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Abstract
We studycoadjoint orbitopesi.e. convex hulls of coadjoint orbits of compact Lie
groups. We show that up to conjugation the faces are contpldetermined by the
geometry of the faces of the convex hull of Weyl group orbitée also consider the
geometry of the faces and show that they are themselvesainadybitopes. From
the complex geometric point of view the sets of extreme goaita face are realized
as compact orbits of parabolic subgroups of the complexijiexlip.
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Introduction

Let K be a compact Lie group and l& — GL(V) be a finite-dimensional repre-
sentation. Anorbitopeis by definition the convex envelope of an orbit §fin V (see
[23]). An interesting class of orbitopes is given by the aonenvelope of coadjoint
orbits. We call theseoadjoint orbitopes The case of an integral orbit has been studied
in [6], where it was realised that a remarkable construcititroduced by Bourguignon,

Li and Yau [8] in the case of complex projective space can hbeegeized to arbi-
trary flag manifolds. This allowed to show that the convexetope of an integral
coadjoint orbit is equivariantly homeomorphic to a Satdkerstenberg compactifica-
tion. This homeomorphism is constructed by integrating tt@mentum map, but un-
fortunately it is not explicit and its nature is not yet waliderstood. On the other
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hand, the Satake—Furstenberg compactifications admityaprecise combinatorial de-
scription going back to Satake [24].

The aim of this paper is to give a precise description of thandary structure
of coadjoint orbitopes without the integrality assumptiand without relying on the
connection with Satake—Furstenberg compactifications.

To a coadjoint orbitO we associate its convex hud). The aim is to describe
the facesof @ and their extremal points in the sense of convex geometryvelffix
a maximal torusT, there is another convex set associatedtonamely the Kostant
polytope P, which is the convex hull of a Weyl group orbit in Denote byﬁ(@) the
faces of O and by .#(P) the faces ofP. K acts onﬂ’((’)) and the Weyl groupV
acts on.#(P). In 84 we show the following.

Theorem 1. If o € .#(P) ando is the set of vectors i which are orthogonal
to o, then Z(c1)-o is a face of®. Moreover the maw — Zk(ot) - o passes to
the quotients and the resulting map(P)/W — .Z(0)/K is a bijection.

During the proof of Theorem 1 we show that every faceexposed(see Defin-
ition 3). The extremal points of an exposed face form a syntjglesubmanifold ofO,
that has been studied since the important work of Duistetniéak, Varadarajan and
Heckman [10, 14]. In 83 we reformulate their results to déscthe structure of ex-
posed faces using the momentum map. It follows that everg fadtself a coadjoint
orbitope (Theorem 25) and that it is stable under a maximaist¢Theorem 27). For
K = SOf) a proof of Theorem 1 is given in [23, 83.2]. Their proof rslien the
representation of these orbitopes as spectrahedra.

The second main result of the paper deals with the complemgey of O. Con-
sider the Kéahler structure o® and the holomorphic action db = K€ (see §2).

Theorem 2. If F is a face ofO, thenextF c O is a closed orbit of a parabolic
subgroup of G. Converselyf P C G is a parabolic subgroupthen it has a unique
closed orbit®’ C O and there is a face F such thaxtF = O'.

In 85 we show that there is a finite stratification of the bouyadzt O in terms of
face types, where the strata are smooth fibre bundles ovemiieifolds. In 86 we give
a description of the faces in terms of root data, using thenédism of x-connected
subset of simple roots developed by Satake [24]. In the lastich we prove that if
O is an integral orbit (i.e. it corresponds to a represemdtithe same holds for ekt
for any facesF c O.

We think that many other aspects of these orbitopes are vebuitying. It would
be interesting to find explicity formulae for the volume, therface area and the Quer-
massintegrals. Also, in a future paper we plan to study theviing class of orbitopes:
G is a real semisimple Lie group with Cartan decompositioa ¢t p, O is a K-orbit
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in p and @ is the convex hull ofO. Coadjoint orbitopes correspond to the special case
whereG = K€ andp =it.

1. Preliminaries from convex geometry

It is useful to recall a few definitions and results regardingvex sets (see e.g. [25]).
Let V be a real vector space arifl C V a convex subset. Thelative interior of E,
denoted relinE, is the interior ofE in its affine hull. Ifx, y € E, then [, y] denotes the
closed segment fromtoy, i.e. [x,y] :={(1—t)x +ty: t € [0, 1]}. AfaceF of E is a
convex subseF C E with the following property: ifx, y € E and relintk, y] N F # @,
then [x, y] C F. Theextreme point®f E are the pointx € E such that{x} is a face. If
E is compact the faces are closed [25, p. 62]FIfs a face ofE we say that relinF is
anopen faceof E. A face distinct fromE and@ will be called aproper face

Assume for simplicity that a scalar produgct ) is fixed onV and thatE C V is
a compactconvex subset with nonempty interior.

DEFINITION 3. Thesupport functionof E is the function

(4) he: V- R, hg() = rp&x{x, uy.

If uz 0, the hyperplaneH(E, u) := {x € V: (x, u) = hg(u)} is called thesupporting
hyperplaneof E for u. The set

Fu(E) := E N H(E, u)

is a face and it is called thexposed facef E defined byu or also thesupport set
of E for u.

In using the notatiorF,(E) we will tacitly assume that the affine span Bfis V.
Hence by definition an exposed face is proper. We notice thaehneral not all faces
of a convex subsets are exposed. A simple example is givetndcdnvex hull of a
closed disc and a point outside the disc: the resulting coset is the union of the
disc and a triangle. The two vertices of the triangle thatdrethe boundary of the
disc are non-exposed O-faces.

Lemma 5. If F is a face of a convex set,BEhenextF = F nextE.

Proof. It is immediate thaF N extE C extF. The converse follows from the
definition of a face. OJ

Lemma 6. If G is a compact groupV is a representation space of G and- 6
is an orbit of G then conv(G - x) contains a fixed point of G. Moreover any fixed
point contained inconv(G - x) lies in relint convG - x).
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X::/g-xdg
G

where dg is the normalized Haar measure. Thé&nis G-invariant and belongs
conv(G - x). Now lety be any fixed point ofG that lies in convG - x). By Theorem 8
there is a unique facé C conv(G-x) such thaty belongs to relinE. Since conv-x)
is G-invariant andy is fixed by G, it follows thata-F = F for anya e G. SoF is
G-invariant, and hence also dxtis G-invariant. Since ext C ext(convG-x)) C G-X,
it follows that extF = G - x and hence thaF = conv(G - x). O

Proof. Set

Proposition 7. If F C E is an exposed fac¢he set G :={ue V: F = Fy(E)}
is a convex cone. If G is a compact subgroup diVQthat preserves both E and,F
then G- contains a fixed point of G.

Proof. Letu;,u; € Cg andig, 2, > 0 and setu = A1u; + Aup. We need to prove
that if at least one ofq, A, is strictly positive, thenF = Fy(E). Assume for example
that A, > 0. It is clear thathg(u) < A1hg(u1) + Ashg(uy). If X € F, then

(X, u} = 21(x, U1) + A2(X, Uz) = A1he(u1) + A2he(uz).
Hencehg(u) = A1he(up) + A2he(u) and F C Fy(E). Conversely, ifx € Fy(E), then
0 = hg(u) — (x, u) = A1(he(u1) — (X, u1)) + A2(he(uz) — (X, Uz)).
Since A; > 0 we gethg(ui) — (X, u;) =0, sox € Fy,(E) = F. ThusF = F,(E).

This proves the first fact. To prove the second, pick any veata Cr and apply the
previous lemma to the orbi - u C Ck: this yields aG-invariantd € Cg. O

Theorem 8 ([25, p.62]) If E is a compact convex set and;,F~ are distinct
faces of E themelintF, NrelintF, = @. If G is a nonempty convex subset of E which
is open in its affine hullthen GC relint F for some face F of E. Therefore E is the
disjoint union of its open faces.

Lemma 9. If E is a compact convex set andFE is a face thendimF < dimE.

Proof. If dimF = dimE, then relint is open in the affine span &, so relintF C
relint E. By the previous theorem this implies thit= E. O

Lemma 10. If E is a compact convex set and E E is a face then there is a
chain of faces

FOZFCF1C"'§FKZE
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which is maximalin the sense that for any i there is no face of E strictly camdi
between F; and R.

Proof. If F = E there is nothing to prove. Otherwise pb§ := F. If there is no
face strictly contained betweely, and E, just setF; = E. Otherwise we find a chain
Fo € F1 € F, = E. If this is not maximal, we can refine it. Repeting this step we
get a chain withk + 1 elements. Since diff_1 < dim F;, k < n. Therefore the chain
gotten after at mosh steps is maximal. ]

Lemma 11. If E is a convex subset ®", M c R" is an affine subspace and
F C E is a facethen FN M is a face of EN M.

Proof. Ifx,y € ENM and relintx, yy N F N M # @ then [k, y] C F sinceF
is a face, but %, y] is also contained inM since M is affine. So k,y] C FN M
as desired. O

2. Coadjoint orbits

Through the paper we will use the following notatiok. denotes a compact con-
nected semisimple Lie group with Lie algebta If T C K is a maximal torus and
T c A, £©) is a set of simple roots, the Weyl chamber toforresponding tdT is
defined by

Ct:={vet:—ia(v)>0foranya € A,}.

