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Abstract
In this paper, we study the nonlinear stability of wavefronts in a delayed stage-

structured population model on a 2-D spatial lattice. For all wavefronts with
the speed

c > max{c(�0), c
�

(� )},

where �0 is some positive constant,c
�

(� ) > 0 is the critical wave speed and�
is the direction of propagation, we prove that these wavefronts are asymptotically
stable, when the initial perturbation around the wavefronts decays exponentially as
i cos� C j sin� ! �1, but it can be arbitrary large in other locations. This essen-
tially improves the previous work with more strongly restricted wave speed and the
small initial perturbation. Our approach adopted in this paper is the weighted energy
method and the squeezing technique.

1. Introduction

In this paper, we consider a time-delayed population model with stage structure on
a 2-D spatial lattice

(1.1)

dwi , j (t)

dt
D D[wiC1, j (t)C wi�1, j (t)C wi , jC1(t)C wi , j�1(t) � 4wi , j (t)]

� dwi , j (t)C "b(wi , j (t � r ))

with the initial condition

(1.2) wi , j (s) D w0
i , j (s), s 2 [�r, 0], i , j 2 Z,

which describes the population density of a single species with stage structure in a
2-D patchy environment, whereD > 0 andd > 0 are the diffusion and the death rate

2000 Mathematics Subject Classification. 35C07, 92D25, 35B35.
�This author was supported by National Natural Science Foundation of China (No. 11101282,

No. 11271260), by Shanghai university young teacher training program (No. slg11031) and by Shang-
hai Leading Academic Discipline Project (No. XTKX2012) andby Innovation Program of Shanghai
Municipal Education Commission (No. 14YZ096).

†This author was supported by National Natural Science Foundation of China and RFDP.



964 Z.-X. YU AND R. YUAN

of the population, respectively, and" > 0 represents the impact of the death rate for
the immature. More details can be found in [1, 2, 3, 4]. The nonlinear functionb(w)
denotes the birth rates of the mature population and satisfies the following hypotheses:
(H1) There exist 0 andwC

> 0 such thatb(0) D 0, "b(wC) D dwC, b 2 C2[0, wC]
and for allw 2 (0,wC), "b(w) > dw;
(H2) "b0(0)> d and for allw 2 [0, wC], 0 � b0(w) � b0(0) andb00(w) � 0;
(H3) d > "b0(wC).
As we know, the reaction term in a lattice equation, which is some what like the birth
function in our equation (1.1), plays an important role to depict the character of the
equation. Several interesting type of such functions are the logistic typeb(w) D w(1�
w) and Ricker typeb(w) D pwe�awq

, which satisfy assumptions (H1)–(H3) under the
suitable parameters (see, [5, 7, 8, 9] and the references therein). Recently, 2-D lattice
dynamical systems have been paid close attention. Authors [10] studied the existence
of traveling waves for the following bistable systems

(1.3)

dwi , j (t)

dt
D D[wiC1, j (t)C wi�1, j (t)C wi , jC1(t)C wi , j�1(t) � 4wi , j (t)]

C f (wi , j (t)).

For (1.3) with the monostable nonlinearity, authors [11] showed that the existence,
uniqueness and asymptotic behavior of traveling waves. In [1], authors used the meth-
ods developed in [3, 12] for 1-D lattice differential equations to investigate the spread-
ing speeds and traveling waves of the following 2-D lattice equation

(1.4)

dwi , j (t)

dt
D D[wiC1, j (t)C wi�1, j (t)C wi , jC1(t)C wi , j�1(t) � 4wi , j (t)] � dwi , j (t)

C

1

X

lD�1

1

X

qD�1

�(l )
 (q)b(wiCl , jCq(t � r )).

