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Abstract

Let G be an open set dR? (d > 2) anddx denotes the Lebesgue measure on
it. We construct a diffusion process with jumps associatétl diffusion data (diffu-
sion coefficientsa;j (x)}, a drift coefficient{b; (x)} and a killing functionc(x)) and a

Lévy kernelk(x, y) in terms of a lower bounded semi-Dirichlet form arf(G; dx).
When G is the whole space, we allow that the diffusion coefficientsyrdegenerate.
We also show some Sobolev inequalities for the Dirichletfaand then show the
absolute continuity of its resolvent.

1. Introduction

Consider the following (formal) second order partial diffetial operator with a
non-local part:

Lu(x) := Lcu(x) + Lju(x)

-2 Zd: i(a* (x)i)u(x) - Zd: by (X)iu(x) —c(x)u(x)
(1.1) T2 = ax T ax; - %

ihj=1

+ lim 1'/ (u(y) —uxX))k(x, y)dy, x e G,
[X=y|>1/n

n—oo 2

wherea;j, b andc are measurable functions defined on an operGset RY fori,j =
1,2,...,d andk(x, y) is a measurable function defined @&x G \ {(x, X): x € G}.

A main purpose of the present paper is devoted to construiftusidn process with
jumps onG associated with the operatér To carry out this program, we adopt the lower
bounded semi-Dirichlet form theory, which has been devedopecently (see [8, 18]), to
show the existence of a diffusion process with jumps3associated witlC under some
assumptions on the diffusion daa; (x), bi (x), c(x)} and the Lévy kernek(x, y).

A construction of diffusion processes with jumps have beedenby many peo-
ple including Komatsu [11], Stroock [23] and Lepeltier and rtaal [14] in the 1970s
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already by making use of the theory of martingale problemshertheory of pseudo
differential operators (see [10, 2]). Bensoussan and Li@sconsidered the elliptic
differential operators with jumps to study the stochastmtool and stopping prob-
lems of diffusion processes with jumps (see also [9]). In mmetric process case,
many examples are considered using the Dirichlet form théfa). In [15], Ma and
Rockner also gave some examples of diffusion processesjuviths via non-symmetric
Dirichlet forms. In the papers/books mentioned above, tiffeision coefficients must
not degenerate when the drift term does not vanish (inctuttie case where the jump
term vanishes).

In this paper, we will pay special attention to the followitvgo types of conditions
on the data in the subsequent sections. We emphasize tkiay the jump term into
consideration, we can allow the diffusion coefficients mageherate even when the
drift term does not vanish (see Section 4).

To construct a diffusion process with jumps, we consider ftil®wing quadratic
form: For eachn € N,

1.2)
n"(u, v)

—/ L u(x)v(x) dx = —/(/:Cu(c)v(x)—|—£’j‘u(x)v(x))dx
G G

= nO(u, v) + 0"V (u, v)

=3 Z/ BU(X) BU(X) dx +Z/ bi (x)u(x) folx )dx+/ u(x)v(x)c(x) dx

|]l
1

- /|x—y>1/n(U(y) — u(x))u(xK(x, y) dx dy.

We will show the finite limitn(u,v) = limn_ n"(u, v) exists for appropriate func-
tions u, v and then consider a question whether the limit produces & Hiatess by
using the lower bounded semi-Dirichlet form. We will alscedbat the limit has the
following expression:

(1.3)

=13 [ 00505 ax +Z ) 50900 2 ax

Ijl

4 / UV dx + [ (U(X) — U0 — v(y)ke(x, y) dx dy
G X#Y

4 / (U(X) — u(y))o(0ka(x, y) dx dy,
XF£Y

where ks(x, y) = (1/2)(k(x, y) + k(y, X)) and ka(x, y) = (1/2)(k(x, y) — k(y, x)) for
X # y (see the condition (J.2) in Section 3).
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The organization of this paper is as follows: In the next isectwe introduce a
notion of lower bounded semi-Dirichlet forms. In Sectionsaad 4, we construct a
regular lower bounded semi-Dirichlet form under the twoesagespectively. Note that,
in Section 4, we will show that it is possible to construct &udion process with
jumps in the case where the diffusion coefficients may dege@eand the drift co-
efficient does not vanish. In Section 5, after stating theo@asion of the diffusion
process with jumps, we give a martingale characterizatiothe process and we also
give a conservativeness criteria for the process. We wituis a simple example in
the last section.

2. Preliminaries—lower bounded semi-Dirichlet form—

In this section, we give a definition of lower bounded semikdbiet forms. To
this end, letX be a locally compact separable metric space and positive Radon
measure onX with full support. LetF be a dense subspace bf(X:;m) satisfying
f A1e F wheneverf € F. Denote by ¢, -) the inner product inL? and by| - ||.»
the LP-norm in LP for 1 < p < oo. A bilinear form n defined onF x F is called a
lower bounded closed form ob?(X;m) if the following conditions are satisfied: there
exists ag > 0 such that
(B.1) (lower boundedness): for anye F, ng(u, u) > 0, where

np(u, v) = n(u, v) + B(U, v), u,veF.

(B.2) (weak sector condition): there exists a constdnt 1 so that

[n(u, v)| < Ky/ng(u, u)- /ng(v,v) for u,veF.
(B.3) (closedness): the spade is closed with respect to the norgin,(u, u), u € F,
for some, or equivalently, for alk > 8.