B is the Killing form of £€ and (, ) = —Ble is a scalar product ob. By means of
(, ) we identify £ with ¢*.

Lemma 12. Let T C K be a maximal toruslet A be the root system «tC, t©)
and letIT C A be a base. Define He t€ by the formula BH,,-) = «(-) and choose
a nonzero vector Xe g, for anya € A. For o € A, set

1 i
Uy 1= TZ(XLY - Xfot)u Vg = E(Xa + X,a).

Then it is possible to choose the vectors M such a way thafX,, X _,] = H, and
so that the sefu,, v, | @ € A} be orthonormal with respect t6, ) = —B. Moreover
foryet

[Y, Ue] = —Ta(Y)va, [, va] =ia(Y)Ue, [Ua, va] =TH,.
For a proof see e.g. [18, pp. 353—-354]. Set

(13) Z, = Ru, & Ru,.
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Then

t=te P Z.

aeA;

If O is an adjoint orbit ofK andx € O, then

7.0 = Imadx = @ Z.,

acE

where E := {o € A, : a(x) # 0}. Denote byvy the vector field on©O defined by
v € t. Explicitly vo(x) = [v, x]. Since we identifyt >~ ¢* we may regard® as a
coadjoint orbit. As such it is equipped with l&-invariant symplectic formw, named
after Kostant, Kirillov and Souriau, and defined by the faoliog rule. Foru, v € ¢

wx(Uo(X), vo(X)) := (X, [u, v]).

See e.g. [17, p.5]w is a K-invariant symplectic form o0 and the inclusior® < ¢
is the momentum map.

If T C K is a maximal torus, we denote B (K, T) or simply by W the Weyl
group of K, T). We letx: ¢ — t denote the orthogonal projection with respect to the
scalar product{ , ) = —B. Its restriction toO is denoted bydr: O — ¢ it is the
momentum map for thd -action onO. P := &1(0O) is the momentum polytope. The
following convexity theorem of Kostant [20] is the basic liedient in the whole theory.

Theorem 14 (Kostant) Let K be a compact connected Lie grougt T C K be
a maximal torus and le© be a coadjoint orbit. Then P is a convex polytop&tP =
ONtandextP is a unigue W-orbit.

There is a uniqueK -invariant complex structurd on O such thatw be a Kahler
form. It can be described as follows (see [16, p.113] for miafermation). Fix a
maximal torusT and a system of positive roots in such that a waypelongs to the
closure of the positive Weyl chamber. Then the complex sirecon TxO is given by
the formula

JUy = v,.
Set G = KC€. The action ofK on @ extends to an actiot x ©® — @ which is

holomorphic. Ifvp denotes the fundamental vector field inducedibyg g = ¢€, this
implies that

(I v)@ = Jvo.

bo=t® @ I

acAy

Let
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denote the negative Borel subalgebra andBetbe the corresponding Borel subgroup.
The following lemma is well-known.

Lemma 15. Let T C K be a maximal torus and lek . be a set of positive roots.
If x e ®Nt, then xe C* if and only if B is contained in the stabilizer &

3. Group theoretical description of the faces

In this section we prove that all the faces of a coadjoint tog® are coadjoint
orbitopes and are exposed. These facts will be used throtighe rest of the paper.

Let O C ¢ be a coadjoint orbit oK. The orbitope@ is by definition the convex
hull of O.

Lemma 16. ext® = O. Moreover for any face R O, extF =FNO.

Proof. This fact is common to all orbitopes [23, Propositib8]. By construction
ext® C ©. On the other hand lies on a sphere, hence all points @f are exposed
extreme points. This proves the first assertion. The secoladas from the first and
from Lemma 5. O

A submanifold M C R" is called full if it is not contained in any proper affine
subspace oR".

Lemma 17. Let K be a compact connected semisimple Lie group andlet ¢
be a coadjoint orbit. The orbitD is full if and only if every simple factor of K acts
nontrivially on O.

Proof. Fix x € O. Let M denote the affine hull of0 in ¢ and letV be the
associated linear subspace, iM. = x + V. We claim thatM contains the origin.
Since O is K-invariant, so areM and V. HenceV is an ideal andv' is an ideal
as well. Writex = xg + X1, With Xo € V and x, € V. For anyg € K, gx—Xx € V,
OX—Xo €V andgx;—xi € V*. Sogx —x; € VNV, ie. gx = x;. This means that
X1 is a fixed point of the adjoint action. Sind€ is semisimplex; = 0, x € V and
M =V as desired. LeK;, i =1,...,r be the simple factors oK. SinceV is an ideal,
V =@, & for some subset of {1,...,r}. Itis clear that¢; NV = {0} if and only
if [¢;,V] =0 if and only if K; acts trivially onO. This proves the first statement.]

Let H be a compact connected Lie group (not necessarily semig)rapld letO C
h be an orbit. There is a splitting of the algebra

(18) h=3;060 - D
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where ; is the center ofy and ¢ are simple ideals. LeK; be the closed connected
subgroups ofH with LieK; =¢. SoH = Z-K;---K;, whereZ is the connected
component of the identity in the center 6f. Any two of these subgroups have finite
intersection. We can reorder the factors in such a way kaacts nontrivially onO

if and only if 1 <i <q for someq between 1 and. Set

L:=Ki---Kqg, L :=Kg1--- K.
By construction there is a decomposition
(19) H=Z-L-L.
Any two factors in this decomposition have finite interseswti

Lemma 20. For any x e O, there is a uniqgue decomposition=x Xo + X; with
Xo € 3 and x € [. Moreover

O=H-Xx=Xg+ L-Xq,
the affine span 0O is Xy + [ and % belongs torelint O.

Proof. Write X = Xg + X1 + X» With Xg € 3, Xy € [andx, € [. Sincel’-x =
X, the component, is fixed by L’. Sincel’ is semisimple, this forcex, = 0. It
follows immediately thatH - x = xg + L - x;. By definition all simple factors of. act
nontrivially on L - x;, hence the orbiL - x; is full in [ by Lemma 17. This proves that
aff(@) =Xo+ [. SinceO C xp+ [ and[ L Xq, Xo is the closest point to the origin.
Such a point is unique becaugk is convex. Sincexy € 3, it is fixed by H. The last
statement follows from Lemma 6. ]

The statement about the affine span is equivalernt -t being full in [. Therefore
after possibily replacingK by L and translating byxg we can assume for most part
of the paper that) is full.

We are interested in the facial structure@fand we start by considering the struc-
ture of exposed faces.

Lemma 21. Assume that K is a compact connected Lie grabpt H C K is a
connected Lie subgroup of maximal rank and tliatis a coadjoint orbit of K. Then
a) OnNhis a union of finitely many H-orbits
b) if H is the centralizer of a torusthen O N b is a symplectic submanifold «?.

Proof. LetT be a maximal torus oK contained inH. Since©O N§ is an H-
invariant subset oH and T is a maximal torus oH we haveONh = H-(ONt). But
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O Nt coincides with an orbit of the Weyl group and is thereforetéiniHenceO N §

is a finite union ofH-orbits. This proves the first statement. For the secondnassu
that H = Zx (S) where S K is a torus. Ther® Nk = OS is the set of fixed points
of S, hence it is a symplectic submanifold 6f. O

We start the analysis of the face structure(@fby looking at the esposed faces.
At the end of the section we will prove that all faces are erpos

Let u be a nonzero vector it and let®,: O — R be the function®,(x) :=
(x, u). Set

Max(®,) := {x €0 :dy(x) = moanDu}.

®d, is just the component of the momentum map alondrhen forx € O andu,v € ¢
d@y(x)(vo) = wx(Uo(X), vo(X)) = (X, [u, v]) = (X, u], v).
This implies thatx € O is a critical point of®, if and only if x € 3,(u), i.e.
Crit(®y) = O N 3¢(u).

Lemma 22. Let H = Z(u) be the centraliser of u in K and IetuE@) be the
exposed face of defined by u. Then
a) Max(@®,) is an H-orbit
b) ext FU(@) = Max(d,), so ext FU(@) is an H-orbit
c) Fu(0) C ze(u).

Proof. By Atiyah theorem [2] the level sets df, are connected. In particular
Max(®,) is a connected component of Cfit(). By the previous lemma it is ai-
orbit. This proves (i). Leh; denote the support function @, see (4). Sincé-,u) is
a linear function, its maximum od, that is hs(u), is attained at some extreme point,
i.e. on 0. Hence

mgxd)u = h(u).

