S) e = d—s¢(exp(sa>)- p)

s=%

d
= d—s¢(exp((s + S0)ao) - p)

s=0

d
= ~<(® po)(expia) - P)

s=0
= (é0)p(¢ © po)
=0

for all s € R. Thus the functionpg is a constant function. In particular, by taking the
values ats = 0 ands = 1, we haveg(tp - p) = ¢(p). This is a contradiction. ]

REMARK 4.2. The following seems to be well-known:
if HO%(X) = {0}, we have thatXT # @.

In fact, one can give a short proof of this fact using our vedield &: Assume that
XT =@. Then zerofp) = @ by Lemma 4.1. Henceforth [9,FRRPERTY 9.7] implies that
the Euler class ofX vanishes. So the Euler characteristic Xfalso vanishes. This is
a contradiction.

Let us denote by’ : R x X — X the dynamical system corresponding&y.
We take a Riemannian metrig of X which is T-invariant andJ-Hermitian (note
that for aT-invariant metricgy, the metric
_ Go(u, v) + go(Ju, Jv)

o(u, v) := > (u, v e Ty X, x € X)

has the required property since we assumed tha compatible with theT -action).
For aT-fixed point p of X, let exp,: ToX — X be the exponential map associated to
the Levi-Civita connection ofy. This is T-invariant and the differential at the origin
of T, X is the identity map under the natural identificatids{(T, X) = T, X. Thus there
exists a positive real numbér so that the restriction

expyle;0): Bs(0) — expy(B;(0))

gives aT-equivariant diffeomorphism (her8;(0) is the open ball whose center is 0
and radius is5 in T, X with respect to the metrig). We setU;, := exp,(B;(0)).
Moreover, by composing the diffeomorphism and Thequivariant diffeomorphism

u

VI+u[?

ToX — Bs(0), U
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we obtain aT-equivariant diffeomorphisnp,: T, X — U,.
Let

n
TpX = @P(TpX)*
i=1
be the irreducible decomposition of tiierepresentation spacg, X. Hereapi: T — St
is a weight of theT -representation and

(TpX)™ = {u e TpX | t-U = api(t)u (t € T)}

is the corresponding weight space.
We fix aC-baseup 1, ..., Upn Of TpX so thatup; € (TpX)* for all i. Then we
have a local coordinate systerd; X1, Y1, ..., Xn, Yn) @around p defined by

9o (X) = D_(% (%) + V=1yi ())up,.
i=1

Lemma 4.3. Assume that X is non-empty and finite. Thep?: R x X — X is
a hyperbolic dynamical system on X.

Proof. We set

n n

0 0
folu, = fios +Zg‘a_yi (fi, g € C®(Up)).
i=1 i=1

So one has
n

3 i 3
&lu, =—Z fi‘]ﬁ_zgi‘]a_yi'
i=1

i=1

By the definition of the coordinate functions, vi, ..., Xn, Yo and T-equivariancy
of ¢p: ToX — U,, we have

fi(x) = (§o)xXi

d
= X (Exp6a) - X)

s=0

= %(R-coefﬁcient ofup; in expEa) - (Z(Xi (x) + \/—_1Yi (X))up,i>)

i=1

d
= g () Reap,(expEa)) — ¥i(X) Im ap, (€xpEa)))

s=0
= X (X) Redap,i(ao) — Yi(X) Im dapi (a0)
= —¥i(X) Im dap,(ao)
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for all x € Up. A similar calculation shows that

gi(X) = % (X) Im dap,(ao)-
Thus we obtain that

n n

3 9

&lu, =Y i Im darpi(@0)d 7 > % Im dap,i(ao)\]a—yi.
i=1 i=1

By using the local frame

d ad d ad
J—J—, ..., J—, J—,
ox1’ gyt axn’ - gyn

to compute the eigenvalues ad&y),: TpX — TpX, one finds that the representation
matrix is given by

diag@y, &, ..., an, &) (& = Imday;(ag)).

Let us assume that? is not hyperbolic. Then th&-linear transformationdg,),,
has a complex eigenvalue whose real part is zero. Hence weahav 0 for somei €
{1,...,n}. Sincedap; is v—1R-valued, we also obtain thalxp;(ag) = 0. This implies
thatop i (to) = ap,i(€Xplo)) = explayp;i(a)) = 1. Sow,; is identically equal to 1 since
to is a topological generator of. This implies that T, X)*» is the trivial irreducible
T-representation. Since expB;(0) — Up is a T-equivariant diffeomorphism, we have
XT D exp,(Bs(0)N(TpX)*»'). This is a contradiction since diX"™ = 0 and dimB;(0)N
(TpX)2ei = 2. O

Lemma 4.4. ¢J(t-x)=t-pJ(x) forallseR, teT, x € X.