For a lower bounded closed formy,(F) on L2(X;m), there exist unique semi-
groups{T;; t > 0}, {T;; t > O} of linear operators or.2(X; m) satisfying

21) Mf 9 =(fTa), ITfllz<e”, |Tflz<e”, fgel’X:m) t>0,
such that their Laplace transforn@, and G, are determined for > B by

Guf, Gof € F, no(Gyf,u) = no(u, Go f) = (f,u), felL?X;m), ueF.
{Ty; t > 0} is said to beMarkovianif 0 < T, f <1, t > 0, wheneverf e L2(X; m),
0 < f < 1. H. Kunita showed in [12] that the semi-groyp;; t > 0} is Markovian if

and only if

(2.2) UueF and np(Uu,u—Uu)>0 forany ueF,
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whereUu denotes the unit contraction of Uu = (Ovu)Al. A lower bounded closed
form (n, F) on L2(X; m) satisfying (2.2) is called éower bounded semi-Dirichlet form
on L?(X; m).

A lower bounded semi-Dirichlet formn( F) is said to be regular ifF N Co(X) is
uniformly dense irCy(X) andn,-dense inF for « > 8, whereCy(X) denotes the space
of continuous functions oiX with compact support. Carrillo-Menendez [4] constructed
a Hunt process properly associated with any regular lowentéed semi-Dirichlet form
on L2(X; m).

3. Diffusion process with jumps—uniformly elliptic case—

Let G be an open set aRY. Throughout this section, we make the following as-
sumptions org;j, b, ¢ andk:
(D.1) there exists B< A < A such that

d

MEP =Y aj(0EE < Alg]? for xeG, £ € RC.
ij=1

(D.2) by € L™(G) for some pg with d < pg < oo if G is bounded and; € LY(G) U
L>°(G) when G is unbounded foi =1, 2,...,d.

(D.3) c e LY3G) U L>(G).

(J.1) Mg € L} (G) for Mg(x) = fy;éx(l/\ IX — y|Pks(X, y) dy, x € G.

(J.2) C1 1= suUpg flx—ylzl,yeG'ka(x’ y)| dy < oo and there exists a constapte (0, 1]
such that

C, := sup lka(x, y)|" dy < o0
xeG J|x—y|<1l,yeG

and, for some constar@@; > 0,
Ika(X, Y)[>7 < Csks(X,y), X,yeG with O<|x—y| <1

Here ks and k, are defined by

(%, ¥) = K06 Y)Y ), kalx, 1) = Sk W) k(Y X)X, Y € G, X £,

respectively. _
In [8, Proposition 1], we showed that for amy v € CS”(G), the limit

nWD(u, v) ;= lim UV, v) = — lim [ (u(y) — u(x))v(x)k(x, y) dx dy
n—o0 Ix=y|>1/n

n—o0
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exists under the assumptions (J.1) and (J.2). Moreover thi has the following
expression:

%Www=%/ (U() — U(Y))(U(X) — U(Y)ks(x, y) dx dy
X#Y
+/]#w&)—MWMWW4&wdxdy
XAy

REMARK 3.1. Quite recently, Schilling and Wang in [19] simplifiedetlcondi-
tions (J.2) as follows:

2
(3.1) sup/ Ka(x, ¥) d
xeG J{yeG:ks(x,y)#0} kS(X, y)

and investigated the generator and the co-generator ofotime. fBut in this paper, we
keep the conditions as (J.1), (J.2). Note that under theittond3.1), they showed
that the quadratic formy becomes indeed a lower-bounded semi-Dirichlet form in the
same way as ours [8].

Let us now define fou, v € C}(G),

Eu,v) = E9u, v) + EV(U, v)
3.2) - _Z/ 3_X|( )—(X)dx
"2 / /X#(”(X) — u(Y)(u(x) — u(y)ks(x, y) dx dy.

Under the assumption (J.1), we easily séeC(é(G)) is a closable symmetric form on
L%(G) and denote byF the closure ofC3(G) with respect toy/&1(-, -):

E1(u, v) := &(u, v) —i—/ u(x)v(x) dx, u, v e CH(G).
G

We now show that the formy satisfies the weak sector condition and the lower
boundedness condition: there exists a positive condfast0 andg > 0 so that

(3.3) ng(u,u) >0, uerF
and
(3.4) In(u, v)| < Ky/ng(u, u)y/ng(v, v), for u,verF.

For the non-local pary¥), we have already shown in [8, Theorem 1] that

(3.5) N, v)] < 2v2\/EP(u, u) /€D v, v)
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and
) 0 1
(3.6) Mg (U, U) = ZgﬂO (u,u), u,veCyG)

for Bp = 8(C1 v C,C3) under the assumption (J.1) and (J.2). As for the local p&H

d au(x) d 3
"(C)(”'”)::Z/Gaii(x) lajf(T() Q;))(()j() dX+iZ:;/Gbi(x)u(x) o0 4y

T X
ax,
+ /G u(x)v(x)c(x) dx

Stampacchia showed in [22] (see also [13]) the weak sectoditton with respect to
the Sobolev norm for the formy©. We give the proof for reader’s convenience. In
showing these properties, the following Gagliardo—Niengb-Sobolev inequality plays
an important role:

Lemma 3.1 (see [5, p.138] and [16]) For 1 < p < d, there exists a positive
constant C> 0 depending only on p and d such that

, ueCiG).

d
(3.7) luflLsaen <C Y
i=1 Le

au
9%

Proposition 3.1. Let G be an open set &Y. AssumgD.1)—(D.3)hold. Then it
follows that for some constant K> 0,

ov

1n©(u, v)|
1/2
' a%

(Lo o) (S

Kiy/E9(u, u) - €O, v)

IA

) 1/2
dx + / v? dx)
G

for any u v € C}(G).