By Lemma 16 exfy(O) = Fy(O) N O = {x € O: (x, u) = hys(u)} = Max(®y). It
follows immediately thatFu(@) = conv(Max@,)). Finally (iii) follows from the fact
that Max@,) C Crit(®,) = O N 3,(u). U

Lemma 23. Fix a maximal torus TC K, a nonzero vector & t and a point
x € O Nt Then xe Crit(®,) and x is a maximum point o, if and only if there is
a Weyl chamber irt whose closure contains both x and u.
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Proof. By assumptiorx € t C 3,(u) and 3.(u) = Crit(®,). To check the second
assertion recall thatb, is a Morse—Bott function with critical points of even index
(this is Frankel theorem, see e.g. [3, Theorem 2.3, p.109[2dr p.186]) and any
local maximum point is an absolute maximum point (see e.g.p[312]). Therefore
X is a maximum point if and only if the HessiaD?®,(x) is negative semidefinite.
Recall thatT,©O = Im adx and that

f:=adX|r0o: TxO = TO

is invertible. If w € T,O, thenw = zp(X) = [z, X] for somez € ¢. The vectorz can
be chosen (uniquely) insid& O, i.e. z= —fX(w). Sety(t) := Ad(exptz) - x. Then
y(0) =x, 7(0) = [z, x] = w, 7(0) = [z, [z X]]. so

2

d
D2®y(x)(w, w) = T Oh(J/(t)) = (7(0), u) = ([z, x], [u, Z])
t=

= (w, [u, Z]) = —(w, adu o f}(w)).

(One can prove the same formula much more generally and byra gepmetric ar-
gument, see [15, Proposition 2.5].) Thus the quadratic farfd,(x) is negative semi-
definite if and only if the operator acb f ~* is positive semidefinite. This operator pre-
serves eacl¥, and its restriction toZ, is just multiplication bya(u)/«(x). Hence it

is positive semidefinite iff and only ife(u)a(x) > 0 for any« € A. This is equivalent

to the condition thatx and u lie in the closure of some Weyl chamber (see e.g. [14,
p.11]). O

The computation above goes back to the work [10] of Duistatm&olk and
Varadarajan and to Heckman'’s thesis [14].

Lemma 24. Let F = F,(O) be an exposed face @. Set S:= exp®u) and
H = Zk(S). Then
(&) S is a nontrivial torus and fixes F pointwijse
(b) extF is an adjoint orbit of H:= Zk(9),
(c) FCh.

Proof. Sinceu # 0 by the definition of exposed fac& is a nontrivial torus. (b)
follows from Lemma 22. Moreover et = Max(d,) C Crit(®,). Since @, is the
Hamiltonian function of the fundamental vector field Ghassociated to, extF is fixed
by expRu) hence byS, thus proving (a). Finally et C 3,(u) = h by Lemma 22. [

Theorem 25. Let F be a proper face oD. Then there is a nontrivial torus &
K with the following properties
(@) S fixes F pointwise
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(b) extF is an adjoint orbit of H:= Z¢(9),
(c) FCh,
(d) g-F =F for any ge H.

Proof. (d) is a direct consequence of (c). To prove (a)—(c)afighain of faces
F=FRSCF<---C kK= O, such that for anyi there is no face strictly contained
betweenF,_; and F;. This is possible by Lemma 10. We will prove (a)—(c) by in-
duction onk. If k =1, thenF is a maximal proper face. Since any face is contained
in an exposed facel- is necessarily exposed. Thus (a)—(c) follow from the pnesio
lemma. We proceed with the induction. Lkt> 1 and assume that the theorem is
proved for faces contained in a maximal chain of length 1. Fix F with a maximal
chain as above of lengtk. By the inductive hypothesis the theorem holds K so
that there is a nontrivial subtoru§ C K which pointwise fixesF;. Moreover if we
set Hy = Zk(S) and h; = Lie H; = 3¢(s1), then F; C b, and extF; is an orbit of
Hj;. In particular if we choose a poink € extF C extF;, then extF; = H; - x. Split
Hy=2Z-L-L with Z = Z(H,)° as in (19) and writex = Xo + X; as in Lemma 20,
with xo € 3 = 3(h;) and xg € [, so that extF; = xg + L - X;. The orbit O’ := L - X1 iS
full in [ and F' := Fy — xg = F — Xg is a maximal face of?’. ThereforeF’ is an ex-
posed face, i.e. there is sormes [ such thatF’ = Fu(@’). SetS ;= expRu). By the
previous lemma exXg’ is an orbit of Z (S). Moreoverx; € extF’, becausex € extF.
Therefore exF’ = Z, () - X;. Sinceu € [ and [ C h;, u commutes withs;. So §
and S commute and generate a tor@& SetH := Z¢(S). If g € H, theng com-
mutes withS;, henceg € Hs. It follows thatH C Zy,(S). Conversely, ifg € Zp,(S),
then g also commutes witl5, sog € H. Thus we getH = Z,4,(S). SinceS C L,
Z-L'CZy(S)=HandH =27Z-Z, () L. SinceZ-L’ fixes x; this implies that
H-X =Zn () - x1 = ZL(S) - X1 = extF’. Sincexp € 3 = 3(h1), we conclude that
extF = extF' + xop = H - Xy + Xo = H - x. This proves (b). Next observe that the
previous lemma also ensures that C 3,(u) and thatz(u) C h. Sincexg € h too, we
conclude thatF = F’' + xo C h. This proves (c). By definitiorh) = 3.(s), so S fixes
any point off and in particular it fixes pointwis€&. Thus (a) is proved. 0

We remark that the inductive argument used in the previoosfpdoes not imply
that all faces are exposed, since being an exposed face & mansitive relation.

Corollary 26. If F C O is a face thenextF is a symplectic submanifold .

Proof. LetS and H be as in Theorem 25. Then extC O Nk is an H-orbit.
The result follows directly from Lemma 21. O

Corollary 27. If F C O is a face there is a maximal torus T K that pre-
serves F.
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Proof. A maximal torus ofH is also a maximal torus oK. O]

REMARK 28. The above results shows that every faceCois a coadjoint or-
bitope for some subgroupl C K. One might wonder if a similar property holds for
all orbitopes: if a groupK acts linearly onV and O is an orbit, one might ask if
every face of® is an orbit of some subgroup d€. The answer is negative in gen-
eral. Counterexamples are provided e.g. by convex envgloperbits of St acting lin-
early onR". These are calle€Carathéodory orbitopessince their study goes back to
[9]. In [26] there is a thorough study of the 4-dimensionasedsee also [4]). It turns
out (see Theorem 1 in [26]) that there are many 1-dimensifawds whose extreme
sets are not orbits of any subgroup I§f Therefore the fact that we just established,
namely that the faces of a coadjoint orbitope are all orlgitopf the same kind, seems
to be a rather remarkable property.

The subgroupss and H in Theorem 25 are not unique. Later in Theorem 38 (d)
we will show that there is a canonical choice. Now we wish tovshhat one can
always assume the® = Z(H)°.

Corollary 29. In Theorem 25we can assume that(®) acts trivially on F and
that S= Z(H)°.

Proof. Letp: £t — b denote the orthogonal projectiofl acts on© in a Hamilton-
ian way with momentum map|o. If x € extF, thenH - x = extF is a symplectic
orbit by Corollary 26. Thereforéd, = Hy), see e.g. [13, Theorem 26.8, p. 196]. Since
p(x) € b, the stabilizerH ) contains the center afl. So Z(H) C Hy. This proves the
first statement. Next s&8 = Z(H)°. ThenS is a positive dimensional torus. To prove
the second fact it is enough to show that chandgdp S does not change the central-
izer, i.e. thatH = Z¢(S). SinceS C Z(H), H and S commute, soH C Zk(S). On
the other handH is the centralizer o5, soSC S, andZx (S) C Zk(S) = H. Therefore
indeedH = Z¢(S). 0

The following is an immediate consequence of Lemma 20.

Lemma 30. Let F be a face of®, H C K a connected subgroup and assume
that extF is an H-orbit and that FC h. Decompose H as i(lL9), i.e. L is the product
of the simple factors ofH, H) that act nontrivially on F while L’ is the product of
those factors that act trivially. If > extF, then X= xg + X3 with Xy € 3 and x € [.
Moreover

extF=H -x=x+L-X

and L-x; C [is full.
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Now we fix a maximal torusT and we use the notation of p.940. We wish to
show that theT-stable faces of® and the faces of the momentum polytope are in
bijective correspondence. This will be used to prove thhfaames of O are exposed.
The relation between th@&-invariant faces of® and the faces of will be studied
further in the next section.

The following lemma is a consequence of Kostant convexigotem. See [11,
Lemma 7] for a proof in the context of polar representations.

Lemma 31. Let K be a compact connected Lie group C K be a maximal
torus and letr : ¢ — t be the orthogonal projection. Then
(i) If E Ctis a K-invariant convex subsethen ENt = n(E).
(i) If A Ctisa W-invariant convex subsahen K- A is convex andr(K - A) = A.

Lemma 32. Let T C K be a maximal torus and let & @ be a nonempty T-
invariant face. Set := w(extF). Theno = n(F) = F Nt. Moreovero is a nonempty
face of the momentum polytope P.

Proof. We prove this lemma in the same way as Kostant theoseseduced from
the Atiyah—Guillemin—Sternberg theorem. By Corollary 2@ e is a symplectic sub-
manifold of O. T acts on exf with momentum map given by the restriction of to
extF. By definition o = w(extF) is the momentum polytope for this action. By the
Atiyah—Guillemin—Sternberg theorem

o = convr((extF)") = convz(extF N t).

