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Abstract

In this paper, we study the nonlinear stability of wavefeoirt a delayed stage-
structured population model on a 2-D spatial lattice. Fdr vedvefronts with
the speed

¢ > max{c(no), C«(0)},

where no is some positive constant,(f) > 0 is the critical wave speed ang
is the direction of propagation, we prove that these wawefr@are asymptotically
stable, when the initial perturbation around the waveBomecays exponentially as
i cosO + j sind — —oo, but it can be arbitrary large in other locations. This essen
tially improves the previous work with more strongly rested wave speed and the
small initial perturbation. Our approach adopted in thipgrais the weighted energy
method and the squeezing technique.

1. Introduction

In this paper, we consider a time-delayed population mod#l stage structure on
a 2-D spatial lattice
dwi,j (t)
(1.1) dt

= D[wit1,j(t) + wi—1,j(t) + wi j+2(t) + wij_1(t) — dw; j (t)]

— dwi,j (t) + sb(wi,j (t — I'))
with the initial condition
(1.2) wij(8) = wj(s), se[-r0] i jez,

which describes the population density of a single specigl stage structure in a
2-D patchy environment, wher® > 0 andd > O are the diffusion and the death rate
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of the population, respectively, and> 0 represents the impact of the death rate for
the immature. More details can be found in [1, 2, 3, 4]. The inealr functionb(w)
denotes the birth rates of the mature population and satitie following hypotheses:
(H1) There exist 0 andv* > 0 such thatb(0) = 0, eb(w*) = dw™*, b € C?[0, w™]
and for allw € (0, w™), eb(w) > dw;

(H2) ¢b’(0) > d and for allw € [0, w*], 0 < b'(w) < b'(0) andb”(w) < O;

(H3) d > eb'(w™).

As we know, the reaction term in a lattice equation, whichdme what like the birth
function in our equation (1.1), plays an important role tgidethe character of the
equation. Several interesting type of such functions ageldlgistic typeb(w) = w(1—

w) and Ricker typeb(w) = pwe 2", which satisfy assumptions (H1)—(H3) under the
suitable parameters (see, [5, 7, 8, 9] and the referencesirthe Recently, 2-D lattice
dynamical systems have been paid close attention. AutHdXsdtudied the existence
of traveling waves for the following bistable systems

dwi,j(t)
(1.3) dt

= D[wit1,j(t) + wi_,j(t) + wi jra(t) + wi j_1(t) — dw; j(t)]

+ f(wi,j(t)).

For (1.3) with the monostable nonlinearity, authors [11pwad that the existence,
uniqueness and asymptotic behavior of traveling waveslnduthors used the meth-
ods developed in [3, 12] for 1-D lattice differential eqoats to investigate the spread-
ing speeds and traveling waves of the following 2-D latticgiaion

Q) Dt 1)+ 123 0) 1, 20) 0 520) — A 0] — o 5
(1.4)

+ ) > BOY@bWwisj4qlt —T)):

|=—00 =—00

Authors [4] studied the uniqueness and asymptotic behafidcritical) traveling waves

for (1.4). Especially, when the immature population is moobile, (1.4) could re-

duce to (1.1). In [2], the stability of traveling waves for.I}l with the wave speed
Cc > 4D(e— 1)+ 2(¢b’'(0)—d) (larger than the minimal wave speeg(0)) and the small

initial perturbation was investigated by using the weightmergy method. It is well
known that for delayed reaction diffusion equations (see,eixample [13, 14, 15, 16]
and some references therein), the small initial pertunbatian be improved to be arbi-
trarily large in a weighted energy Sobolev space by the coisga principle and the
squeeze technigue. Motivated by the above references [135146], we will discuss

the nonlinear stability of wavefronts with the speed

¢ > max(c(no), C.(#)}, where c(no) = ﬂeg]i-[]oo) 2D(e" - 1) +n2(eb’(0) - d)'
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in a delayed stage-structured population model on a 2-Dadattice when the initial
perturbation around the wavefronts decays exponenti@ly s + j sinf — —oo,
but it can be arbitrary large in other locations. On the oth@nd, since B(e—1) +
2(eb’(0) —d) = c(1) = c(no), then D(e—1)+ 2(sb’(0) — d) > max{c(no), c.(0)}. Thus,
the stability obtained in [2] is based on a stronger restrcon the wave speed. Our
results essentially improve the stability results obtdie [2] for the wave speed >
4D(e — 1) + 2(eb'(0) — d) with the small initial perturbation.