Authors [4] studied the uniqueness and asymptotic behaviorof (critical) traveling waves
for (1.4). Especially, when the immature population is non-mobile, (1.4) could re-
duce to (1.1). In [2], the stability of traveling waves for (1.1) with the wave speed
c> 4D(e�1)C2("b0(0)�d) (larger than the minimal wave speedc

�

(�)) and the small
initial perturbation was investigated by using the weighted energy method. It is well
known that for delayed reaction diffusion equations (see, for example [13, 14, 15, 16]
and some references therein), the small initial perturbation can be improved to be arbi-
trarily large in a weighted energy Sobolev space by the comparison principle and the
squeeze technique. Motivated by the above references [13, 14, 15, 16], we will discuss
the nonlinear stability of wavefronts with the speed

c > max{c(�0), c
�

(�)}, where c(�0) D min
�2(0,C1)

2D(e� � 1)C 2("b0(0)� d)

�

,
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in a delayed stage-structured population model on a 2-D spatial lattice when the initial
perturbation around the wavefronts decays exponentially as i cos� C j sin� ! �1,
but it can be arbitrary large in other locations. On the otherhand, since 2D(e� 1)C
2("b0(0)� d) D c(1)� c(�0), then 4D(e� 1)C 2("b0(0)� d) > max{c(�0), c

�

(�)}. Thus,
the stability obtained in [2] is based on a stronger restriction on the wave speed. Our
results essentially improve the stability results obtained in [2] for the wave speedc >
4D(e� 1)C 2("b0(0)� d) with the small initial perturbation.

Throughout this paper,l 2
v

denotes the weightedl 2-space with weight 0< v(� ) 2
C(R) and a fixed� 2 [0, �=2], that is,

l 2
v

WD

8

<

:

� D {�i , j }i , j2Z, �i , j 2 R
X

i , j

v(i cos� C j sin�)� 2
i , j <1

9

=

;

and its norm is defined by

k�kl 2
v

D

0

�

X

i , j

v(i cos� C j sin�)� 2
i , j

1

A

1=2

, for � 2 l 2
v

.

In particular, whenv � 1, we denotel 2
v

by l 2.
The rest of this paper is organized as follows. In Section 2, we introduce some

basic results and then state our stability result. Section 3is devoted to proving our
main result.

2. Preliminaries and main theorem

In this section, we first recall some known results, then define a weighted function
and state our stability result.

A wavefront of (1.1) is a solution of the form

(2.1) wi , j (t) D �(� )

satisfying the boundary conditions

(2.2) �(�1) D 0 and �(C1) D wC,

where� is monotone and

(2.3) � D i cos� C j sin� C ct, � 2

h

0,
�

2

i

.
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Hence, the wave profile equation of (1.1) is given by

(2.4)
c

d�(� )

d�
D D[�(� C cos�)C�(� � cos�)C�(� C sin�)C�(� � sin�)�4�(� )]

�d�(� )C "b(�(� � cr )).

Define

(2.5)
1(c, �) D �c�C D(e� cos�

C e�� cos�
C e� sin�

C e�� sin�
� 4)

C "b0(0)e��cr
� d.

The following lemma and proposition come from Lemma 4.2 and Theorem 5.4 of
[1], respectively.

Lemma 2.1. Assume that"b0(0)> d holds. Then, for any fixed� 2 [0,�=2] there
exist a unique pair of c

�

(�) > 0 and �
�

(�) > 0 such that the following assertions hold.
(i) 1(c

�

(�), �
�

(�)) D 0, �1(c, �)=��jcDc
�

(�),�D�
�

(�) D 0;
(ii) For any c2 (0, c

�

(�)) and � > 0, 1(c, �) > 0;
(iii) For any c> c

�

(�), 1(c, �) D 0 has two positive roots0 < �1 < �2. Moreover,
1(c, �) < 0 for any � 2 (�1, �2).

Proposition 2.1. Assume that(H1)–(H2) hold. Then, for every� 2 [0,�=2], there
exists c

�

(�) > 0 such that for any c� c
�

(�), (1.1) admits a monotone wavefront
�(i cos� C j sin� C ct) satisfying the boundary conditions

lim
�!�1

�(� ) D 0 and lim
�!C1

�(� ) D wC,

and for any c2 (0, c
�

(�)), there are no non-trivial wavefront�(i cos� C j sin� C ct)
satisfying�(� ) 2 [0, wC]. Moreover, for c > c

�

(�), � satisfies

lim
�!�1

�(� )e��1�
D 1 and lim

�!�1

�

0(� )e��1�
D �1,

where c
�

(�) and �1 are defined as inLemma 2.1.