Proof. According to Assumptions (D.1) and (D.2), we find tfatu, v € C}(G),

LB E

ou
X%

ov
9%

2
dx

d au dv
> / A oo 9%
ij=1YC Xi 0Xj
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and

= Z/b2u2dx JZ/
2(/)(/) IR

< (é/(}wddx) lull s - m

Here we used the Holder inequality in the last inequalityhe pair (,q) with 1/p =
(d—2)/d and ¥q = 1—1/p = 2/d. We now estimate the terrfiuvc dx in n©. First
we assume that € L*°(G). Then we see that

ax.

/

2

IA

ax.

Z

= llcllcollull 2l 2.

‘/ u(x)v(x)c(x) dx
G

When ¢ € LY%(G), using the Hélder inequality and then the Schwarz inetyalie
find that

‘/ u(x)v(x)c(x) dx
© (d—2)/d
< ( [ utuor e dx) el
G

(d—2)/(2d) (d—2)/(2d)
- ( /G |u(x)|2d/<“>dx) ( /G |v(x)|2d/<dz>dx) el o

= [lufl L2 - [[vll L2 - [[C]| a2

Then using the previous lemma (in the cgse= 2), it follows that

LT [T
{idore)”

et (e 5122 )

8xI ax.

2

) i;/
L)

ax. ax.

3x.
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EAJ/G XJ/
+(c+1)¢d_+1<§;/e|bi|ddx)l/d-lfe
J/ 2dx+2/
+C2(d+1)||C||Ld/2J/ Uzdx+2/
[ S|

Kiy/€9w, u)- /O, v),

where

9X%;

0X%;

.J/szdx+é[6§—)zz
.J/UdeJrZ/

| /\

3X| aXl

d 1/d
Ki:= A+ (C+1)Vd+ 1<Z / 3% dx) + C2(d + 1)|[c]| e O
i=1 76

Combining the proposition with (3.5), we have the following

Proposition 3.2. Assume that(D.1)—(D.3) and (J.1)—(J.2)hold for some large
A > 0. Then there exists a positive constant>K0 and 8 > 0 such that

ng(u,u) >0, VYue ct 5(G)

and

In(u, v)] < Ky/ng(u, u)- v/ng(v,v), VYu,ve Cé(G).

Proof. Since the lower boundedness and the weak sectortimondif the jump
part are known by (3.5) and (3.6), we only consider the diffaspart n©. In fact,
suppose that

D, )| < Cory/nPu, w)- 1P, v)

and

(U, V)| < Coy/n(u, 1) - /1w, v)
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for u,v € Cé(G). Then by using an elementary inequality:

VA-VB++/C-VD=v2-J/A+C-VB+D

for nonnegative numberé, B,C and D, the weak sector condition of the formholds
for putting 8 = B1 + Ba:

In(u,v)| < [nP U, )|+ IO, )| < V2-(C1v C2) /15U, W) v/15(v, v), U, € CY(G).
We adopt an argument developed in [22] to estimate the diffupartn© as follows.

First we assume € LY?(G; m) in (D.3). By using the uniformly ellipticity (D.1) and
Proposition 3.1, we find that

d auz
O, u) > A /_
19, u) = ; 5%

2
—llclfLez - ||U|||_2d/<d—2)
d

zxz
d d

( DI cncnm)z
=1 1

d
- 2<A —C Y JbiflLa— C||C|||_d/z)5(c)(u, u).

i=1

d
— > lIbillLe - flull zsea -
i=1

d

an. Is - C Z

=1

au du ||?
- Cc C||—
o —llefle H o

2

L2

Hence, if we assume that, for example,

d
A
(3.8) C Y lIbillis + Cllelluse < 3,
i=1

then we see fou € C}(G), n©(u, u) = A€@(u, u) and this gives us the lower bound-
edness of;©. Whenc e L>(G; m), the elliptic constant. can be taken a bit smaller:

d A
c;nbi e <5,

but B then should be chosen as+ ||c||.~ in this case.
On the other hand, according to Proposition 3.1, we havediresconstankK; > 0,
K1ivVEO(U, u) - v/EO (v, v)

Kiy/ €9, u)- /e, v), u, v e CY(G).

19, v)l

IA

IA
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Then it follows that

O, v)| < =2 \/%)(u 0)- y/nQu, u), U, veClE)

for putting B> > 1 if ¢ € LY%(G;dx) (resp.Bo > A + ||¢|l« if ¢ € L®(G;dXx)). Hence,
combining the calculus done above with the result for thegymart, we see that the
lower boundedness of© is satisfied. O

We now state a main theorem in this section:

Theorem 3.1. Assumeg(D.1)—(D.3), (J.1)and (J.2) Assume also that the elliptic
constanti > 0 satisfies(3.8). Then the formy defined as

n(u, v) = 19U, v) + nO(u, v), u, v e CYG)

extends from §(G) x C}(G) to F x F to be a lower bounded closed form or¥(G).
Moreover the pair(y, F) is a regular lower bounded semi-Dirichlet form orf(G).

