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Abstract
Recently Taylor and Socolar introduced an aperiodic mdeo-The associated
tiling can be viewed as a substitution tiling. We use the sultion rule for this
tiling and apply the algorithm of [1] to check overlap coikence. It turns out that
the tiling has overlap coincidence. So the tiling dynamies Ipure point spectrum
and we can conclude that this tiling has a quasicrystallingcture.

1. Introduction

Aperiodic tilesare the set of prototiles which tile the space with their isgphic
images by Euclidean motions (composition of translatisogtions and reflections) but
only in non-periodic way. There have been many examples efiaglic tiles and study
on them [2, 4, 7, 12, 14, 25, 26, 29, 30]. Two of well-known eptas of aperiodic
tiles with simple prototiles up to Euclidean motions are i@ea tiles and Ammann
tiles which are uncovered in the mid '70s. These sets comfigtvo prototiles and
it has been the smallest number of prototiles which form iagar tiles until recently.
Since then, people have been interested in finding a singitije for an aperiodic
tile. This problem is coined as ‘Mono-tile’ problem or ‘Eiegt’ problem (one stone
in German). It had taken quite some time before Taylor andolBocannounced in
2010 the existence of an aperiodic mono-tile. Their tile ieexagonal tile with col-
ored decorations and matching rules which can be embeddedaoringle tile using
shape only. Penrose had found earlier a mono-tile using mmataules which is the
reformulation of (14 € + €2) aperiodic tiles given in [27], but in this case it is not
known that its matching rule can be encoded into a singleusimg only the shape.
One needs two other tiles to replace the matching rules ilPtr@ose mono-tile. Both
of Taylor—Socolar mono-tile and Penrose functional madleodre based on hexagonal
shape. But they make different tilings. There is recent kbpraent on these tilings
that constructs a system which has both tilings as a facfor [5
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Around the mid '80s, Shechtman [31] discovered a quasiakysith forbidden ro-
tational symmetry of crystal diffraction pattern. Afteretitonfirmation of the existence
of quasicrystals, crystal is redefined as a material whoeaclion patterns consist es-
sentially of bright peaks (cf. [16]). Since tilings made bgedodic tiles, which we
define as aperiodic tilings, are not periodic, they have eskras good models for the
structures of quasicrystals when they show the diffracpatterns consisting of pure
point diffraction spectrum, i.e., Bragg peaks only withalitfuse background. Many
examples of known aperiodic tiling like Penrose tiling andhiann tiling show the
pure point diffraction spectrum. The objective of this @Hiis investigating whether
the aperiodic Taylor—Socolar tiling, which is a fixed poirft a substitution, has pure
point diffraction spectrum.

Mathematically the pure point diffraction spectrum is quititen studied through
the spectrum of the dynamics of tidgnamical hul] that is, a compact space generated
by the closure of translation orbits of the tiling. The twotinas of pure pointedness
in diffraction and dynamical spectra are equivalent in guat general setting [22, 13,
8, 24]. In general tilings, almost periodicity of tilings @ equivalent criterion for the
pure point spectrum. When it is restricted on substitutibngs, the almost periodicity
can be easily checked by overlap coincidence. Briefly it raeidwe following: when
two tiles in a tiling intersect in the interior after shiftinone tile by a translation of
two other same type tiles in the tiling, one can observe a glagame type subtiles in
the same position in the common interior (see Subsection[34 23].

An aperiodic Taylor—Socolar tiling itself does not followletsubstitution rule
strictly. But as it is mentioned in [35, 32], half-hexagonités satisfy tile-substitution.
We should note here that the Taylor—Socolar half-hexagtliad) is mutually locally
derivable from the Taylor—Socolar tiling. We consider tlagyor—Socolar half-hexagonal
substitution tiling whose identical image in Taylor—Saudilings belongs to the dynam-
ical hull generated by a repetitive Taylor—Socolar tilingge apply the substitution data
on the half-hexagonal tiles of Taylor—Socolar tiles to thgoethm for checking the over-
lap coincidence. The algorithm can be found in [3]. As theiltesve were able to check
that the half-hexagonal Taylor—Socolar substitutiomgjlhas overlap coincidence. So we
can conclude that the aperiodic Taylor—Socolar tiling haepoint spectrum. One can
also note that a dynamical hull of Taylor—Socolar tilingsirigariant under the action
of rotations ofnz /3. In the diffraction pattern of a Taylor—Socolar tiling, weserved
six-fold rotational symmetry.