Let Æ D (d � "b0(wC))=(2") > 0. According tob0(�(� )) ! b0(wC) as � ! C1,
there exists a large enough number�

�

such that for� � �
�

,

(2.6) b0(�(� )) < b0(wC)C Æ.

Define the function

c(�) D
2D(e� � 1)C 2("b0(0)� d)

�

.
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Sincec(0C) D C1 and c(C1) D C1, then there exists�0 2 (0,C1) such that

(2.7) c(�0) D min
�2(0,C1)

2D(e� � 1)C 2("b0(0)� d)

�

> 0.

Now, we define a weight functionv(� ) as

v(� ) D

�

e��0(���
�

), � � �

�

I

1, � � �

�

.
(2.8)

We are in the position to state our main result.

Theorem 2.1. Assume that(H1)–(H3) hold. For any given wavefront�(i cos� C
j sin� C ct) with the wave speed

c > max{c(�0), c
�

(�)},

if the initial data satisfies

0� w0
i , j (s) � wC for s 2 [�r, 0], i , j 2 Z,(2.9)

and the initial perturbationw0
i , j (s)� �(i cos� C j sin� C cs) is in C([�r, 0], l 2

v

), where
v D v(i cos� C j sin� C ct) is the weight function given in(2.8), then the solution
{wi , j (t)}i , j2Z of (1.1) and (1.2) satisfies

0� wi , j (t) � w
C, for t 2 [0,C1), i , j 2 Z

and

{wi , j (t) � �(i cos� C j sin� C ct)}i , j2Z 2 C([0,1), l 2
v

).

In particular, the solution{wi , j (t)}i , j2Z converges to the wavefront�(i cos� C j sin� C
ct) exponentially in time t, that is,

sup
i , j2Z
jwi , j (t) � �(i cos� C j sin� C ct)j � Ce��t , t � 0,

for some positive constants C and�.

REMARK 2.1. (i) Noting the weight functionv(� ) given in (2.8), we recognize
from Theorem 2.1 that, as the sufficient condition, the initial perturbation must con-
verge to 0 in the form

jw

0
i , j (s) � �(i cos� C j sin� C cs)j D O(1)e�(�0=2)ji cos�C j sin� j

as i cos� C j sin� ! �1, s 2 [�r, 0].
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(ii) In [2], the stability of traveling waves for (1.1) with the small initial perturbation
in a weighted energy Sobolev space was investigated, while in the present paper, the
small initial perturbation can be improved to be arbitrarily large.
(iii) By (2.7), we have 2D(e� 1)C 2("b0(0)� d) D c(1) � c(�0). On the other hand,
it follows from the argument in p. 564 of [2] that 4D(e� 1)C 2("b0(0)� d) > c

�

(�).
Then 4D(e� 1)C 2("b0(0)� d) > max{c(�0), c

�

(�)}. Thus, the stability was obtained
in [2] with a stronger restriction on the wave speedc> 4D(e� 1)C 2("b0(0)� d). For
the wave speedc 2 [c

�

(�), max{c(�0), c
�

(�)}], the stability problem is investigated in
the further work by adopting theL1-weighted energy method (see [6, 16, 17]).
(iv) The conditiond > "b0(wC) C 2D(e� 1) (i.e. (H3) in [2]) can be weaken to the
present condition (H3):d > "b0(wC).

3. Proof of main theorem

We first state the boundedness and the comparison principle for the Cauchy prob-
lem (1.1) and (1.2) which comes from the results in [1] and then prove the main the-
orem by using the weighted energy method and the squeezing technique. The method
we used here is similar to that in [14, 15], which is applied indelayed reaction diffu-
sion equations.