Proof. We only need to show the Markov property (2.2). Sin€eX) defined
in (3.2) is a Dirichlet form onL?(G) and satisfies that, for eaah > g, there exist
¢, ¢ > 0 so that

C(S‘]_(U, u) 5 na(u! U) S C/El(ul u); ue -F

Then it follows thatUu := u A 1 € F wheneveru € . We have shown in [8] that
nW(Uu,u—Uu) > 0 for anyu € C{*(G). It is extended to the inequality far € F (see
e.g. [17]). The Markov property for the form(© is shown in Section 11.2 in [15]. [

4. Diffusion process with jumps—degenerate case—

In this section we assume the following conditions insteadDol) on the whole
spaceG = RY.
(D.1y Z,dj 18 (X)&&; > 0 for anyg € RY andx € RY and, the functionsyj, (3/9x)a;
belong toL2 (RY) for eachi, j =1, 2,...,d.

Consider a quadratic forrf(u, v) for u, v € Cé(]Rd), a similar one as in the pre-
vious section (3.2): fou, v € C}(RY),

E(u, v) 1= EO, v) + ED(u, v)
B ou(x) av(x)
__uZ:l/ &) ax  9X]

+5 / (U(x) = u(y)(u(x) — u(y)ks(x, y) dx dy,
2 J Sty
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wheredj (x) = (1/2)(&; (X) + &; (X)), x € RY%. Then we easily see the following lemma
(see e.g. Section 3.1 in [7]):

Lemma 4.1. AssumgD.1) and (J.1)hold by G=RY. Then the pair, C3(RY))
is a symmetric closable form on?(RY) and, denotingF the closure of @(Rd) with

respect to the norm/é’](-, -), (€, F) is a regular symmetric Dirichlet form on3(RY).

We now consider a bilinear form" on C&(Rd) X Cé(]Rd) in (1.2) for eachn €
N. As stated in the previous section, the formi$™(u, v) converges toy()(u, v) as
n— oo for u,v e Cé(Rd) under the assumptions (J.1) and (J.2). So in order to show
that the limitn = n© + ») becomes a lower bounded semi-Dirichlet form under the
assumption (D.1)imposed on the diffusion coefficients;j}, we make the following
assumptions on the functiorts by for i =1, 2,...,d and the kernek(x, y) as well:
(D.2) there exists a vectdi(by, by, ..., bg) € RY, so thatb;(x) = b for x € RY and
i =1,2,...,d. (Namely, the functiorb is a constant drift.)
(D.3) c e LP(RY).
(J.3) there exists & > 0 such that

kKX, y) > klx—y| %1 x,yeRY 0<|x—y| <1.
We show a simple lemma:

Lemma 4.2. Assume(J.3) Then for any ue Cé(Rd) and each i=1,2,...,d,
it follows that
oo (d+2)/2

r{(1+d)/2)

— 2 2
=< /[Rdxm\diag(u(x) u(y))?k(x, y) dx dy+ 4kcg /Rd u(x) dx,

/ 8—u(x)u(x) dx
R

d 0%

wherer is the constant iJ.3), " is the Gamma function and;ds the surface meas-
ure of the unit ball inRY,

Proof. For anyu € C}(RY) and anyi =1, 2,...,d, we see
J[ w60 - usiex, vy ax ay
X#y

> / / (U(X) — u(y))%k(x, y) dx dy
O<|x—y|<1

(u(x) — u(y))?
= /‘/(;<X—y|<l |X - y|d+l dx dy
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B (u(x) — u(y))? (u(x) — u(y))?
_K//x;«éy |x —y[d+1 dx dy- //Ix Y Cx—ylarl dxdy

ﬂ .10 2 _ 2( _y—d-1 )
ZF((1+d)/2)/ 1107 d —4c [ 0o /| ey ey o

or(d+2)/2

(s) 0(6) dé | — decy / W(x)? dx

(d+2)2

( ) - u(x) dx| —

4ch/ u(x)? dx,
Rd

where we used (J.3) in the second inequality, the Planchesrém in the second
equality (see e.g. [1]) and Parseval’s identity in the lagiadity. Thus the desired in-
equality holds. O

Lemma 4.3. Assume(D.1)Y—(D.3), (J.1), (J.2)and (J.3) hold. Then there exists
a constant K> 0 so that

In(u, v)| < K \/él(u, u) - \/él(v, v), U, v e CHRY.

Proof. First note that the limig(u, v) has the following expression fau, v €
CHRY):

n(u, v) = Z/ aj (x )a—ua—”d +Zb. [ a—):v(x)dx—i-/Rd c(X)u(x)v(x) dx

Ijl

#5000~ v 00 - et v ax
#Y

d
=&, v) + Zl / —v(x)dx+ /}R c(x)u(x)v(x) dx.