The tiling space of Taylor—Socolar tilings with the matdahirules is slightly bigger
than the tiling space of a Taylor—Socolar substitutiomgli But it is shown in [21] that
the tilings in the difference have pure point spectrum, cotimg the total index of cosets.
Thus any Taylor—Socolar tiling under the same matchingsrbkve the pure point spec-
trum. In the case of self-similar tilings, the discrete parthe diffraction pattern, which
is called Bragg spectrum, can be characterized in termseofturier modules. There
are three types of Bragg spectra- limit-periodic, quasiuke, limit-quasiperiodic. The
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Taylor—Socolar tilings belong to limit-periodic strucgysince the expansion factor is ra-
tional. The Fourier module of this structure is an aperiaticicture which is the limit
of a sequence of periodic structures (see [11]).

A substitution tiling with half-hexagonal shapes was knawnch earlier (see [14,
Example 10.1]). It is known from [10] that the substitutioniqt set representing the
half-hexagonal substitution tiling is a cut-and-projeet and so it has pure point spec-
trum. However Taylor—Socolar tiling differs from [10] in éhsense that we consider
a substitution tiling reflecting the aperiodicity of TayBocolar mono-tile and have to
distinguish prototiles by their colors.

Various other ways to observe the pure point spectrum anetgmbiout in [6, 21].
One can observe that there is an one-to-one almost evergwhap from a dynamical
hull of Taylor—Socolar tilings to a dynamical hull of halekagonal substitution tilings.
Then this induces the pure point spectrum of Taylor—Soddlags using the result of
[10]. The other observation would be through checking theluher coincidence which
has been introduced in [20, 23]. One can see in the figures5fdBd [32, Fig. 15]
that C or C type tiles form a sublattice structure of a whole hexagoadtide with
the expansion factor of 2. It would be sufficient to check i timodular coincidence
occurs with theseC and C type tiles. Furthermore [21] provides a geometrical way
to observe the limit-periodic structure in Taylor—Socdiéings which shows that tiling
can be decomposed into a superposition of periodic streictsee Fig. 19 and The-
orem 7.1 in [21]).

Therefore the pure point spectrum may not be so surprisinthancase of Taylor—
Socolar tilings. However comparing with the above methdls, biggest advantage of
our method is that it is almoshutomaticand it can be applied to many variations
of Taylor—Socolar substitutions based on hexagonal &ttisuch as Penrose mono-tile
tiling, with minor changes of the substitution data and #tigate the diffraction spec-
trum of a tiling generated by it. Furthermore it can be amblie substitution tilings
whose underlying structures are not even on lattices.

2. Substitution of Taylor—Socolar tiling

2.1. Tilings and point sets. We briefly mention the notions of tilings and tile-
substitution inR? that we use in this paper. For more about tilings and tilesstultions,
see [18, 23].

2.1.1. Tilings. We begin with a set of types (or colorg},...,m}. A tile in R?
is defined as a paif = (A, i) where A = supp({l') (the support ofT) is a compact set
in R?, which is the closure of its interior, arid=|(T) € {1,..., m} is the type ofT.
A tiling of R? is a set7 of tiles such thaR? = | J{supp{): T € 7} and distinct tiles
have disjoint interiors. We always assume that any fivtiles with the same color are
translationally equivalent. LeE(7) :={x e R T = x + T’ for someT, T' € T}. We
say that a seP of tiles is apatchif the number of tiles inP is finite and the tiles of
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P have mutually disjoint interiors. We defifEN A:= {T € 7 supp{) N A # @} for

a bounded seA C R?. We say thatT is repetitiveif for every compact seK C R?,
{te R% TNK = (t+7)NK]} is relatively dense. We say that a tiling hasfinite local
complexity (FLC) if for each radiusR > 0 there are only finitely many translational
classes of patches whose support lies in some ball of raius

2.1.2. Point sets. A multi-color setor m-multi-color setin RY is a subsetA =
Ap X -+ X Ay C RY x .-~ x RY (m copies) whereA; ¢ RY. We also writeA =
(A1, ..., Am) = (A))i<m. Recall that a Delone set is a relatively dense and uniformly
discrete subset aR9. We say thatA = (A;)i<m is a Delone multi-color sein RY if
each A; is Delone and supp) := [J; Ai C RY is Delone. We say that C RY is
a Meyer setif it is a Delone set andA — A is uniformly discrete ([17]). The types
(or colors) of points on Delone multi-color sets have the samncept as the colors of
tiles on tilings.

2.2. Tile substitution and associated substitution Delonenulti-color set. We
say that a linear ma®: R? — R? is expansivef all the eigenvalues ofQ lie outside
the closed unit disk irC.