Lemma 3.1 (Boundedness). Let

0� w0
i , j (s) � wC, for s 2 [�r, 0], i , j 2 Z,

then the solution{wi , j (t)}i , j2Z of (1.1) and (1.2) satisfies

0� wi , j (t) � w
C, for t 2 [0,C1), i , j 2 Z.

Lemma 3.2 (Comparison principle). Let {wi , j (t)}i , j2Z and {wi , j (t)}i , j2Z be the

solutions of (1.1) and (1.2) with the initial data {w0
i , j (t)}i , j2Z and {w0

i , j (t)}i , j2Z, re-
spectively. If

0� w0
i , j (s) � w0

i , j (s) � wC for s 2 [�r, 0], i , j 2 Z

then

0� wi , j (t) � wi , j (t) � w
C for t 2 [0,C1), i , j 2 Z.

Let the initial dataw0
i , j (s) satisfy

0� w0
i , j (s) � wC for s 2 [�r, 0], i , j 2 Z,

and define

(3.1)

(

W
0
i , j (s) D max{w0

i , j (s), �(i cos� C j sin� C cs)},
W0

i , j (s) D min{w0
i , j (s), �(i cos� C j sin� C cs)},

for s 2 [�r, 0], i , j 2 Z.
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It is obvious that
(3.2)
(

0� W0
i , j (s) � w0

i , j (s) � W
0
i , j (s) � wC,

0� W0
i , j (s) � �(i cos� C j sin� C cs) � W

0
i , j (s) � wC,

for s 2 [�r, 0], i , j 2 Z.

Let W
0
i , j (t) and W0

i , j (t) be the corresponding solutions of (1.1) and (1.2) with the ini-

tial dataW
0
i , j (s) and W0

i , j (s), respectively. According to Lemmas 3.1 and 3.2, we eas-
ily obtain
(3.3)
(

0� Wi , j (t) � wi , j (t) � Wi , j (t) � wC,
0� Wi , j (t) � �(i cos� C j sin� C ct) � Wi , j (t) � wC,

for t 2 [0,C1), i , j 2 Z.

Proof of Theorem 2.1. We divide the proof into three steps.
STEP 1. We first prove thatWi , j (t) converges to�(i cos� C j sin� C ct) for

t 2 [0, C1), i , j 2 Z. For the sake of convenience, we always take� D � (t, i , j ) WD
i cos� C j sin� C ct. Let

ui , j (t) D Wi , j (t) � �(i cos� C j sin� C ct), t 2 [0,C1), i , j 2 Z

and

u0
i , j (s) D W

0
i , j (s) � �(i cos� C j sin� C cs), s 2 [�r, 0], i , j 2 Z.

Therefore, it follows from (3.2) and (3.3) that

(3.4) ui , j (t) � 0 and ui , j (s) � 0.

From (1.1) and (1.2),ui , j (t) satisfies
(3.5)
8

�

�

�

<

�

�

�

:

dui , j (t)

dt
D D[uiC1, j (t)C ui�1, j (t)C ui , jC1(t)C ui , j�1(t) � 4ui , j (t)]

� dui , j (t)C "b
0(�(� (t, i , j ) � cr ))ui , j (t � r )C Qi , j (t � r ), t > 0,

u0
i , j (s) D W

0
i , j (s) � �(� (s, i , j )), i , j 2 Z, s 2 [�r, 0],

where

Qi , j (t � r ) D "[b(ui , j (t � r )C �(� (t, i , j ) � cr )) � b(�(� (t, i , j ) � cr ))]

� "b0(�(� (t, i , j ) � cr ))ui , j (t � r ),
(3.6)

ui�1, j (t) D Wi�1, j (t) � �(� (t, i , j )� cos�)

and

ui , j�1(t) D Wi , j�1(t) � �(� (t, i , j )� sin�).
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Let v(� ) > 0 be the weight function defined in (2.8). Multiplying (3.5) by
e2�tui , j (t)v(� (t, i , j )), where� > 0 will be given later in Lemma 3.4, we have