Throughout this papei? denotes the weightetf-space with weight O< v(£) €
C(R) and a fixedd € [0, /2], that is,

> (i cosé + j sing)¢? < oo}

i

7= {C = {Gijlijez, Gij €R

and its norm is defined by

1/2
Iz = (Z (i cost + j sin@);fj) , for ¢el?

i

In particular, whemnv = 1, we denotd? by 12,

The rest of this paper is organized as follows. In Section &,imroduce some
basic results and then state our stability result. Sectide 8evoted to proving our
main result.

2. Preliminaries and main theorem

In this section, we first recall some known results, then éefinveighted function
and state our stability result.
A wavefront of (1.1) is a solution of the form

(2.1) wij (t) = ¢(§)
satisfying the boundary conditions
(2.2) ¢(—o0) =0 and ¢(+oc) = w™,

where ¢ is monotone and

2.3) £=icosh+jsind+ct 6e [o, %]
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Hence, the wave profile equation of (1.1) is given by

R6)

= D[¢(& + cos) + ¢(& —cost) + (& +sinO) + ¢(& —sinO) — 4p(£)]
(2.4) dg

—de(§) + eb(a(§ —cr)).
Define

A(c, )») =—c\+ D(e)»cosﬁ + e—kcosH + eAsine + e—xsine _ 4)

(2.5)
+ eb/(0)e " —d.

The following lemma and proposition come from Lemma 4.2 ahédrem 5.4 of
[1], respectively.

Lemma 2.1. Assume thatb'(0) > d holds. Thenfor any fixedd € [0,7/2] there
exist a unique pair of 40) > 0 and A,(9) > 0 such that the following assertions hold.
() A(C.(9), 1(0)) = 0, DA(C, 1)/0A[c=c, () 1=1.(0) = O;

(i) For any ce (0,c.(9)) and » > 0, A(c, 1) > 0;
(i) For any c> c.(0), A(c, A) = 0 has two positive root® < 13 < A,. Moreover
A(c, 1) < 0 for any A € (A1, 12).

Proposition 2.1. Assume thatH1)«(H2) hold. Thenfor everyo € [0,7/2], there
exists ¢(®) > 0 such that for any ¢ c.(f), (1.1) admits a monotone wavefront
¢(i cosh + j sind + ct) satisfying the boundary conditions

lim ¢(¢)=0 and lim ¢(&)=w",
E——00 E—>+o00

and for any ce (0, c.(9)), there are no non-trivial wavefronp(i cos® + j siné + ct)
satisfying¢ (&) € [0, wT]. Moreovey for ¢ > c.(0), ¢ satisfies

élim o)™ =1 and élim o'(E)eE = Ay,
where ¢(0) and A, are defined as i,emma 2.1

Let § = (d — eb'(w™))/(2¢) > 0. According tob'(¢(§)) — b'(w*) as& — +oo,
there exists a large enough numigersuch that foré > &,,

(2.6) b)) < b'(wt) + 6.

Define the function
2D(e" — 1) + 2(eb/'(0) — d)
n '

c(n) =



NONLINEAR STABILITY OF WAVEFRONTS 967

Sincec(0+) = +o0o0 and ¢c(+o0) = +o0, then there existgg € (0, +00) such that

— b'(0)—d
2.7) cma=%@&fD@ 1”f@(m )

0.

Now, we define a weight function(¢) as

e*’]o(é*éx)’ é < s*’

(2.8) waz{L i

We are in the position to state our main result.

Theorem 2.1. Assume thaf{H1)~(H3) hold. For any given wavefronp(i coso +
j sin® + ct) with the wave speed

¢ > max{c(no), c.(0)},
if the initial data satisfies

(2.9) 0<wli(s) <w" for se[-r,0]i,jez,
and the initial perturbationw?;(s) — ¢(i cosf + j siné + cs) is in C([—r, 0],17), where

v = v(i cosh + j sind + ct) is the weight function given i2.8), then the solution
{wi,j ()}, jez of (1.1) and (1.2) satisfies

0<wt)<w*, for te[0, +o0), i, j€Z
and
{wi j(t) — ¢(i coso + j sind + ct)}i jez € C([0, o0), 19).