DEFINITION 2.1. LetA = {Ty, ..., Tm} be a finite set of tiles ifR? such that
T = (A, 1); we will call them prototiles Denote byP 4 the set of non empty patches.
We say that2: A — P4 is atile-substitution(or simply substitution with an expansive
map Q if there exist finite set$);;  R? for i, j <m such that

(2.1) QT)={u+T:ueDj,i=1,...,m}
with
(2.2) QA =@ + A) for j<m.

i=1

Here all sets in the right-hand side must have disjoint iatsy it is possible for some
of the D;; to be empty.

The substitution (2.1) is extended to all translates of giilels by Q(x + T;) = Qx +

Q(T;) and to patches and tilings b@(P) = (J{(T): T € P}. The substitutions

can be iterated, producing larger and larger patch&@). We say that7 is a sub-
stitution tiling if 7 is a tiling andQ2(7) = 7 with some substitutiorf2. In this case,
we also say thaf is afixed pointof Q. We say that a substitution tiling isrimitive

if the corresponding substitution matri® with §; = #(D;;), is primitive. A repeti-
tive fixed point of a primitive tile-substitution with FLC isalled aself-affine tiling If

T =limp_« Q"(P), we say thatP is a generating patch
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We say thatA = (A;)i<m is a Delone multi-color sein R? if each A; is Delone
and suppq) := [J_, Ai C R? is Delone. Any tiling7 can be converted into a Delone
multi-color set by simply choosing a pointa ;) for each tile @, i) so that the chosen
points for tiles of the same type are in the same relativetiposin the tile: Xg;a,i) =
g + X(ai). We defineA; := {Xai: (A i) € T} and A := (Aj)i<m. Clearly T can be
reconstructed fromA given the information about how the points lie in their respe
tive tiles. This bijection establishes a topological caajoy of (X4, R?) and (X, R?).
Concepts and theorems can clearly be interpreted in eiimgubge (FLC, repetitivity,
pure point dynamical spectrum, etc.).

If a self-affine tiling 7 = {T; + Aj: j < m} is given, we get an associated sub-
stitution Delone multi-color seA + = (A;)i<m Of 7 (see [19, Lemma 5.4)).

2.3. Two equivalent criteria for pure point spectrum. There are two notions
of pure pointness in the study of tilings—pure point dynaahispectrum and pure
point diffraction spectrum. We briefly give the definitions them.

Let 7 be a tiling inR?. We define the space of tilings as the orbit closureyof
under the translation actionXr+ = {—h + 7: h € R2}, in the well-known “local top-
ology”: for a smalle > 0 two point setsS;, S, are e-close if S; and S, agree on the
ball of radiuse around the origin, after a translation of size less tearThe group
R? acts on Xy by translations which are obviously homeomorphisms, andgeta
topological dynamical systemXg-, R?). Let u be an ergodic invariant Borel probabil-
ity measure for the dynamical systeX-, R?). We consider the associated group of
unitary operator§Ug}gegz on L3(X7, n) for which Ugf(S) = f(—g + S). The dy-
namical system X, u, R?) is said to havepure poinfor pure discret® spectrumif
the linear span of the eigenfunctions is dense #X, ).

On the other hand, there is a notion of pure point diffracpectrum which char-
acterizes quasicrystals. Lét = (A;)i<m be a multi-color point set iiR2. We consider
a measure of the form = ), _ & d,,, wheres,, = erAi 8x anda € C. The auto-
correlation ofv is

y(v) = lim

1 -
lim. W(WBn *V|p,),

wherev|g, is a measure ob restricted on the balB, of radiusn and ¥ is the meas-

ure, defined byi(f) = v(f), where f is a continuous function with compact support
and f(x) = f(=x). The diffraction measure of is the Fourier transform//(-;) of the
autocorrelation (see [15]). When the diffraction measyl/(E) is a pure point meas-
ure, we say thatA has pure point diffraction spectrum and 4o has the structures
of quasicrystals.

It turns out that the two notions of pure pointedness are samethe pure point
dynamical spectrum ofX, R?, 1) is equivalent to the pure point diffractivity of 1
[22, 13, 8, 24].
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2.4. Overlap. A triple (u,y,v), withu+T,v+T; €7 andy € E(T), is called
an overlap if

U+ A -y N@+A) #0,

where A = supp(i) and A; = supp(j). We define ¢ + A —y) N (v + A;) the
support of an overlagu, y, v) and denote it by supp(y, v). An overlap (1, y, v) is
a coincidenceif

u—y=v and u+T, v+ T €T forsome i <m.
Let O = (u, y, v) be an overlap if/, we definek-th inflated overlap
KO = {(U, Qy, v): U € dX(u), v’ € P*(v), and (!, QXy, v') is an overlap.