This means first of all that is convex. Sincer is linear it follows thatz(F) =
convr(extF) = o. On the other hand, since(extF Nt) = extF Nt, we get

(33) exto CextFNt o CFNt

ConverselyF Nt = 7 (F Nt) C #(F). Sincern(F) = o0 we get indeed= Nt =o. Thus
the first part is proven. In particular we can apply this wikh= O, and we get that
P=0nNnt ThatF Nt is a face ofP now follows directly from Lemma 11 without
assuming that= be T-invariant. To check that # @, recall that if a torus acts on
a compact Kahler manifold in a Hamiltonian way, then it hamedixed points. So
(extF)T = extF Nt# @ ando # 0. O

Recall the following basic property of Hamiltonian actio(see e.g. [12, The-
orem 3.6]).

Lemma 34. Let M be a symplectic manifold and let T be a torus that acts on
M in a Hamiltonian way with momentum map: M — t. If SC T is a subtorus that
acts trivially on M, then ®(M) is contained in a translate of*.
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If M Cc R" is an affine subspace, the linear subspace parallé/l ts called the
direction of M [5, p.42]. Denote byo' the orthogonal space into the direction
of o.

Lemma 35. Let F be a proper face ab), let H be a subgroup as ifheorem 25
and let T be a maximal torus of H. Then:= F Nt is a proper face of P anéxtF
is a Zx (ot)-orbit.

Proof. By assumption eX is an H-orbit. Hence it is a connected component of
OnN}. In particular by Lemma 21 it is a symplectic submanifold(@f By Corollary 29
S:= Z(H)P is a nontrivial subtorus of’, which acts trivially on exfF. The momentum
map for theT -action is the restriction of. So by Lemma 34 = m(extF) is contained
in a translate ok, i.e.s C 0. It follows that Zy (c*) C Zk(s) = Zk(S) = H. Next
consider the decomposition (19). We know thatx; C [ is a full orbit. Denoting by
aff(-) the affine span

aff F = aff(extF) = xp + I.
Sincexget, Xo+NNt=X+ (INt) and
affc = aff(FNt)c @fF)Nt=xo+ (INtY).

Sincel is an ideal oft, it is the direct orthogonal sum dint and someZ,, see (13).

L
Hencel = (INt) @ (1N t4). It follows that () = I Nt and also, since € t, that
7%+ =%+ (Nt. So

Xo+ (INt) = (X0 + ) = =(aff F) C aff(x(F)) = affo.

From these two inclusions we get that aft= xo + (I N t). Therefores! is the or-

thogonal complement of Nt in t. Sincet = 3 é (rnt é (' Nt), we getot =
;o Nny)czdl. Sol,otl]c[l,3®ll1=0andL C Zk(ct). From the inclu-
sionsL C Zk(ot) ¢ H and the fact thal. -x = H - x = extF for any x € extF we
immediately getZg (ot) - x = extF. We already know (from Lemma 32) that is a
nonempty face ofP. By Theorem 25; # {0}, so ot # {0}, affc # t ando & P.
This shows that is a proper face. ]

Corollary 36. Let F, F, be a proper faces 00, let Hy, H, be corresponding
subgroups as inTheorem 25and let T be a maximal torus of K which is contained
inboth H and K. If FFNt=FNt, then R = F.

Proof. Seto := F Nt. Recall from (33) that exd C extF and pickx € exto.
Then we can apply the previous lemma to both faces and we tEi exZx(ot)-x =
extF,. The result follows. O
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If FcOis a face set

He :={ge K:gF =F}, Zg:= Z(Hg)",

37) N
Cr:={uet: F = FR(0)}.

The following is the main result of this section.

Theorem 38. All proper faces 0l are exposed. More precisely F is a proper
face Fc O, then
(a) if T C Hg is a maximal torusu € t and FNt = F,(P), then F= FU(@);
(b) there is a vector e 3¢ such that F= Fy(O);
(c) if u e Cg Nje, then H = Zk(u) (in particular Hg is connected and Z has
positive dimensian
(d) the subgroup H satisfies(a}{(d) of Theorem 25

Proof. We start by proving (a) under the assumption that tlagimmal torusT
is contained in some subgrougd that has the properties listed in Theorem 25. By
Lemma 350 := FNt=F N P is a proper face ofP. Since all faces of a polytope
are exposed [25, p.95], there is a vectoe t such thato equals the exposed face of
P defined byu, i.e. 0 = Fy(P). Sinceu € t and P = 7(0), hp(u) = maxco (U, X) =
hs(u). SetF’ := FU(@). F’ is a T-invariant face sinceu is fixed by T. We wish to
show thatF = F'. The inclusionF C F’ is immediate. Indeed ik € F, thenz(x) € o,
S0 (x,u) = hp(u) = hi(u). It is also immediate thaF’' Nt = 0. So we have two faces
F andF' with FNt=F' Nt=o0. SetH’':= Z (u). By Lemma 22 exE’ = Max(®d,)
is an H’-orbit and H’ satisfies (a)—(d) of Theorem 25 fdt'. Clearly T C H’ since
u € t, and by hypothesis alsd ¢ H. We can therefore apply Corollary 36 and we
get F = F’. In particular F = FU(@) is an exposed face. We have thus proved (a)
under the assumption thdt ¢ H for someH as in Theorem 25. Next we show that
the vectoru can be chosen insidg. The subgroufHg C K is compact and preserves
both © and F. By Proposition 7 there is a vectar € Cg that is fixed byHg. Note
that Hg is of maximal rank sinceH C Hg. If T is a maximal torus contained in
He, thenu is is fixed by T, sou € t C hg. It follows thatu € hr and sinceHg
fixes u it follows thatu € 3. Thus (b) is proved. To prove (c) assume thaE 3¢
and thatF = FU(@). Then HE C Zg(u) sinceu € 3. On the other hand e¥ =
FU(@) N O = Max(®,) = Zk(u) - x by Lemma 22. Therefor&g (u) preservesk and
therefore Zy (u) C Hg by definition. SoHg = Zk(u) and (c) is proved. (d) follows
from Lemma 24 and the fact thadr = Zx (u). Now we know thatHg itself has the
properties of Theorem 25. Hence (a) holds for any tofus He. O

REMARK 39. In general the faces of an orbitope are not necessarppsed.
For example 4-dimensional Carathéodory orbitopes haveemposed faces, see [26,
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Theorem 1 (5b)] (note that the author uses the word “facdiat'face and “face” for
exposed face). It is important to understand whether antag®i has only exposed
faces. Indeed this is Question 1 in [23]. The previous theosbows that this is always
the case for coadjoint orbitopes.

Corollary 40. If @ C O is a smooth submanifaldhen conv(©') is a face of®
if and only if there is a vector u such th&' = Max(®d,).

Proof. SetF = conv(©®’). From the fact thatD is contained in a sphere, it fol-
lows as in Lemma 16 that elg = O’. Therefore the statement follows immediately
from Lemma 22 and the fact that every face @fis exposed. O

This is a first characterization of the submanifolds thatemppas exE for some
face F. In 87 we will see that this characterization becomes muchenti@nsparent
using the complex structure @. An explicit characterization in terms of root data
will be given in 86.

Various results about the faces have been established ssmgsubgroupH sat-
isfying the properties stated in Theorem 25. Now we know tHatdoes satisfy these
properties. Hence we can state those results more cleahiy.i§ done in Theorem 42
below. Next in Lemma 44 we will make precise the possibledoze in the choice of
the groupH. First of all decomposeéHr as in Lemma 30:

(41) He = Z¢ - Kg - K.

Zg is defined in (37),Kg is the product of the simple factors oHf, Hg) that act
nontrivially on extF and K is the product of the remaining factors.

Theorem 42. Let T ¢ K be a maximal torus.

@ If FC Ois a proper T-invariant facetheno := F Nt = n(F) = n(extF) is a
proper face of the momentum polytope P andF is a Zx (o *)-orbit.

(b) If F; and R, are T-invariant proper facesthen R C F; if and only if R Nt C
F Nt

(c) If Fy and R, are T-invariant proper facesthen R = F, if and only if RNt =
FoNt.

(d) If x € extF, then x= Xg + X1 with X € 3z and x € €. Moreover

(43) extF = xp + Kg - X1
and Kg - x; C & is full.

Proof. If F is T-stable, thenT C Hg. So (a) follows from Lemma 35. (b) Set
oi .= F Nt. If F; C F,, then clearlyo; C 0,. To prove the converse, assume that
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o1 C o2 and pickx € o1. Then Zk (o) C Zk(0y) and extF = Zk(oi") - x. Thus
extF; C extF,. (c) follows immediately. (d) is just Lemma 30 stated fdr= Hg. [

Lemma 44. If F c O is a face and HC K is a connected subgroupuch that
F c h andextF is an H-orbit then K ¢ H C HF and K = L.