So we see that

+ llcllocllullz - V]2

d
~ - au
In(u, v)| < \/€(u, u) - \/5(1), v) + i;|bi| : ‘/Rd %, vl ax

We need to estimate the second term of the right hand sidehi$oehd, by making
use of the Plancherel theorem, the Schwarz inequality amdnize 4.2, we find that

W
-|[, 5o
< \/[Rdmm(sn?ds-\/Ad|5|-|o(s)|2ds

[, a0 < [ Jel-l0) -1
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(u) —u(y)? ( (X)— (¥))?
_Cl\///x Xy dx dy- \//[ v 1|)d+l dx dy

_ 2 2
_CZ\//|x_y|51(u(X) u(y))?k(x, y) dx dy+ /Rd u(x)? dx

\// (v(x)—v(y))2k(x, y) dx dy+/ v(X)2dx
[x—y|<1 Rd

< Cz\/gl(U' uy- \/gl(v, v).

Hence it follows that

(U, V] = (1 + ca)yEU, 1) Ew, 1) + el lull e - 0]

< (@409 V el Ex(u, 1) Ei(w, ),

wherecz := ¢, - d - sup;4|bi|. O
From this lemma, we have the main theorem in this section:

Theorem 4.1. Assume(D.1)Y—(D.3), (J.1), (J.2)and (J.3) and the constank >
0 satisfies

(4.1) YLl _ «

cCd1) 8

Then the formy defined as
n(u, v) = 19U, v) + 1O, v), u, v e CRY)

extends from §(RY) x C}(RY) to F x F to be a lower bounded closed form orf(RY).
Moreover the pair(yy, F) is a regular lower bounded semi-Dirichlet form or?(RY).

Proof. We only show the lower boundedness and the weak seotudition of
the form. According to Lemma 4.2 and the assumption on thaektds, we find

(C)(u u)

= E£9(u, u)+2b. / a— u(x)dx+/c(x)u2(x)dx
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s (D@ /2)
= 200 = b (25 g [ 060~ ekt ax oy
(1 + d)/2)
+ dKn(d—Jrz)/z”U”Ez)

2
= llclloo - Ul

~ 1 . C
> £0(u,u) - 90~ (Ielk + 5 ) - Iulf

Therefore

ngo (U, U) = nO(u, u) + (U, u)

~ 1 . 1 ..

> E0(u, u) - ZE0(u, u) - (ncnoo + %) i+ 2690 + e,
1; ,30 Cd 2

> = -~ _ _ =

> ZEuu) + ( 7 el 8)||u||Lz.

Hence if we takeg as fo + ||cllo + Cda/8, then we seejs(u, u) > 0 for u € C}(RY)
and the weak sector condition from the preceding lemma. Thek®taproperty also
holds as in the uniformly elliptic case. ]

REMARK 4.1. Note that, when the drift term does not appear in the fghat is,
b = 0), only the condition (J.1) on the kernkl(not necessarily to assume neither (J.2)
nor (J.3)) guarantees that the ford, F) becomes a regular symmetric Dirichlet form.

5. Associated diffusion process with jumps

Let (y, F) be a regular lower bounded semi-Dirichlet form bA(X;m) as defined
in Section 2. For the symmetrizatiof the pair §,F) is then a closed symmetric form
on L2(X; m) but not necessarily a symmetric Dirichlet form. A symmetDirichlet
form £ on L2(X; m) with domain F is called areference(symmetric Dirichle} form
of n as in [8] if, for each fixedx > 8,

(5.1) ci&1(u, U) < ne(u, u) < cé1(U,U), ueF

for some positive constants, c, independent olu € F. The form €, F) is then a
regular Dirichlet form. In what follows, we assume thatdmits a reference forré.

In considering an association of a Hunt process wjthwe need some potential
theory attached to the form. In order to formulate our assertion, denote ®ythe
family of all open setsO C G so thatLo :={ue F:u>1 a.e. onO} # @. FiXx a >
B and for O € O, let eg be then,-projection of 0 onLy in Stampaccia’s sense [21]:

(5.2) € € Lo, n«(€0, w) = nu(€0, €0), forany w e Lo.
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A set N C G is called n-polar if there exists decreasin@, € O containingN such
that ep, is n,-convergent to 0 as — oo. A numerical functionu on G is said to be
n-quasi-continuousf there exists decreasin@, € O such thateg, is n,-convergent to
0 asn — oo andulg\o, iS continuous for eacim.

The capacity Cap for the reference foénis defined by

(5.3) CapQ) :=inf{&(u,u): ue Lo}, O€O.
Then it follows that

c1 CapO) < n4(€0, €0) < ;K2Cap©), 0e€0O, K,=K + ﬁ,
since (5.1) and (B.2) imply that, (o, €0) < K2n,(w, w), w € Lo. (5.3) means that
a setN is n-polar if and only if it is £-polar in the sense that Cagy = 0, and a
function u is n-quasi-continuous if and only if it i€-quasi-continuous in the sense that
there exist decreasin@, € O with Cap©,) | 0 asn — oo and X \ O, is continuous
for eachn. Every element of F admits itg-quasi-continuousn-version. If {u,} C F
is ne-convergent tau € F and if eachu, is n-quasi-continuous, then (5.1) implies that
a subsequence dfu,} convergesn-g.e., namely, outside somgpolar set, to am-
quasi-continuous version af. We shall occasionally drop from the termsn-polar,
n-g.e. andn-quasi-continuity for simplicity. Then the following theem is shown in
[8, Theorem 4.1] by making use of the result of Carrillo-Methen [4].