DEFINITION 2.2. We say that a self-affine tilin§y admits anoverlap coincidence
if there exists € Z, such that for each overla@ in 7, ®' © contains a coincidence.

When T is a self-affine tiling inR? such thatZ(7) is a Meyer set, X7, R?, u)
has a pure point dynamical spectrum if and only7ifadmits an overlap coincidence
[23, 19]. So we will check the pure point spectrum of Taylose@ar tilings through
the computation of overlap coincidence in the next subsecti

2.5. Taylor-Socolar half-hexagonal substitution tiling. In the half-hexagonal
substitution tiling, there are 14 half-hexagonal proesiwhich come from dividing 7
hexagonal prototile\, B, C, D, E, F, G into the left and the right (see [32, Fig. 15]).
Since the substitution tiling we defined in (2.1) require#tdiprototiles up to only trans-
lations, we need to treat the rotated types and reflecteds tgpehe 14 half-hexagonal
prototiles as different prototiles. So we consider a stisbn tiling with 168 prototiles.
Using the algorithm in [3] which is originated from [1] and deafor the computation
of the Taylor—Socolar tilings, we check if the half-hexagbsubstitution Taylor—Socolar
tiling has pure point spectrum.

Now a question would be “when the dynamics of the half-herafjsubstitution
tiling has pure point spectrum, can we infer that the dynamicthe original hexagonal
tiling also has pure point spectrum?”. Lgtbe a fixed point of a primitive substitution
and A7+ = (Aj)i<m. It is shown in [23, Lemma A.6.] thaf has uniform cluster fre-
quencies (UCF), i.e. for an§ -patch P, there exists

freq(P, 7) = lim =iy

uniformly in h € R2. From [22, Theorem 3.2], the measure= Y i<m &8s, has pure
point diffraction spectrum, for any choice of complex numbéy )<, if and only if
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BL Gr
b 0

AL | AR

Fig. 1. A generating patch around the origin of the substitut
tiling with half-hexagonal Taylor—Socolar tiles.

each measuré,, has pure point diffraction spectrum. By the constructiorthe half-

hexagonal Taylor—Socolar tiling, we can take a substitufmint setA representing
the half-hexagonal Taylor—Socolar tiling to include a ditbSon point setT' repre-

senting the original hexagonal Taylor—Socolar tiling. $onf [22, Theorem 3.2], we
can conclude that Taylor—Socolar tiling has pure pointradfion spectrum.

As a generating patch, one can start with the patch as showiginl. Since this
patch is contained in the next inflated patch after the switisin, it gives a fixed tiling
under the substitution.

For the computational reason, we give a tile-substitutidrose expansion involves
rotation and reflection. It is possible to use the secondtitem of half-hexagons without
rotation and reflection parts on expansions. But in this ,csesubstitution gets bigger.
The tile-substitution forA_ , Ar, AL, Ar is shown in Fig. 2. For other half-hexagonal tiles,
the figures of tile-substitution is similar. We give the psectile-substitution below. One
can check the computational algorithm in [3]. Let

. T
Ccos Sin Ccos —Sin —
3 3 -1 0 3
Q=2Ru-Rer=2[ > R (0 1)=2 2 2
Sin § COSs —Sin— COS§

whereRy; is a rotation ofr /3 counter clockwise through the origin aRd; is a reflection

throughy-axis. The tile substitution is given as follows; let= (g?r?(%)) _cgi?é%?))

andu = (g?:‘g;g;) We denote $x), := »"Sx, whereme Z, Se {A,B,C,D,E,F,G,

A B.C,D,E F, G}, andX € {L, R}.
The tile-substitution rule forA. and Ag is the following. For 0<n <5,
Q(AL)n = (GL)2-n U (DL)1=n + 2u) U ((CR)1-n + @U) U ((GR)a-n + 4w°u),
Q(Ar)n = (AR)-n U ((DR)1-n + 20"u) U (CL)1-n + @°u) U ((AL)s_n + 4°u),
Q(AL)n = (AL)2-n U ((DL)1n + 2u) U ((Cr)1n + @°U) U ((Ar)3 n + 40°u),
Q(ARr)n = (GR)-n U ((DR)1-n + 20*u) U ((CL)1-n + @) U (GL)s-n + 40u).
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Fig. 2. Substitution of half-hexagonal Taylor—Socolae ttlypes
AL, AL, Ag, and Ar. The black dot indicates the origin.
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The tile substitution rule for other types of tiles are samilWe give the rules for
the convenience to the readers.