(3.7)

1

2

d

dt
[e2�tu2

i , j (t)v(� (t, i , j ))]

�De2�t ui , j (t)v(� (t, i , j ))[uiC1, j (t)Cui�1, j (t)Cui , jC1(t)Cui , j�1(t)]

Ce2�tu2
i , j (t)v(� (t, i , j ))

�

�c
v

0

�

(� (t, i , j ))

2v(� (t, i , j ))
C4DCd��

�

�"b0(�(� (t, i , j )�cr ))e2�t
v(� (t, i , j ))ui , j (t)ui , j (t�r )

D Qi , j (t�r )e2�t ui , j (t)v(� (t, i , j )).

By the Cauchy–Schwartz inequalityjxyj � (�=2)x2
C (1=(2�))y2 for any � > 0 and

then taking� D 1, we obtain

(3.8) ui , j (t)ui�1, j�1(t) �
u2

i , j (t)

2
C

u2
i�1, j�1(t)

2
.

Summing about alli , j 2 Z and integrating over [0,t ] yield
(3.9)
Z t

0

X

i , j

e2�su2
i , j (s)v(� (s, i , j ))

�

�c
v

0

�

(� (s, i , j ))

v(� (s, i , j ))
�D[Lv(� (s, i , j ))�4]C2d�2�

�

ds

�2
Z t

0

X

i , j

"b0(�(� (s, i , j )�cr ))e2�s
v(� (s, i , j ))ui , j (s)ui , j (s�r ) dsCe2�t

ku(t)k2l 2
v

� 2
Z t

0

X

i , j

Qi , j (s�r )e2�sui , j (s)v(� (s, i , j )) dsCku0(0)k2l 2
v

,

where

(3.10)

Lv(� (t, i , j )) D
v(� (t, i , j )

v(� (t, i C 1, j )
C

v(� (t, i , j )

v(� (t, i � 1, j )

C

v(� (t, i , j )

v(� (t, i , j � 1)
C

v(� (t, i , j )

v(� (t, i , j C 1)
.

Note that there exists some positive numberC1 > 0 such that

"b0(0)e2�r v(� (s, i , j )C cr )

v(� (s, i , j ))
� C1 for all i , j 2 Z.
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Since 0� b0(w) � b0(0) for any w 2 [0, wC] and ui , j (t)ui , j (t � r ) � u2
i , j (t)=2 C

u2
i , j (t � r )=2, we obtain

(3.11)

2
Z t

0

X

i , j

"b0(�(� (s, i , j )�cr ))e2�s
v(� (s, i , j ))ui , j (s)ui , j (s�r ) ds

�

Z t

0

X

i , j

"b0(�(� (s, i , j )�cr ))e2�s
v(� (s, i , j ))u2

i , j (s) ds

C

Z t

0

X

i , j

"b0(�(� (s, i , j )�cr ))e2�s
v(� (s, i , j ))u2

i , j (s�r ) ds

D

Z t

0

X

i , j

"b0(�(� (s, i , j )�cr ))e2�s
v(� (s, i , j ))u2

i , j (s) ds

C

Z t�r

�r

X

i , j

"b0(�(� (s, i , j )))e2�s
v(� (s, i , j )Ccr )u2

i , j (s)e2�r ds

D

Z t

0

X

i , j

"b0(�(� (s, i , j )�cr )e2�s
v(� (s, i , j ))u2

i , j (s) ds

C

Z t�r

0

X

i , j

"b0(�(� (s, i , j ))e2�s
v(� (s, i , j )Ccr )u2

i , j (s)e2�r ds

C

Z 0

�r

X

i , j

"b0(�(� (s, i , j ))e2�sv(� (s, i , j )Ccr )

v(� (s, i , j ))
v(� (s, i , j ))u2

i , j (s)e2�r ds

�

Z t

0

X

i , j

"b0(�(� (s, i , j )�cr )e2�s
v(� (s, i , j ))u2

i , j (s) ds

C

Z t

0

X

i , j

"b0(�(� (s, i , j ))e2�s
v(� (s, i , j )Ccr )u2

i , j (s)e2�r dsCC1

Z 0

�r
ku0(s)k2l 2

v

ds.