Theorem 5.1. There exist a Boreh-polar set N C X and a Hunt procesMm =
(Xt, Px) on X\ Ng which is properly associated witfy, F) in the sense that ¥ is a
quasi continuous version of & for any « > 0 and any bounded Borel & L2(X;m).
Here R, is the resolvent oM and G, is the resolvent associated with

In the following, we will assert that the resolvent of a Humbgess associated to
our Dirichlet form is absolutely continuous with respectliebesgue measure using a
Sobolev inequality.

Theorem 5.2. Let (n,F) be the lower bounded semi-Dirichlet form oR(G) de-
fined in Section 3for an open set G- RY (resp. in Section 4for G = RY). We state
the results separately
(i) AssumegD.1), (D.2), (J.1) and (J.2and the elliptic constant. > 0 satisfies(3.8).
Moreover we assume H 3.

(i) Set G= RY. Assume(D.1y—(D.3), (J.1)-(J.3),d > 2 and the constank > 0
satisfies(4.1).
In each casgthere existe > g and > 2 such that

(5.4) Jull?q < Cng(u,u), uerF
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for some constant G 0. Sq we then see that there exists a Bonepolar set N such
that G\ Np is M-invariant and R(X,-) is absolute continuous with respect to Lebesgue
measure on G for eachh > 0 and xe G\ Np.

Proof. Case (i): By the proof of Proposition 3.2, we find that the ineqtali
Ua(uy U) z Cgl(ul u)| ue ‘/—:

holds for someC > 0 anda > 8. Here the formé&; is defined as

(U, u) = Z/(ax.) dx+%[x¢y(u(x)—u(y))2k(x, y) dx dy+/Gu2dx

for u e F. So & and, hence, satisfies the Sobolev inequality (5.4) with2l> 1/q =
1/2 —2/d, since

d 2
C au 2
ne(U, U) > C& (U, u) > 5;/(3(37) dx=C'lluflfs, uerF

by Gagliardo—Nirenberg—Sobolev inequality (the case 2 in (3.7)).
CAsE (ii): By the proof of Theorem 4.1, for some const&ht- 0 and anyx > g,
it follows that

ne(U, u) > 5(u u)—|—C||u||L2, uer,

where

£, = 121/ 310 g i 0
+3 / | (00— ue)Kx vy dxdy, ue 7
From the assumptions (J.1) and (J.3), we seeuferC3(RY),
/ [ (w60 —u Pkt vy ax ay
> / /0 (00 U)K, ) dx dy
= | [0 00— -y e ay

— / (U(x) — u(y))x — y| % dx dy
X#Y

— / / (U(x) — u(y))2lx — y| * * dx dy
[x—yl=1
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>« / (U() — u(y))2lx — y| = dx dy
X#Y

—4;(/ u(x)2/ Ix — y|79tdy dx
Rd [x=y|>1

2 2
> M|[ull{a — 4 cqllull L,

where M is a positive constant ang satisfies 12 > 1/q > 1/2—1/(2d) (see e.g. [7,
(1.4.32)]). This implies that, for somey > 8, q > 2 andC’ > 0,

||U|||_q < C/nao(uv U), uer.

By making use of Theorem 1 and 2 in [6], the latter statemerthentheorem follows
in each case. O

We now consider a conservativeness problem of a jump-diffuassociated with a
regular lower bounded semi-Dirichlet form,F). We assume thaj admits an operator
(L, D(L)) satisfying the following:

(5.5) n(f,9)=—(Lf,g), feD(L), geF,

where D(L) is a dense subset of with respect to the norm/n,(-, -) for o > B
(see cf. [15, Section 1.2]). We further assume that
(L.1) D(L) is a linear subspace of N Cy(G),
(L.2) L is a linear operator sendinB(L) into L?(G) N Cyp(G),
(L.3) there exists a countable subfamil}y of D(L) such that eachf € D(L) admits
fn € Do satisfying thatf,, Lf, are uniformly bounded and converge pointwise ftp
Lf, respectively, an — oc.

We also consider an additional condition that
(L.4) there existsf, € D(L) such thatf, and Lf, are uniformly bounded and converge
to 1 and 0, respectively, as— oo.

As in Theorem 4 in [8], we then see the following theorem:

Theorem 5.3. Assume that the operatofL, D(L)) satisfies the conditions
(L.1)—(L.3).
(i) There exists then a Borel properly exceptional set N coirtgiNg such that for
every fe D(L),

(5.6) M= (X)) — f(Xo)—/Ot(Lf)(Xs)ds, t>0

is a R-martingale for each »x G\ N.
(i) If the additional condition(L.4) is satisfied then the Hunt process Xn Is
conservative.
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The proof of this theorem is done quite the same way as thatebiem 4 in [8].
So we omit it.

6. Example

In this section, we give an example which is related to a seaoder (degenerate)
elliptic differential operator with stable type genermatdo this end, we assume<oa <
2, /2 < <1 and seta;j(x) = X - i,j=1,2,...,d,bx) =(1,1,...,1) for
X = (X1, X2, . . ., Xq) € RY. Put

k(x, ¥) = C(xI* +1)- [x —y| "%, x,y eR? x #y

for some positive constar@ > 0. According to the previous section, we find that, for
u, v € C4(RY), a quadratic form defined by

d
n(u, v) = Z/ Xi X ,a;)((x) ag)(:()dHZfR agi?()u(x)dx
i i i—1 d i

|]1

x> +

> // (u(x) = u(y)(v(x) - v(y))l y|d+a dxdy

5 - § _ g _ y|—d-a
+2//X¢y<“(X> WX — yP)lx — yI=*-< dx dy

produces a regular lower bounded semi-Dirichlet form IGi{RY). In fact, since we
easily see the functiong;;} satisfy the condition (D.1) we only check the conditions
(J.1) and (J,2).