Q(BL)n = (BL)2-n U ((FL)1-n + 2u) U (CR)1-n + @°U) U ((GR)a-n + 4w°u),
Q(Br)n = (Gr)-n U ((FR)1-n + 20*u) U ((CL)1-n + @°u) U ((AL)s_n + 40°u),
Q(BL)n = (GL)2-n U ((FL)1-n + 2u) U ((CR)1-n + @°u) U ((AR)s-n + 40°u),
Q(Br)n = (Br)-n U ((FR)1-n + 20*U) U ((CL)1-n + ©°U) U ((GL)s-n + 40°u),
Q(CL)n = (FL)2-n U ((EL)1n +2u) U ((CR)1 n + @°U) U (FR)s n + 40°u),
Q(Cr)n = (Dr)-n U ((ERr)1-n + 20"u) U ((CL)1 n + ©°u) U ((DL)s n + 40°u),
Q(Cu)n = (DL)2-n U ((EL)1-n + 2u) U ((CR)1-n + @°u) U (DR)z-n + 40°u),
Q(Cr)n = (FR)-n U ((ER)1-n + 20*u) U ((CL)1-n + °u) U ((FL)s-n + 4°u),
Q(DL)n = (BL)2-n U (DL)1-n + 2u) U ((CR)1-n + @°u) U ((Br)s-n + 4w°u),
Q(Dr)n = (Ar)-n U ((ER)1-n + 20™u) U ((CL)1-n + @°u) U ((AL)sn + 40°u),
Q(DL)n = (AL)2-n U ((EL)1-n + 2u) U ((CR)1-n + @°U) U ((AR)3-n + 4w°u),
Q(Dr)n = (Br)-n U (DR)1-n + 20*U) U ((CL)1-n + °U) U ((BL)s-n + 4°u),
Q(EL)n = (BL)2-n U ((EL)1-n + 2u) U ((Cr)1n + ©°U) U ((Br)s-n + 40°u),
Q(Er)n = (Gr)-n U ((Er)1-n + 20"U) U ((CL)1-n + ©°U) U ((GL)s-n + 40°U),
Q(EL)n = (GL)2-n U ((EL)1-n + 2u) U ((CR)1-n + @°U) U ((GR)3n + 4w°u),
Q(Er)n = (Br)-n U ((ER)1-n + 20*u) U ((CL)1-n + ©°u) U ((BL)s_n + 40°u),



OVERLAP COINCIDENCE IN TAYLOR—SOCOLAR TILING 605

Q(FL)n = (BL)2-n U (FL)1-n + 2u) U ((CR)1-n + @°u) U ((Br)s-n + 4o°u),
Q(FrR)n = (GRr)-n U ((Er)1-n + 20*U) U (CL)1-n + @°u) U ((AL)s—n + 40°u),
Q(FL)n = (GL)2-n U ((EL)1-n + 2u) U ((CR)1-n + @u) U ((AR)3-n + 4w°U),
Q(FRr)n = (BR)-n U ((FR)1-n + 20"u) U ((CL)1-n + @°u) U ((BL)5-n + 4w°u),
Q(GL)n = (BL)2-n U ((DL)1-n + 2u) U (CR)1-n + @°u) U ((GR)s-n + 4w°u),
Q(Gr)n = (AR)-n U ((FR)1-n + 20*U) U ((CL)1-n + @°u) U ((AL)s-n + 4w°u),
Q(GL)n = (AL)2-n U ((FL)1-n + 2u) U ((CR)1-n + @°U) U ((AR)s-n + 4°u),
Q(GRr)n = (Br)-n U ((DR)1-n + 20"U) U ((CL)1-n + @°U) U (GL)5-n + 4°u).

Let us describe how the algorithm works in general term. Witikensubstitution
date 2 is given, we consider a substitution Delone multi-color Aetwhich is fixed
under the substitution. To build the sat, we need to find a poink € A which is
fixed under the substitution. Applying the substitutions{x¢ infinitly many times, we
can easily obtain a point set which is fixed under the substitution. It is sufficient
to check the overlap coincidence for all the overlaps whichuo by finite translation
vectors of same type tiles in the tiling. From the Meyer propehe number of over-
laps are finite. After collecting all the overlaps, we candakheverlap coincidence for
each overlap applying the substitution many times. Herentivaber of times of apply-
ing the substitution can be limited by the number of overlas the algorithm will
be terminated. The detail is given in [1].

The computation of overlap coincidence of Taylor—Socoiléarg takes rather long
time comparing to other examples in [1]. We guess that it is tlu the number of
prototiles (168) which is much more than other examples.eHee are wondering if
the computation time of the algorithm can be another way odisugng the complexity
of the substitution rule when the number of prototiles on ghbstitution tiling is fixed.
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