On the other hand, by Taylor’s formula and assumption (H2), we have

(3.12)
Qi , j (t � r )) D "[b(ui , j (t � r )C �(� (t, i , j ) � cr )) � b(�(� (t, i , j ) � cr ))]

� "b0(�(� (t, i , j ) � cr ))ui , j (t � r ) � 0.

Thus, it follows from (3.9) and (3.11)–(3.12) that

(3.13)

e2�t
ku(t)k2l 2

v

C

Z t

0

X

i , j

e2�su2
i , j (s)v(� (s, i , j ))B

�,v(� (s, i , j )) ds

� ku0(0)k2l 2
v

C C1

Z 0

�r
ku0(s)k2l 2

v

ds,
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where

B
�,v(� (t, i , j )) WD A

�,v(� (s, i , j )) � 2� � "b0(�(� (s, i , j )))(e2�r
� 1)

v(� (t, i , j )C cr )

v(� (t, i , j ))

and

A
�,v(� (t, i , j )) DW �c

v

0

�

(� (t, i , j ))

v(� (t, i , j ))
� D[Lv(� (t, i , j )) � 4]C 2d

� "b0(�(� (s, i , j ) � cr )) � "b0(�(� (s, i , j )))
v(� (t, i , j )C cr )

v(� (t, i , j ))
.

The most important step now is to proveBi , j (t) � C > 0 for some constantC. In
order to obtain this, the following lemma plays a key role in this paper.

Lemma 3.3. A
�,v(� (t, i , j )) � C2 > 0 for some positive constant C2.

Proof. Without loss of generality, suppose that 0� cos� � sin� . It is obvious that

� (t, i , j � 1)� � (t, i � 1, j ) � � (t, i , j ) � � (t, i C 1, j ) � � (t, i , j C 1)

and

v(� (t, i , j )) � v(� (t, i � 1, j )), v(� (t, i , j ))

� v(� (t, i , j � 1)), v(� (t, i , j )C cr ) � v(� (t, i , j )).

Thus, we have
(3.14)

A
�,v(� (t, i , j )) � �c

v

0

�

(� (t, i , j ))

v(� (t, i , j ))
�D

�

v(� (t, i , j ))

v(� (t, i C1, j ))
C

v(� (t, i , j ))

v(� (t, i , j C1))
�2

�

C2d

�"b0(�(� (s, i , j )�cr ))�"b0(�(� (s, i , j )))
v(� (t, i , j )Ccr )

v(� (t, i , j ))
.

(i) If �
�

� � (t, i , j ), then v(� (t, i , j )) D v(� (t, i C 1, j )) D v(� (t, i , j C 1))D 1.
Hence, we have

A
�,v(� (t, i , j )) � 2d � 2["(b0(wC)C Æ)] DW C3 > 0

according to (2.6).
(ii) If � (t, i , j ) < �

�

� � (t, i C 1, j ), thenv(� (t, i , j ) D e��0(i cos�C j sin�Cct��
�

) and
v(� (t, i C 1, j )) D v(� (t, i , j C 1))D 1. Thus, we obtain

A
�,v(� (t, i , j )) � c�0C 2dC 2(D � De�0 cos� ) � 2"b0(0)

> c�0C 2(D � De�0)C 2(d � "b0(0))DW C4 > 0
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according to

c >
2D(e�0

� 1)C 2("b0(0)� d)

�0
.

(iii) If � (t, i C1, j ) < �
�

� � (t, i , j C1), thenv(� (t, i , j )) D e��0(i cos�C j sin�Cct��
�

),
v(� (t,iC1, j ))D e��0[(iC1) cos�C j sin�Cct��

�

] andv(� (t,i , jC1))D 1. In this case, we have

A
�,v(� (t, i , j )) � c�0C 2d � D(e�0 cos�

C e�0 sin�
� 2)� 2"b0(0)

� c�0C 2d � 2D(e�0
� 1)� 2"b0(0)D C4 > 0.