(J.1) Sincek(x, y) = C(Ix] + 1) |x — y|7%== for x #y,

Ms(x) = C , @A x=yP)(IXP + 1y +2)x =y dy
y#X

=C _yl2 8 8 2 _ 7d70¢d
(L] by + iyt + 2=y o=y
—: () + (),

h=c [ (X + [yl + 2)x — y[2 = dy
O<|x—y|<1

=C(XI" +2) Ih|Z% dh +C x + h|® - |h|Z9-* dh
O<|h|<1 0<|h|<1

1
<Cx’+2)ca [ W edurze [ (x+IYInEOan
0 O<|h|<1

C 1
= (x4 2) + 2Ce [ (P + u)- vt d
- 0
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Ca 15 x| 1
<2 2)+ 2C ,
< (X +2)+ cd(z_a+2+8_a

m=c (XI° + Iy +2)lx =y~ dy

[x-yl=1

= C(Ix” + Z)f Ih[~%* dh + C/ X + h}? - |h|=%=* dh

= Calf +2) [ du 27 [ i
! 1

C x[? 1
= S 2+ 2 ioa( B+ 1),
a a a—34

Here we used the inequalityx + h|® < 25=Y(|x|® 4-|h|?) for any x,h € RY in estimating
the term (Il). ThusMs € LE (RY) holds.
(J-2) We first show that sUpgs [, y-1/Ka(X, Y)| dy < oo

supC [IX[* = [y’| - x = y| ¢ dy
x€RdY [x—y[=1
= supC/ X =y’ |x —y| 9 “dy
xeRd [x—y[>1
o C
=CCd/ ufl+87o¢ du = Cd < .
0 oa—34
Next we see
sup lka(x, Y)I” dy

xeRd JO<|x—-y|<1

< supr/ (1> = 1yP| - Ix — y|4=)" dty
O<|x—y|<1

xeRd

XxeRY

1
< supC’ / Ix — y[6=d-o gy < ¢ / WO—d-ar+d-1 4y _ oo
0<|x-yl<1 0

wheny < d/(d+a—3§). In obtaining the first inequality, we used the Hdolder couity
of the functionx > |x|? for 0 <8 < 1: ||x]® — |y*| < [x —y|?, X, y € R%. Moreover,
for suchy,

kalx, Y17

X 5 _ 8. X — —d—a\2~r
sup ————— = Cl—y . sup (“ |5 |y| 5| | Y| ()j
o<pyl<r  Ks(X, V) ocpoyl<t (IXIP + VP + 2x — y[ 4«

<clr. sup |x — y|(5—d—a)(2—y)+d+a < 00
0<|x-y|<1




988 T. UEMURA

provided that§ —d —a«)(2—-y) +d + o >0, that is,y > (d + o — 26)/(d + o — §).
Hence if we take
d+oa—26 - d
dta—s ' “dta—s
then (J.2) is satisfied and this can happen in the case wh2n< § < 1.
Now we define
d

1 2u(x) o fd-x au(x)
Lu) = 5 Z Xi Xj %X + ;(—2 + 1) ox

ihj=1

c S4+1
5 [ 00 =000 - V00 ety - D

for f € D(£) := C3(RY), whereF(x) := {h e R%: 0 < |h| < y/1+ |x[2}, x e RY. Then
we see that the restriction of the generator of the fgrio D(£) on L2(RY) coincides
with (£,D(£)). In fact, the form of the local part is easily seen from tloeresponding
part of the Dirichlet form. As for the nonlocal part, sincesthonlocal part of generator
of the Dirichlet form is defined through the limit of the foling integrals:

C(x° + 1)

4 . 1
LDyx) := lim £8"y(x) := lim —/ u(y) — u(x
() := lim (x) \x—y|>1/n( (y) —u(x)) X y[ira

n—oo 2
by (1.1) and the integrafleybl/n Vu(x)- (Y =X)Lk (Y = X)C(IX[° + 1)/(]x — y|9*+*) dy
disappears for any € N, it follows that

C(xI** +1)

|X_y|d+ot dy

LDu(x) = lim }/ (u(y) — u(x))
[x=y|>1/n

o C(xP’ + 1)

= lim 3 [ ) 00 = Va0 (¢ e 5
1 C(Ix]’ +1

=3 X#y(u(y) —u(x) —Vux) - (y — X)km)%

We also see thatu e L(RY) for u € CZ(RY). It is easily seen that the conditions
(L.1)—(L.3) are satisfied forg, C3(RY)).
Take a smooth functiom defined on [0+400) so that

1 if 0<t<1,
w(t)={o it t>2

and setf,(x) = w(|x|/n), x e RY, n=1,2,.... Then we show that (L.4) holds for
the sequencé f,}. To this end, we follow an argument developed in [20]. Sirlce t
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function w is constant outside the annulys < |x| < 2}, the supports ofy; f, and
0;9; f, are included in the se, = {n < [x| <2n} for i, j =1, 2,...,d. Moreover,
noting thatw, w’ and w” are continuous functions having support compact, it follow

(6.1) C:= Sl;{g(l+ IXIP)w(IxD] -+ [w' (D] + Jw"(IXDI} < oo.