Proof. Since the almost complex structudeis compatible with theT-action,
we have

d d
d_S(pSJ (t-x)=t, d_s(pSJ (X) = —t.(I&0)ga0) = — 20 ENta2 0 = € tga0)-

This completes the proof. ]

5. Existence of equivariant hyperbolic diffeomorphisms

Let X be a compact compleX -manifold with finitely manyT-fixed points ad-
mitting a T-representation coveringJg | p € XT). We say that theT -representation
covering isholomorphicif U, = T, X as complexT-manifolds.

In the rest of this section, we assume that therepresentation covering is
holomorphic.
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Let p be aT-fixed point of X and Up; x%, y%,...,x", y") be the coordinate neigh-
borhood induced from the corresponding complexepresentation as in Section 4.
Using the coordinate obJ,, we define a Riemannian metrg? on U, as follow:

g<p>(_, _) =0 (1<i,j<n),

a 0 i 0 0 i o
g"”(ﬁ. m) = gje ™, g(p)(a_yi’ W) =geVl (1=<i,j=<n).

Here the symbob;; stands for the Kronecker's delta.
Let (0P | p e XT) be a partition of unity associated to the open coveridg |
p € XT). Then we define a Riemannian metgcon X by

g:= Z pP g,

peXT
We set

lul® = Vg®P(u,u), vl := Vo, v)

for pe XT,ue TUp, veTX

Proposition 5.1. [/%l,3x) converges td when s tends teo for any xe X.

Proof. One can take @&-fixed point p so thatx is contained inU.
Then the same calculation in the proof of Lemma 4.3 shows that

n

9 o9
J = 'XI — i I_-
£lu, ;a ™ +;ay 3y
in the coordinate systenug; x*, yi, ..., x", y").
Henceforth the flowp] (x) is expressed as follow:

@s(X) = (P17 ™%, qie ™%, ..., phe ™5, goe *°).

Here (1,041, ..., Pn, 0n) € R is the coordinate of the point in the coordinate neigh-
borhood Uy, : xt, y%, ..., x", y").
As a consequence, we have that

n

n
U197 = 3 a?preasIpie™ 4 3 gogPe-asiale™,
$s X
i=1

i=1

We claim that whers — oo, the terma?p?e2s-IPI€™* converges to 0. This is
because that
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e if pp =0, the claim is obvious,
e if pp#0 anda > 0, the claim is also obvious,
e if pp#0 anda < 0, the claim follows from the fact that

—2gs—|ple®® - —o0

whens — oo.
The same consideration shows that the tefig?e—23s-191¢"* also converges to 0

whens — co. Thus we have thaé] ||fp’j’(x) — 0 whens — oc.

Since p(P) is bounded, we also havg [|,:) — 0 whens — oc. O
The following is our main theorem in this section:

Theorem 5.2. There exists a T-invariant hyperbolic diffeomorphigm X — X
satisfying the convergence property.

Proof. We define a diffeomorphisgr X — X by ¢(x) = ¢ (x). By Lemmas 2.1,
4.3 and 4.4, is a T-equivariant hyperbolic diffeomorphism. The local exies of
the vector fieldsy on U, presented in Proposition 5.1 shows that each opetJges
stable under the inducel-action. So the expression of the flow presented in Propos-
ition 5.1 shows thaty satisfies the condition (C1), (C2).

We next prove that’ satisfies the condition (C3).

We first consider the case that> co. Let x be a point ofX. Since X is sequen-
tially compact, there exists a real sequefisgy >, having the following two properties:
o {sn}32, is strictly increasing and is divergent te.

. go;(x) converges to a poinp of X whenn tends tooco.

By Proposition 5.1 we have

J _ J N H J —
15 e = 150 llimy-.c 02,00 = 1M 11E5 llg2 ) = O-

Henceforth p is a T-fixed point of X by Lemma 4.1. We show that the flow
@ (x) converges to théT-fixed point p when s tends tooo. We proceed proof by
contradiction.

Assume that the flowp?(x) does not converge to thE-fixed point p. Since X'
is finite, one can take a compact neighborhdodof p so thatk N XT = {p}. Then
there exists an open skt of X having the following two properties:

e peUCK.
e There exists a strictly increasing sequeris;> ; so thats, is divergent tooo and
g (x) is in K\ U for all n > 1.

Since X is sequentially compact, by taking a subsequence if neggssae may
assume that the sequen-tz%(x)}ﬁ"=l converges to a poinp’ of X. Then the argument
used in the proof thap is a T-fixed point also implies thap’ is a T-fixed point of X.
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However, sincep%(x) is in the closed seK \U for all n > 1, the T-fixed point p’ must
be contained irK and differs fromp. This contradicts to the fact tha¢ N XT = {p}.
This completes the proof that the limit lim., J(x) converges to som& -fixed point
of X.

The convergence of lig,_, ¢J(x) follows from the above case by changing the
elementag to —ag.

The proof is now complete. O
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