In particular, the solution{w; j(t)}i jez converges to the wavefrogi(i cosd + j siné +
ct) exponentially in time ,tthat is

sup|wi j(t) — ¢(i cosd + j sind +ct)] < Ce ™, t=>0,
iI,J€Z

for some positive constants C anpd

REMARK 2.1. (i) Noting the weight functiorv(§) given in (2.8), we recognize
from Theorem 2.1 that, as the sufficient condition, the ahiperturbation must con-
verge to O in the form

[wp;(s) — (i oSO + | sing + cs)| = O(1)e (/2 cost+]sincl

asi cosf + j sinf — —oo, s € [-r, 0].
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(i) In [2], the stability of traveling waves for (1.1) withhe small initial perturbation
in a weighted energy Sobolev space was investigated, whilteé present paper, the
small initial perturbation can be improved to be arbitsatdrge.

(iii) By (2.7), we have D(e— 1) + 2(¢b'(0) — d) = ¢(1) > c(no). On the other hand,
it follows from the argument in p.564 of [2] thatDfe — 1) + 2(¢b'(0) — d) > c.(6).
Then D(e— 1) + 2(¢b'(0) — d) > max{c(no), c.(9)}. Thus, the stability was obtained
in [2] with a stronger restriction on the wave speed 4D(e— 1)+ 2(¢b’'(0)—d). For
the wave speed € [c.(0), maXc(no), C.(0)}], the stability problem is investigated in
the further work by adopting thé!-weighted energy method (see [6, 16, 17]).

(iv) The conditiond > ¢b'(w*) + 2D(e — 1) (i.e. (H3) in [2]) can be weaken to the
present condition (H3)d > sb'(w™).

3. Proof of main theorem

We first state the boundedness and the comparison prin@plthé Cauchy prob-
lem (1.1) and (1.2) which comes from the results in [1] anchtpeove the main the-
orem by using the weighted energy method and the squeezthgiteie. The method
we used here is similar to that in [14, 15], which is appliedd&layed reaction diffu-
sion equations.

Lemma 3.1 (Boundedness) Let
0<uwl(s) <w", for se[-r0]i jez,
then the solution{w; j(t)}i,jez of (1.1) and (1.2) satisfies
0<wjt)<w", for te[0,+o0), i,] €Z.

Lemma 3.2 (Comparison principle) Let {wj j(t)}ijez and {w; ;(t)}ijez be the
solutions of (1.1) and (1.2) with the initial data {wy;(t)}i,jez and {wﬂj(t)}i,jez, re-
spectively. If

0<w(s) <wpi(s) <w" for se[-r 0] i, jez
then
0<uw (t) <wi{t) <w* for tel0, +o0),i,]j€Z.

Let the initial dataw?;(s) satisfy
0<wlj(s) <w" for se[-r,0]i,jez,

and define

(3.1) {ij(s) = max{w(s), (i cost + j sind + cs)}, for se[-r.0]i, ¢z

WY, (s) = min{w?;(s), #(i cosd + j sinf + cs)},
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It is obvious that
(3.2)
< WO () < wP.(s) < W’ () < wt
{0 - W'O'J(S) - w'zl(s) - W'_’J(_S) =Y _ 0 for se[-r,0],i,je€Z.
0= W;(s) = ¢(i cosd + j sind +cs) = W, (s) = w™,

Let Wﬁj(t) and Wﬂj(t) be the corresponding solutions of (1.1) and (1.2) with thie i
tial dataWi(?j(s) and wﬁj(s), respectively. According to Lemmas 3.1 and 3.2, we eas-
ily obtain
(3.3)
Ofwiyj(t)§wi,,-(t)§Wi,j(t)§w*, .
{o < W, |(t) < ¢(i cosO + j siné +ct) < Wi (t) < w™, for te[0,+o0), ] €2,
Proof of Theorem 2.1. We divide the proof into three steps.
Step 1. We first prove thatWi,j(t) converges top(i cosé + j sind + ct) for
t € [0, +0), i, ] € Z. For the sake of convenience, we always tgke: £(t, i, j) :=
i cosf + j sinf + ct. Let