For anyi, j =1,2,...,d with i # j,

1 |x|%2 = x2 X 1 x2 X
39 fn(x) = ﬁ—| | ! w’(u) + ! w”(%), x € Ky

IX[? n ) n2ixp
and
1xx (X
30 fa(x) = ﬁﬁw (?) x € Kp.
So
IX[| - (IX| X2, (1]
supsup|xiX;jo;d; fn(X)| < — — — =) < 2c,
HEI\E:)xe]RB|IJIJn()|_nw n +n2w . <
dx d|x;| [Xi X| dc
supsupl|| — + 1) fa(X)| < — +1) - —- || — )| < =
nel\?xeRE(2+)ln()_(2+ n W n - 2
and
. . dx
(6.2) lim xx;30j fn(X) = lim | — + 1) fo(x) = 0.
n—o0 n—o00 2

On the other hand, we also see

1
18;0; Tn(X)] < ﬁ{‘w(%)‘ + ‘w(%')‘} for xeR% i, j=1,2...,d.

Hence by the Taylor theorem applied fq, we find
[ fa(X + 1) = fa(x) = V fa(x) - D]

d
> 89 fa(x + Oh)hih;

=1
2 h h

9l (KON | (X (o ¢ here
2n2 n n

with some constan = 6(x, h) € (0, 1). A simple calculation tells us that

)

for x,heRY with 0<h/<1+|x]2 and 0<6 <1,

1
2

IA

X + 6h

1+ [x]?) < 3n2(1+
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So we have
3d2 oh |2 oh oh
2<1+|x|2)'h'2(1+ - )'{“’/(Mn |)‘+ “’”(Mn |)‘}
2
- 3cd I
T 201+ |x[?)

and this implies that

8
supsup/ (fa(X +h) — fn(x)—an(x)-h)w dh‘ < 0
n>1 xeRd4|J 0<|h|< 4/ 1+|x|? |h| te
and
1 §
6.3)  lim f (fa(X 4+ h) = Fa(X) = ¥ a(X) - h)w dh=0.
n—>00 Joo|hj< /THIxE |h]d+e
For all x € RY,
C(@+ |x|? dh
/ (o + 1) — Fa00) ) g < 201+ ) ol
| /T X |h]d+e Ihi= /112 |hj9+e
=2Cc(1+ |x|‘s)/ urdu= 2C:—Cd(l + Ix1%) - (@ + |x|®)7/2,
J1+Ix]2 o

Sinced <1 <a, we see

supsu fo(x + h) — f,(x)C(Ix|° + 1)h|~%* dh| < co
supsup) [ (x4 1)~ 0K + i

and

6.4 Iim/ fo(x + h) — f,(X))C(x|°* + 1)|h| % dh = 0.
(6.4) [im \h|zdm( n( ) — fa(X))C(IX] )Ih|

Hence, combining the calculations above with (6.2)—(6w#, find that{L f,} is uni-
formly bounded and the sequengd,, converges to 0. This implies that (L.4) is satis-
fied and then we can conclude the process is conservatives Whwbtain the follow-
ing proposition:

Proposition 6.1. Takel<a <2,2/2<d§ <1and C> 0 is a sufficiently large
real number.
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Define the following quadratic form on L2(RY):

n(Usv) = Z/ y Jza;)(:()au(fod +Z/ au(x) v(x) dx

|]1

[P +1

¢ / / (00~ UMO0) ~ v dx oy

— _ 5 _ 8 _ y|—d—a
#5000~ M0~ Iy —yi-¢- axdy

for u, v € C3(RY). Then(n, C3(RY)) is closable on B(RY) and its closure(n, F) is a
regular lower bounded semi-Dirichlet form on?(RY). Moreover the associated Hunt
process is conservative.

REMARK 6.1. (i) In [24], Takeda and Trutnau recently showed the eors
tiveness of non-symmetric diffusion processes (withow phmp part) by using for-
ward and backward martingale decomposition which is a gdization of the so-called
Lyons—Zheng decomposition of the Dirichlet form. Their diions on the diffusion
data are a sharp and they also treated the case where theidtifftoefficients are not
necessarily smooth, but different from the diffusion pssms case, our processes in-
volve the jump part and the tool of the martingale additivactional may not be ap-
plicable to obtain a sharp result.

(ii) Similar to [20], writing down a precise form of the gemor of a lower
bounded semi-Dirichlet form on some nice functions spaeecan also show the con-
servativeness of the associated Hunt process under tloeviiod conditions in addition
to the assumptions imposed in Theorem 4.1: there exists sta@C > 0 so that for
anyx e RY andi, j =1,2,...,d,

o & ()] Vv [da;(x)/9x] < C(1+ |x|?) log(Ix| + 2)
Jopi< W/2|h|2ks(x x +h)dh < C(1+ |x|?) log(|x| + 2)

Jonpe /52l ax, X + 1) = Kax, X — )| dh < C(L+ []) log(X| + 2)
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