Proof. NecessarilyF # @. Since ext~ is an H-orbit, H preserves ext, hence
F. So H C Hg by definition (37). To prove the opposite inclusion, split @sual
H=2Z-L-L" and writex = Xo + X; as in Lemma 30. The orbit - x; C [ is full, so
the affine span of is xo + [. Since alsoHg has the properties stated in Theorem 25
we can repeat the same reasoning For instead ofH. Thus we get that the affine
span of F is Xp + ¢¢. Thereforel = ¢¢. So L and Kg are connected subgroups Kf
with the same Lie algebra and therefore coincide. This iesgir = L C H. 0

ExXAMPLE 45. Sett=su(n+1)={X egl(n+1,C): X+ X* =0, Tr(X) =0},
H={Xegl(n+1): X=X*} andH1 = {X € H: Tr(X) = 1}. We identify su(n + 1)
with H; using the map

Idn+1

@:su(n + 1) — Hy <P(X)=iX+n+1.

The vector space of Hermitian matrices is endowed with aariant scalar product,
given by (A, B) = Tr(AB). Let O C su(n + 1) be the coadjoint orbit corresponding to
P"(C) endowed with the Fubini-Study metric. Thél = ¢(O) is the set of orthogonal
projectors onto lines, i.e.

O ={AecH: A>= A rankA) = 1}.
Using the spectral theorem it is easy to check that

O' ={AeH;: A>0, rankp) = 1}
and

O ={Ae?H,: A>0}.
Given a Hermitian matridu % 0 we wish to study the face
F = Fy(O).
We can assume that be tangent tdH,, i.e. Tru = 0. Let

Cl=Vi®---® Vs



952 L. BILIOTTI, A. GHIGI AND P. HEINZNER

be its eigenspace decomposition, ig, = wildy,. Sinceu # 0 and Tru=0s > 1.
We assumeu; < up < --- < us. Let

D: 0 =R, dy(X)={u, x)

be the height function with respect to The critical set ofd, is {Ae O': [A,u] =0}.
Since [A, u] = 0 if and only if A(V;) C V,, it follows that this is the set of projectors
onto lines that are contained in some of tHes, i.e. Crit(®,) = P(V1) U --- U P(Vs).
For the same reason

Zsyp+1)(U) = S(UV1) x - - - x U(Ve)).

Let v; be a non zero vector o¥; and letP, denote the orthogonal projection onto the
complex lineCv;. Then

P(Vi) = Zsup+1y(u) - Py
If A e Crit(d,), then

Oy(A) = paTr(Aly,) + - -+ + usTr(Aly,).
Since Tr@Aly,) > 0 and
Zs:Tr(A|Vi) =TrA=1
i=1
the maximum of®,, is equal tous and it is attained exactly oR(Vs). This means that
extF = Max(®,) = P(Vs) C O,
F =convP(Vs)) = {A€Hi: A= 0, Aly: =0}.

So F consists of the operators i@ that are supported oWs. Notice thatHr =
S(U(Vs) x U(V4h) and 3¢ = iRv wherew is the Hermitian operator such that

Id Id

V.= ——, V|lypr=—"7.
v dim Vs v dim Vg

In fact F = Fv(@/). In particular in this examplé€Cg is much larger tharge N Ck.
The above computation shows that to each face correspondbspace, namelys.
Vice versa, given a subspat ¢ C"*1, let w be the Hermitian operator such that

Id Id

ww = Gmw’ YW= T gmwe

Then
Fu(O) = {A€Hi: A>0, Ay = 0} = convP(W)).

Therefore the faces @’ are in one-to-one correspondence with the subspac€s$of
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4. The role of the momentum polytope

In this section we prove Theorem 1. We will start by consingctthe inverse of
the map considered in Theorem 1 and we will prove in detait thgpasses to the
quotient. At the end (Theorem 49) we will show that the two mape inverse to
each other.

Consider a full orbitO C ¢, a maximal torusT C K and the momentum polytope
P. In this section we will study in detail the relation betwetre faces of® and
those of P. Denote bya@‘(@) the set of proper faces @ and by.Z(P) the proper
faces of the polytopeP. If F is a face ofO anda € K, thena- F is still a face,
so K acts on.Z(0). Similarly W = W(K, T) acts on.Z(P). We wish to show that
FZ(0)/K = F(P)/W.

Lemma 46. If F is a face ofO, there is a T -stable face 'Fwhich is conjugate
to F, i.e. F =a- F for some ac K. F’ is unique up to conjugation by elements
of Nk (T).

Proof. By Corollary 27F is preserved by some maximal tor&cC K. There is
ac K such thatS=a'Ta. HenceF’ = a-F is preserved byl . To prove uniqueness
assume thafF; and F, be T-stable faces of? and thatF, = a- F; for somea € K.
ThenHg, = aHg,a™t. In particular bothT andaTa™! are contained irHg,, so there is
b € Hf,, such thaeTal=bTb ! Thenw =blae N¢(T) andw-F,=bta-F; =
b_le = Fo. O

Define a map

¢: Z(0)/K = F(P)/W

by the following rule: given F] € 9(@) choose aT-invariant representativé and
seto([F]) ;= [F Nn{]. By Lemma 32F Nt is indeed a face of the polytope. By
Lemma 46 ifF’ is T-stable and '] =[F] then F' Nt and F Nt are interchanged by
some element oW. This shows that the map is well-defined.

Now fix a faceF of © and a maximal toru¥ C He. SinceT NKg is a maximal
torus of Kg and T NKf is a maximal torus oK, corresponding to the decomposition
(41) there is a splitting

t=3r D ({NELE) B (LN EL).
Denote byWr and WL the Weyl groups of Kr, Ke N T) and K¢, Kg NT) respect-
ively. W and Wi can be considered as subgroupsVéf They commute and have the

following sets of invariant vectors:

YV =sr @b, =@t PV =5
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Lemma 47. Let T C K be a maximal torus and let F be a nonempty T -invariant
face of 0. Seto := F Nt. Then
(i) Wg x WL preserveso;
(II) F= H|: -0 = K|: 0.

Proof. Recall that ext = Xo + K¢ - X;. By Kostant theorenv = w(extF) =
7 (Xo+ Kg +X1) = Xo+ conv(WE - x;) = conv(WEk - xX). HenceWg preservesr. Moreover
o C 3 ®(tNEr) henceWr fixes o pointwise and (i) follows. Similarly, since C 3 ®
tr, Zr - KL fixes o pointwise. ThereforeHg -0 = Kg-o. By Lemma 31Kg - (6 — Xo)
is convex and the same is true &+ Kg - (0 —Xg) = Kg 0. SOHg -0 = Kg -0 is
convex. Since ext = Hg - x C Hf -0, it follows that F C Hg - 0. On the other hand
o C F and F is He-invariant, so alsdHg - C F. This establishes (ii). O

If o is a face ofP set
G, :={ge W:g(o) =0}.

Lemma 48. If o € #(P) there is a vector (€ t that is fixed by G and such that
o = Fy(P). If u is any such vector and = FU(@), then FNt=o0, G, = W x W,
3¢ = t% and F does not depend on u but only en

Proof. The existence af follows directly from Lemma 7. By Lemma 47 (iWg x
WL C G,, sou e t"*We = 3. and using Theorem 38 it follows thair = Ck (u).
Therefore the subgroup &W that fixesu is the Weyl group of le, T) i.e. Wg x WE. It
follows thatWg x Wg = G,. From this it follows that;r = tC, that HE = Cx(3¢) =
Ck (t%%) and in particular thatHz and hence ext and F only depend orv. ]

Define a map

v Z(P)/W — Z(0)/K
by the following rule: giveno, fix u € t® such thato = F,(P) and set
¥ (o)) := [Fu(O)]

Thanks to the previous Iemnﬁ(@) depends only o, not onu. It is clear thaty
is well-defined on equivalence classes.

Theorem 49. The mapsy and ¢ are inverse to each other and([o]) =
[Zk(0h) - o]

Proof. Leto be a face ofP. Chooseu € t® such thato = Fy(P). Then FU(@)
is T-stable, sap o y([o]) = ¢([Fu(O)]) = [Fu(O) Nt] = [0]. So oy is the identity.
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It follows immediately from Theorem 42 (c) that is injective. Hence it is a bijection
andy = ¢~1. By Lemma 35 exE,(0) is a Zk (o +)-orbit. HenceKg C Zk (o) C He.
By Lemma 47 (ii) we getry(®) = Zk (o) - 0. O

5. Smooth stratification

As we saw in the previous section the groMpacts onﬂ(@), which is the set
of faces of O and this action has a finite number of orbits, which are in wRene
correspondence with the orbits of the Weyl group on the fis@e# (P). Let B denote
one of the orbits oK on 3?((5). We call B a face type The set

Sg == U relint F.

FeB

is a subset 0O, because the faceB € B are proper. Since every boundary point
lies in exactly one open face (Theorem 8)

0= |] Se
Be.Z(0)/K

We call Sg the stratumcorresponding to the face typ®. The purpose of this section
is to show that the stratdg yield a stratification of® in the following sense.

Theorem 50. The strata are smooth embedded submanifolds arid are locally
closed indO. For any stratumSg the boundarySg —Sg is the disjoint union of strata
of lower dimension.