(iv) If � (t,i , jC1)< �
�

, thenv(� (t,i , j ))D e��0(i cos�C j sin�Cct��
�

), v(� (t,iC1, j ))D
e��0[(iC1) cos�C j sin�Cct��

�

] and v(� (t, i , j C 1))D e��0[i cos�C( jC1) sin�Cct��
�

] . Similarly, it
follows that

A
�,v(� (t, i , j )) � c�0C 2d � D(e�0 cos�

C e�0 sin�
� 2)� 2"b0(0)

� C4.

Finally, letting C2 D min{C3, C4} > 0, this implies that lemma holds.

Lemma 3.4. B
�,v(� (t, i , j )) > 0 for 0< � < �1, where�1 is the unique root of

the following equation

C2 � 2� � "b0(0)(e2�r
� 1)D 0.(3.15)

Proof. As shown in Lemma 3.3, we havev(� (t, i , j )C cr ) � v(� (t, i , j )). Thus,
it follows immediately that

B
�,v(� (t, i , j )) D A

�,v(� (t, i , j )) � 2� � "b0(�(� (s, i , j ))(e2�r
� 1)

v(� (t, i , j )C cr )

v(� (t, i , j ))

� C2 � 2� � "b0(0)(e2�r
� 1)> 0

for 0< � < �1.

According to Lemma 3.4 and dropping the positive term

Z t

0

X

i , j

e2�su2
i , j (s)v(� (s, i , j ))Bi , j (� (s, i , j )) ds

in (3.13), we obtain the following basic energy estimate.

Lemma 3.5. It holds that

(3.16) e2�t
ku(t)k2l 2

v

� ku0(0)k2l 2
v

C C1

Z 0

�r
ku0(s)k2l 2

v

ds, t � 0.
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Using the standard Sobolev’s embedding inequalityl 2
,! l1 and l 2

v

,! l 2 for
v(i cos�C j sin�Cct)� 1 defined by (2.8), we finally have the following stability result.

Lemma 3.6. It holds that

(3.17) sup
i , j
jWi , j (t) � �(i cos� C j sin� C ct)j D sup

i , j
jui , j (t)j � C5e��t

for all t � 0 and some positive constant C5.

Proof. It follows from (3.16) and

jui , j (t)j � sup
i , j
jui , j (t)j � ku(t)kl 2

� ku(t)kl 2
v

that the conclusion holds.

STEP 2. Prove thatWi , j (t) converges to�(i cos� C j sin� C ct). Let

ui , j (t) D Wi , j (t) � �(i cos� C j sin� C ct)

and

u0
i , j (s) D W0

i , j (s) � �(i cos� C j sin� C cs).

Similar to the process in Step 1, we have the following lemma.

Lemma 3.7. It holds that

sup
i , j
jWi , j (t) � �(i cos� C j sin� C ct)j D sup

i , j
jui , j (t)j � C6e��t(3.18)

for all t � 0 and some positive constant C6.

STEP 3. Prove thatWi , j (t) converges to�(i cos�C j sin�Cct), i.e., the following
lemma holds.

Lemma 3.8. It holds that

sup
i , j
jWi , j (t) � �(i cos� C j sin� C ct)j � Ce��t(3.19)

for all t � 0 and some positive constant C.

Proof. Since the initial data satisfyWi , j (s) � Wi , j (s) � Wi , j (s), s 2 [�r, 0], it
follows from Lemma 3.2 that the corresponding solutions of (1.1) and (1.2) satisfy

Wi , j (t) � Wi , j (t) � Wi , j (t), for all t � 0, i , j 2 Z.
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According to Lemmas 3.5–3.6, the squeeze method yields

sup
i , j
jWi , j (t) � �(i cos� C j sin� C ct)j � Ce��t(3.20)

for all t � 0 and some positive constantC. This completes the proof.
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