Ui j(t) = Wi j(t) — ¢(i cosd + j sind +ct), tel0,+00), i, €Z
and

u®,(s) = W, (s) — (i cosé + j siné +cs), se[-r,0],i,j ez

Therefore, it follows from (3.2) and (3.3) that

(3.4) ui,j(t) >0 and uj;(s) > 0.
From (1.1) and (1.2)y; j(t) satisfies
(3.5)
I Dty 0) + o250 + U120 + U1 2) — 401 0
—duij (1) + b/ (p(E(L, i, ) —cr)uij(t —r) + Qi it —r), t>0,
u?,(s) = Wy (8) — d((s, i, )., € Z, se[-r,0]
where
) Qi j(t —r) = e[b(ui(t —1) + oL, i, J) —cr) — b(p(E(t, i, j) —cr))]
' — eb(@(E(t, i, §) —cr)uij(t — 1),
Uiz1j(t) = Wisrj(t) — ¢(E(t, i, j) £ coso)
and

Ui j1(t) = Wi j4a(t) — ¢(E(t, 1, j) % sine).
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Let v(&) > O be the weight function defined in (2.8). Multiplying (3.5) by
e?tu; j(t)v(&(t, i, j)), whereu > 0 will be given later in Lemma 3.4, we have

d .
SR Ou(E )]

—De* Ui () v(E(, 1, ], (t) +Uia,j () + Ui jea(t) + Ui ja(t)]
ve(§(t, 1, 1))
20(§(t, 1, ]))
—eb' (@&t i, j)—cr)e v (E(t, i, j))uijt)uijt—r)
= Qi j(t—r)e® u (M) v, i, j))

(3.7) +e2‘“ufj(t)v(é(t, i J))|:_c +4D —i—d—p{|

By the Cauchy—Schwartz inequalitxy| < (k/2)x? + (1/(2«))y? for any « > 0 and
then takinge = 1, we obtain

2. 2
(3.8) Ui j (D) Uixg j+a(t) = ALY + u'il’Jil(t).

2 2
Summing about all, j € Z and integrating over [@] yield
(3.9)
‘ usy 2 P vé(&(s,i, J)) L.
/0 ;ez u?;(S)vu(E(s, i, J)){_C—U(S(s, ) —D[Lu(&(s i, j))—4]+2d—2,u}ds

t
_2/0 Zgb’(¢(§(s, i, j)—cr))e?Sv((s, i, j))ui,,-(s)ui,j(s_r)ds+ezm”u(t)”|25
ij
t
=< 2/(; Z Qi,j(S—r)ezf‘sui,j(s)v(é(s, i,j))ds+ ”uO(O)”Izg,
ij

where

vEGL D) vEGT )
vEMT+1,0) (i —1, )
(L 7) (L J)
vER -1 vEr )+ 1)

Lo, ])) =

(3.10)

Note that there exists some positive numkigr> 0 such that

v(&(s, i, j) +cr)

/ ur
O

<C; forall i,jeZ.
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Since 0=< b'(w) < b'(0) for any w € [0, w*] and u; j(t)u; j(t —r) < uﬁj(t)/2 +
u?;(t —r)/2, we obtain
(311)
2/0 D b (@(E(s i, j)—cr)eSu(E(s, i, ))uij(S)uij(s—r)ds
i
t
= /O D bl (p(E(s i, J)—cr)ev(E(s i, [)uZ(s)ds
i
t
+/O D b (p(E(s i, J)—cr)e v(E(s i, )))u? (s—r)ds
0]
t
= fo Zsb’(fﬁ(&(& i, j)—cr)esu(g(s,i, j))uf(s)ds
o
+/ b/ (P(E(s, i, )))E*v(E(s,i, j)+cr)uf ()€ ds
Y
t
= /0 > et (p(E(s i, j)—cr)eSu(E(s, i, j)u?(s)ds
i
t—r
+/ D e (@(E(s i, ))E¥u(E(s i, ) +er)u? (s)e? ds
0 N
0 , o we2usVE(STL ) +cr) o ur
+[r ;Sb(qﬁ(ﬁ(&h )€ UU@(TJ.))U(E(S,I, U? ()€ ds
t
= /o D et (p(E(s i, j)—cr)e (& (s,i, j)u?j(s)ds
i

t 0
+/0 D eb(@(E(s i, 1)E¥ (s, i, ) +cr)u?; (s)e?" ds+ le Iu®s)] ds.
i -

On the other hand, by Taylor's formula and assumption (H2), have

Qij(t—r)) =elb(ui;(t —r)+ (1, j) —cr)) —b(@E(t, i, j) —cr))]

(3.12)
—eb(p(&(t, 1, j) —cr)uijt —r) < 0.