There is an obvious map: Sg — B which maps a poink € Sg to the unique
face F such thatx € relint F. To studySg it is expedient to fix an elemerft € B.
ThusB={g-F:ge K} = K/Hf and

Sg =K relintF ={g-x:ge K, xerelintF}.
K — K/HE is a right principal bundle with structure grouge. Let
E = K x"F relint F

be the associated bundle gotten from the actiorHef on relintF. Note that&g —
K/Hg is a homogeneous bundle in the sense that the left actidd oh K/Hg lifts
to an action ofK on & that is given by the following rule

a-[g,x]:=[ag,x], a geK, xerelintF.

(Here [g, X] is the point in the associated bundle.)
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Proposition 51. Let B be a face type and let & B be a representative. Define
a map

fi& —¢ f(g x])=9-x.

Then f is a smooth K-equivariant embedding &f into ¢ with image Sg. There-
fore Sg is a smooth embedded submanifoldtofMoreover p Sg — B is a smooth
fibre bundle.

Proof. It is straightforward to check thdt is well-defined, smooth and equivari-
ant. It is also clear thaf (6¢) = Sg. We proceed by showing thdit is injective. Re-
call from Theorem 8 that if; and F, are different faces, then relif{ NrelintF, = @.

If f([g, X]) = f([g1, Xa]) then g;1g - x = x;. Sincex; € relintF and g;'g - x €

relint(g;*g - F) we getg;'gF = F, so [0, X] = [g1, 1] in . This shows thatf

is injective. Next we show thaf is an immersion. Denote by the fibre of & over
the origin of K/Hg. Since &k is a homogeneous bundle arfdis equivariant, it is
enough to show injectivity ofl f, at pointsp € V, i.e. at points of the formp = [e, x],

x € relint F. At such points

d

U= {at
IndeedT,V is the vertical space, whileJ is the tangent space at of a local section
of K — K/Hg. The injectivity of df, will follow from the following three facts:
(a) dfyly is injective;
(b) dfyly is injective;
(c) dfp(V)Ndfp(U) = {0}.
(a) follows from the fact thaff |, is a diffeomorphism oV onto relintF. To prove (b)
observe first that ifx € relint F, thent, C he. Indeed ifg € Ky theng:-x = x €
relint(g- F) NrelintF, sog-F = F by Theorem 8 andy € Hg. ThereforeKy C He
and ¢x C hg, as claimed. Now leti be an element oU. By definition there isv € ¢
such that

with

[exp(tv), x]: v e bé}

t=0

d
(52) u:= i 0[exp(tv), X].
t=
Then
dfp(u) = dgt t:01‘([exp(tv), X]) = dEt o exptv) - x = [v, X].

(The bracket on right is the Lie bracket &) If df,(u) = O, then p, x] = 0 and
v € tx C he. Sincev € f)é, this means that = 0. Thus (b) is proved. Now observe
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that [h¢, b£] C b, since the adjoint action ofi preserveshr andbr. If v € b and
u e U is given by (52), therd f,(u) = [v,X] € bg sincex € F C he. Sodfy(U) C hE.
On the other handl fy(T,V) = Tr(p(relint F) C bhe. It follows that

dfp(TpV) Ndfp(U) C he NbhE = {0).

Thus (c) is proved and is an immersion. In order to prove that it is an embedding we
shall prove thatf is proper as a magd : & — Sg = (). Let {y,} be a sequence
in Sg converging to some poiny € Sg. Set [On, Xn] := f~1(yn). We wish to show
that {[gn, Xn]} admits a convergent subsequence. SiKcés compact by extracting a
subsequence we can assume that> g. Theny, = f([gn, Xn]) = On - Xn. Therefore

Xn = 0,1 yn — X:=g 1.y. Sincey € Sg, y € relint(g"*F) andx € relintF. Therefore
[gn, Xa] = [9, X] as desired. O

Lemma 53. If B is the face type of Fthen
dimSg = dim K —dim K¢ — dim Zg.

Proof. Sg is a fibre bundle oveK /Hg with fibre relintF. Since dimF = dimeg
we get the result. I

We introduce a partial order on the face types, as folloBs:< B, if for some
(and hence for any) choice of representativgs= B; there is someg € K such that
gF1 C F,. This is a partial order. We writ®; < B, if B; < B, and B; # B,.

Proof of Theorem 50. We already know that the strata are dmewmibedded sub-

manifold of ¢. In particular they are locally closed subsets botht aind of O. By
Proposition 51Sg = f(&g) = f(K x"* relint F). So

Se=f(Kx"F)=[]JF.

FeB

Since any faceF is the disjoint union of all proper faces containedkn

Sg = U relint F U |_| U relintG = Sg U |_| Sc.

FeB C<B GeC C<B

To conclude we need to show that dfg < dimSg if C < B. Fix representatives
F € B and G € C such thatG < F. By the previous lemma it is enough to show that
dimZg +dimK; < dimZg +dimKg. In fact Zg - K fixes G pointwise sinceG C F.
ThereforeZr - K C Hg. On the other hand ik € G, then affG) = x+ ¢ C aff(F) =

X + te. HenceKg C K. It follows that - @ €, tg] = 0. Sincets is semisimple,
this shows thagr @ ¢ L tc. But 3z ® € C bhg, S0 in factze @ € C 3¢ @ tg. This
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proves the inequality diiZg + dim K¢ < dim Zg + dimKg. In the case of equality,
we would getZg - K = Zg - Kg, s0 Zg = Zg, HF = Hg and hence ext = extG
and F = G. L]

ExamMPLE 54. We shall describe the strata of the orbito@é studied in Ex-
ample 45. We saw there that the faces@f are in one-to-one correspondence with
subspaces o"*!. Two subspaces are interchanged by an element ofi SUY) if
and only if they have the same dimension. So the orbit typesiratexed by the di-
mension. LetW C C"*! be a subspace of dimensidqg let F = conv®(W)) be the
corresponding face and l& be the orbit type ofF. Then

B =~ K/Hg = SUMN + 1)/S(UW) x U(W1)).

ThereforeB is simply the Grassmannia@(k,n+1). Since relinE = {A € F: rankA =
k}, it follows that

Sg={AeH;: A>0, rankA = k}.

In fact this is a bundle over the Grassmanniarkgflanes. Finally, notice thatl acts
on relintF simply by the adjoint action of SWY).

6. Satake combinatorics of the faces

In this section we describe the faces@fand the faces of the momentum polytope
in terms of root data. The description uses the notiorx-gbnnected subset of simple
roots, which was introduced in [24]. In that paper Satakeothiced certain compact-
ifications of a symmetric space of noncompact type (the ®atBlrstenberg compact-
ifications). The notion ofx-connected subset was used in the study of the boundary
components of these compactifications. It is no coincidehaefaces of® and bound-
ary components admit a description in terms of the same gmatdyial data: in fact it
was shown in [6] that the Satake compactifications of the sgtrimspaceK®/K are
homeomorphic to convex hulls of integral coadjoint orbit K¥f Here we do not use
the link with the compactifications. Instead we show dise¢tbw to construct all the
faces of® (up to conjugation) starting from the root data. This is acpbished for a
general coadjoint orbit with no integrality assumption.

Fix a maximal torusT of K and a system of simple roof§ C A = A(¢C, ). As
usual we identify¢C with its dual using the Killing formB. The roots get identified
with elements ofit.

DEFINITION 55. A subsetE C it is connectedf there is no pair of disjoint sub-
setsD,C C E such thatDUC = E, and (x,y) = 0 for anyx € D and for anyy € C.

(A thorough discussion of connected subsets can be found2ing5].) Connected
components are defined as usual. For example the conneatgebnents off1 are the
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subsets corresponding to the simple roots of the simpldsdaét.

DEFINITION 56. If x is a nonzero vector oft, a subsetl C IT is called
x-connectedf | U {ix} is connected.

Equivalently I C IT is x-connected if and only if every connected component of
| contains at least one roat such thate(x) # 0. By definition the empty set is
X-connected.

DEerFINITION 57. If | C IT is x-connected, denote bl the collection of all sim-
ple roots orthogonal tgix} U l. The setd := 1 U |’ is called thex-saturationof I.

The largestx-connected subset contained Jnis |. So J is determined byl and
| is determined byJ. Given a subseE c IT we will use the following notation:

te:=tN ﬂ kera,

acE

Ag = ANnspag(E), Agyt=AgNAL,

tE = ZRi H. = orthogonal complement df in t,
acE

be:=te P Z., te:=t0 P Z.

QEAE 4 0EAE 4+

We denote byTg, Hg, Kg the corresponding connected subgroups. Note Hhatis
the subgroup associated to the subSet I1, while Hg is the subset associated to the
face F c O. This should cause no confusion.

Lemma 58. Let O be a full coadjoint orbit and let FC O be a proper face.
Assume that & Cg and thatv € Ck N 3. Leta € A.
(@ If a(u) =0, thena(v) =0.
(b) If —ia(u) > 0O, then—ia(v) > 0.

Proof. (a)Zk(u) C Hg, sinceF = FU(@), and Hg = Zg (v) by Theorem 38. If
a(u) =0, thenZ, C 3:(u) C hg = 3¢(v), hencex(v) = 0. (b) Assume by contradiction
that —ia(v) < 0. Setu; = (1 —t)u + tv. By Proposition 7Cg is convex, sou; € Cg
for any t € [0, 1]. Since—ia(ug) > 0 and—i«(u;) < 0, there is somes € (0, 1) such
that a(us) = 0. Sinceus € Cg and «(v) # 0, this would contradict (a). ]

Denote byC* the positive Weyl chamber associatedTio The following is im-
mediate and well-known.

Lemma 59. If v e C*, thenj,(v) = hg with E = {a € IT: a(v) = 0.
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Theorem 60. Let O be a full coadjoint orbit and let x be the unique point in
ONCH,
(@) If I C T is x-connected and J is its x-saturatjoen

F :=conv(H; - x)
is a face ofO. If u e t; and —ia(u) > 0 for any« € IT—J, then F= Fy(®). Moreover
(61) He=H;, Zr=T;, Kg=K;, Kg=K.

(b) Given an arbitrary subset [ IT, denote by | the largest x-connected subset con-
tained in E and by J the x-saturation of I. TheneHx = H, - x = Hj - Xx.
(c) Any face of® is conjugate to one of the faces constructedah More precisely
given a face F and a maximal torus @ Hg there are a basdl c A(tC, t€) and a
subset IC IT with the following properties
() if C* is the positive Weyl chamber correspondingltothen C+ NnextF # @;
(i) if x is the unique point inC*+ N extF, then | is x-connected and E
conv(H; - x), where J is the x-saturation of I.

Proof. (a) Since the sdix|,: « € I —J} is a basis oft}, we can picku € t;
such thate(u) > O for anyw € I1 —J. ThenZk(u) = H;. SetF := FU(@). We claim
thatx € F. Indeedx andu belong toC+, so by Lemma 23 is a maximum point of
d,, i.e. x e extF. By Lemma 22 exF = Zg(u)-Xx, so F = conv(H; - x). This proves
that convf; - X) is indeed a face 00. By Lemma 44Kg C H; = Zk(u) C Hg and
Kg = K. Pick v € Cg N3¢ (this exists by Theorem 38). By Lemma 58«(v) > 0
for everya € A, i.e.v € C*. By Theorem 38 (c) and Lemma 38 = 3,(v) = b,
whereE = {« € IT: «(v) = 0}. We claim thatE = J. Indeedh; C hr = hg, soJ C E.
If we write E = | UE/’, thenl’ C E’. Conversely, ifx € E’, thenZ, L ¢, = ¢ (simply
because the root space decomposition is orthogonalf,sa ¢-. This entails on the
one hand that4,,¢] =0, i.e.a L I; on the other hand that, fixes x, i.e. a(x) = 0.
This means in fact that € |I’. HenceE = J as claimed and (61) follow.

(b) Split E in connected component€ = E; L ---U E,. We can assume that
E; is x-connected iffj < q for someq between 1 and. Thenl = E;U---U E,. Set
E':= E—1 =Uj-qE;. Then clearlyE’ C I'. So E C J. Let F = conv(H; - x) be the
face constructed fromd as in (a). ThenHg = H; and Kg = K,. Sincel Cc E C J,
Ki CHe C H;. ButK;-x=Kg-Xx=Hg-Xx=Hj-X, soHg-x = Hj-x as desired.

(c) If F= O, thenF = conv(H,;) with I = J = I1. OtherwiseF is a proper
face. Fix a pointx € extF N t. By Theorem 38 (b) there is a vectare 3z such that
F = Fu(@). Then extF = Max(®,), so there is a Weyl chambé&* such thatx, u €
C+. Let IT be the base corresponding @'. By Theorem 38 (cHg = Zk (u). Since
u e C+, Lemma 59 says thatly = Hg with E = {« € IT: «(u) = 0}. Let | and J be
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as in (b). Thenl is x-connected and using (b) we get &t Hep-Xx = Heg-x = Hj-Xx.
Thus F = conv(H; - x) as desired. 0

REMARK 62. In the proof of (c) we have in fact th& = J. Indeed from (a)
He = H;, so He = H; i.e. E=J.

ExXAMPLE 63. LetK = SUMN + 1), n > 4, and letx € su(n + 1) be the diag-
onal matrixx = diagf(n — 1),i(n — 1), —=2i, ..., =2i). The coadjoint orbit through
x is the momentum image of the Grassmann@{2, n + 1). Let t be the set of the
diagonal matrices and denote BY = {1, ..., oy} the standard set of simple roots,
i.e. aj(diagXy, ..., Xne1)) = Xi — Xj+1. The vectorx lies in the closure of the posi-
tive Weyl chamber containg and «;(x) # 0 if and only ifi = 2. Therefore thex-
connected subsets @t are the following:

a) Iklz{al,az,...,ak},kafn;
b) |k2={a2,...,ak},2§k§n;
c) the empty set.
Forl =@, Ay, =@, H =T and thex-saturationJ of | consists of the sim-

ple roots that are orthogonal tox. ThereforeH; = Zgx(x) and Hy - x = {x}. The
corresponding face is the vertdx = {x}. _
Fori = 1,2 letJ} be thex-saturation ofl} and setF! = conv(Hy: - x). Itis easy

to check thatd! = 1} U {aks2, . .., an). K,z is the image of the embedding

SUK+1)< SUN+1), A (Q |?1)
and Hy: = S(Uk + 1) x U(n —k)). Hence
extF = K1 -x = SUK + 1)/S(U(2)x U(k — 1)),
is the complex Grassmannia@®(2, k + 1). The stratum corresponding &' is a fibre
bundle over SU{ + 1)/S(UK + 1) x U(h — k)) = G(k + 1,n + 1).

The x-saturation of 12 is J2 = 12 U {aks2, ..., on}. K,z is the image of the
embedding

10 0
SUK) < SUn +1), A (o A 0 )
0 0 i
Hyp = S(U(1)x U(k) x U(n — k) and
extF? = Kz - x = SUK)/S(U(1)x U(k — 1))

is a complex projective spad@<~1(C). The strata corresponding E’f is a fibre bundle
over the flag manifold SW(+ 1)/S(U(1) x U(K) x U(n — K)).
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7. Complex geometry of the faces

In the previous sections we have described the face8 if terms of their extreme
sets ext- and have caracterized the submanifolds Fext O in various ways. Here
we wish to prove Theorem 2, which amounts to the equivalersterden (a) and (b)
in Theorem 64 below. This will add another characterizafioierms of the complex
structure ofO.

Theorem 64. Let O’ C O be a submanifold. The following conditions are
equivalent.
(a) O is a compact orbit of a parabolic subgroup of G.
(b) There is a face F of) such that®’ = extF.
(c) O is compact and the subgroup

(65) P:={geG:g-0 =0}

is a parabolic subgroup of G that acts transitively 6;
(d) There are a maximal torus T K, a Weyl chamber € C t and a subset E of the
corresponding set of simple roof$ such that®’ NC+ # @ and O’ is an orbit of H.

Proof. That (d) is equivalent to (b) is the content of Theorgédn

(@ = (c) SinceO' is an orbit of some parabolic subgroWp, the subgroupP
containsQ so it is parabolic.

(c) = (d) SinceP is parabolic we can find a maximal tordsC K and a system
of simple roots int in such a way thaB_ C P. So B_ acts onO’ and by the Borel
fixed point theoremB_ has some fixed poink € O’. Sincex is fixed by T C B_,
x € t and it follows from Lemma 15 that € C+. If E C IT set

Ug 1= @ 0o PE =t @ [s 8

aEA_—Ag a€EA_U—Ag

Thenpg = EJE @ ug is a parabolic subalgebra. Denote by and Pe the correspond-
ing connected subgroups @&. Then Pg is a parabolic subgroug)g is its unipotent
radical andHE is a Levi factor. In particulaPe = HE - Ug and Ug < Pe. Since
B_ c P there is someE c IT such thatP = Pg. SinceUg € B_ ¢ G4 we conclude
that O’ = Pg-x = HE -X. As (0’ is compact, the compact foridg must be transitive
on O'. This concludes the proof.

(d) = (a) First observe that)’ = Hg - x is a complex submanifold since it is a
connected component of the fixed point set of the tofgs ThereforeHE preserves
©'. By assumption there ix € C+ N @. By Lemma 15 the stabilize6, contains
the negative Borel subgroup, 4de fixes x. If x' € O, there isa € Hg such that
X =a-x. If be Ug thena lbae Ug, soalha-x =x andb-x’ =ba-x =a-x = X.
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HenceUg fixes pointwise(O'. ThereforePg preserves)’ which is therefore a compact
Pe-orbit. 0

We notice that in condition (d) the s& can be chosen to be thesaturation of
the maximalx-connected subsdt C E as shown in Theorem 60 (c).

The above result establishes a one-to-one correspondetaedn two rather dis-
tant classes of objects: on the one side the faces of theopeb@, on the other side
the closed orbits of parabolic subgroups ®finside @. To illustrate this correspond-
ence recall the following fact.

Lemma 66. If P C G is a parabolic subgroupin O there is only one orbit of
P which is closed.

Proof. Since the action is algebraic a@dis a compact manifold, there is at least
one orbit which is closed. Le®”’ C O be a closedP-orbit and letB C P be a Borel
subgroup. Ther®' is B-invariant, so it contains a closeB-orbit. But the B-orbits in
O are just the Schubert cells and the only one which is closetidsfixed point of
B. Hence any closedP-orbit contains this fixed point and this implies that theseld
P-orbit is unique. O

The above uniqueness statement can also be considered Hiemotnt of view
of the orbitope, as can be seen from the proof of the impbca(c) = (d) in the
previous theorem. Indeed, P is a parabolic subgroup, we write it & = Pg for
some E C I1. Then there is a unique orbit dflg that is of the form exE, namely
the orbit Hg - x for x € @ N C+. Alternatively this orbit can be described as follows:
chooseu € tg = 3(hg) such that—ia(u) > O for « € E. Then the closedP-orbit is
Max(®,). In a sense to fix a parabolic subgrol is equivalent to fixingHg and
the vectoru. So oncePe is fixed we know bothHg and which component o® N b
corresponds to the maximum df,.

To conclude we wish to interpret geometrically conditiop ¢¢ Theorem 64. Let
O’ be a complex submanifold aP. Let H denote the Hilbert scheme of the project-
ive manifold O. If Y C O is a subscheme, lety] be its Hilbert point. (See e.g. [1,
Chapter 1X].) The groups acts onH by sending the Hilbert pointY|] of a subscheme
YCOto[g-Y].

Proposition 67. Let O’ C O be a complex submanifold which is an orbit of some
subgroup of K. Let f G — H be the map €g) :=[g- O’]. Then the following con-
ditions are all equivalent to conditiofc) of Theorem 64:

i) f(G) is compact
i) f(K) is a subscheme of;
i) f(G) = f(K).
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Proof. f(G) is just the orbit ofG through the pointp = [O’] € H, while f(K)
is the orbit of K through p. The subgroupP defined in (65) is just the stabilizes .
Therefore f (G) = G/P. It follows immediately that the three conditions are egiéwnt
to P being parabolic, so they are implied by (c). Converselyhdyt are satisfiedP is
parabolic. By assumptio’ is an orbit of some subgroup C K. ThenL C P and
O’ is a P-orbit, thus (c) holds. O

EXAMPLE 68. Consider the orbitope @&?(C) as described in Example 45. The
complex lines satisfy the conditions in the proposition andfact they do generate
faces ofO: if O’ C P2(C) is a line the set con@’) is a face ofO. Also plane conics
are complex submanifolds @?(C) that are homogeneous for a subgroup of SIJ(B,
namely SO(3C). Nevertheless the orbit of SL(&) through a conic is not compact
since smooth conics degenerate to singular ones. So comins datisfy the conditions
above and in fact conics do not generate face®of

ExamMPLE 69. LetL C K be the centralizer of a torus and I& C O be an
orbit of L. As we have shown in general the det= conv(®’) is not a face ofO.
One condition is that®?’ c I. In fact if L = Zg(u), and F = FU(@), then O’ =
extF = Max(®,) c Crit(®,) = O N [. This condition is not enough either. In fact
Crit(®y) will contain at least two orbits, one for the maximum and dae the min-
imum. These are’good” orbits, in the sense that they cooms$pgo faces, namely to
FU(@) and F,u(@) respectively. The orbits in between in general do not geerefiaces.
Consider the following example. L&D C su(3) be the momentum image of the flag
manifold of pairs [1,L,) whereL; C L, € C3 and dimL; =i. Letu = idiag(1,1-2).
SetV = C? x {0}. Then Crit@®,) has the following three connected components:

Ci={(L1,L2) € O: L1 € P(V), Lo = L1 & Ces},

Co={(L1, L)€ O: L1 C L CV},

Cg = {(Lj_, L2) eO: L]_ = (Ceg}
Each component is an orbit &k (u) = S(U(2) x U(1)). Let P, denote the stabilizer
of C; for the action of G = SL(3,C). Then P, = {g € SL(3,C): g(V) = V} and
P; = {g: g& = e3}. These two subgroups are parabolic. Sp and C; correspond

to faces, by Proposition 64. On the other hand we claim fhats the subgroup of
SL(3,C) of matrices of the form

g= (A 0), AeSL(2,C), » e C".

It is clear that matrices of this form lie iR;. Conversely assumge P;. Theng(V) =
V. Write ge; = Aez + w with w € V. For anyv € V — {0} the planeg spang, ;) =
spanfjv, ge&) containses. Hencew € spanfv, €3). Sincev € V — {0} is arbitrary it
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follows that w = 0. The claim is proved, hencP; is not parabolic and con&) is
not a face ofO.

8. The case of an integral orbit

A coadjoint orbitO C t is integral if [w]/27 lies in the image of the natural mor-
phism H2(0, Z) — H?(O,R). (Herew is the Kostant—Kirillov—Souriau form.) 1© is
integral there is a complex line bundle— O such that ] = 27 cy(L). This line bun-
dle can be mad& -equivariant and holomorphic with respect to the structliren O
and it supports a uniqu& -invariant Hermitian bundle metrib such thatw = iR(h).
With this holomorphic structure the line bundle turns out to be very ample. Set
V := (H%O, L))*. ThenV inherits fromw and h an L2-scalar product. Moreover
V is an irreducible representation #f and there is a unique orbM C P(V) which
is a complex submanifold dP(V). This orbit is simply connected. Fix oW the re-
striction of the Fubini-Study form gotten from tHe?-scalar product orV. SinceK is
semisimple there is a unique momentum mbpM — £ and O = ®(M). Conversely,
if there is an irreducibleK -representatio’’/ such thatO = ®(M) for the unique com-
plex orbitM C P(V), thenO is integral. This follows from the fact that the momentum
map ®: M — O is a symplectomorphism.

Another way to express integrality dP is the following. Fix a maximal torus
T C K and choose a point € O N t. Recall that a linear functional € (it)* is an
algebraically integral weightf

(o) _ M(Ha)
@2 [Hal?

el

for any roota € A(tC, t€), see e.g. [18, p.265]. The® is integral if and only if
A = (ix,-) is an algebraically integral weight. (For all this see [1ha@ter 1] or [19].)

Theorem 70. Let O C ¢ be an integral coadjoint orbit and let F be a face of
O. Write extF = xo + Kg - X1 as in (43). Denote by(, )r the scalar product ortg
induced by the Killing form otr. Define % € €= by the following rule

(71) (X1, YYE = (X1, )
for all y € €. Then K - x; is an integral coadjoint orbit ing.

Proof. This fact can be proved in a variety of ways using theoua charac-
terizations of integrality. One simple way is using the défin, i.e. the condition
on the integrality of the Kostant—Kirillov—Souriau form.etwr be the KSS form of
Kg - X1 C 8. Let u € € be the functionalu(y) = (x1, ¥) = (X, Y)e. The stabiliz-
ers (for the adjoint action) ok, and x; are the same, because both coincide with the
stabilizer of u (for the coadjoint action). Moreover the stabilizers Kt of x and of
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Xy coincide sincex = Xp + X1 and Xg is fixed by K. Summing up we get that the
stabilizers inKg of x{ andx coincide. Hence the map

K=t x> j(g-x) =g X

is an embedding oKg - x] onto extF = Kr - x C £. We claim thatj*w = wg. By

equivariance it is enough to check thgtw = wg at xj. Take X, Y € ¢ and setu =
[X, x1], v =Y, x{]. Then

_ T o d
dix(W) = | JAdExpOx) = G| (Adexptx)) = [X. ]

and similarly djx (v) = [Y, x]. Hence j*w(u, v) = o([X, X], [Y, X]) = (x, [X, Y]).
Since [X, Y] € &g and Xg € 3p, Xo L [X, Y]. Therefore(x, [X, Y]) = (xq, [X, Y]) =
(X1, [X, YI)F = wr(u, v). This proves that indeedr = j*w and thus fr]/27 is
integral if [w]/27 is. O

REMARK 72. Since the various definitions of integrality are equawal this the-
orem ensures that ifix, -) is an integral weight, therixy, - }¢ is integral as well.
Since integral weights give rise to representations, td dace F of an integral coad-
joint orbitope is attached an irreducible representatibip. If one fixes root data and
F is the face corresponding to arconnected subsdt C I1 as in 86, then the rep-
resentation corresponding 1 is the representaiolv;, originally described by Satake
[24, p.89] (see also [7, p.67].

REMARK 73. If O is an integral orbit, ther© is the momentum image of a flag
manifold M provided with an invariant Hodge metric lying in a polaripat L — M.
The spaceH’(M, L) is an irreducible representatianof K. Out of these data one can
construct a Satake—Furstenberg compactifica%r% of the symmetric spac&©/K
and it is possible to define a homeomorphism (named after gddgmon—Li—Yau) be-
tween this compactification and the orbitopie This was accomplished in [6]. Since
this homeomorphism respects the boundary structure, soopeies of the faces o
can be deduced in this way. The arguments in the present papér also to the non-
integral case, give much more information and are more dard geometric, since no
use is made of the Bourguignon—Li-Yau map.
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