Thus, it follows from (3.9) and (3.11)—(3.12) that

t
ez’“IIU(t)Ilfz‘ +/O ZGZ“SUE,-(S)U@(S, I, 1)Byuu(E(s i, ]))ds
(3.13) ]

0
< WO +C1 [ I3 ds
—r
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where

v(&(t, 1, j)+cr)

Buu (5t 1, 1)) i= Auu(€(S T, ) — 20 —eb ($(5(s, 1, IN)(E — 1) )

and

ve(§(t 1, 1))
v(EE T, 1))

—eb(p(5(s, 1, J) —cr)) —eb'(p(5(s. 1, 1))

Aup(E(E 1, 1)) = —¢ — D[Lv(5(t, 1, j)) —4] + 2d

v(E(t, i, j) +cr)
vE L)

The most important step now is to proBs;(t) > C > 0 for some constantC. In
order to obtain this, the following lemma plays a key role s tpaper.

Lemma 3.3. A, ,(4(t, i, j)) = C, > 0 for some positive constant,C
Proof. Without loss of generality, suppose that @0 < sinf. It is obvious that

E(0, - 1) <&M, i—1,j) <&@, |) <&t i+1,j)<&ti j+1)
and
v(EE T, ) = et T —1, ), vt 1, ])
=t i, 1) vE 0, ) +er) < uEt T, ).

Thus, we have
(3.14)

AupE(L 1, ])) = —c

v;(S(t,i.i))_D[ v(EE L 1)) vE® )
(1, 1)) vEMT+L ) uE T +1)

, o , oW UE, T, j)+cr)
—eb'(¢(5(s, 1, j)—cr))—eb'(¢(5(s. i, J)))W

(i) If & <&, 1, ]), thenv(&(t, i, |)) = v, T +1,])) = v(EE, 1, ] +1) =1
Hence, we have

2)+2d

AuoE(tT, ) = 2d = 2[e(D'(w™) +6)] =: C5 > 0

according to (2.6).
(i) If &(ti,J) <& <&ti+1,]), thenv(E(t,i, j) = el cosvtisnosei=) ang
v(E®, T +1, ) = v(E(t, i, j +1)) = 1. Thus, we obtain
A, (i, ]) = cno + 2d + 2(D — De™ %) — 2:b/(0)
> Cno + 2(D — De™) +2(d — eb'(0)) =: C4 > 0
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according to

_ 2D(eP — 1)+ 2(eb'(0) — d)
1o )

c
(i) If E(ti+1,]) <& <&, ] +1), thenv(E(t,i, j)) = el cositisindret=5),
v(E(t,i 41,])) = e mlli+D)cost+jsind+ct-&1 gndy(£(t,i, j +1)) = 1. In this case, we have
AL (E( T, ) = cno + 2d — D(e 0 4 gosin? _ 2y — 2¢y(0)
> Cno + 2d — 2D(e™ — 1) — 2¢b/(0) = C4 > 0.

(iv) If &(t,i,j+1) <&, thenv(&(t,i,])) = e Mol cosd+isind+ct=£) y(g(t)i41,])) =
e—no[(i+1) cosh+j sinf+ct—£,] and U(?j(t, i J + 1)) — e"7°[i oS +(j+1) sind+ct—&.] Similarly, it
follows that

AL (E( T, ) = cno + 2d — D(e0 0 4 gosin? 2y — 2¢1y(0)

> Cy.
Finally, letting C, = min{Cgs, C4} > 0, this implies that lemma holds. []

Lemma 3.4. B, ,(&(t,i, j)) > 0 for 0 < u < 1, whereuy is the unique root of
the following equation

(3.15) Cy — 2u — b/ (0)(e*" — 1) = 0.

Proof. As shown in Lemma 3.3, we haw€s(t, i, j) + cr) < v(&(t, i, j)). Thus,
it follows immediately that

v(&(t, i, j) +cr)

Buo (5t 1, ) = Auu(E(t i, 1)) — 21 — eb'(@(E(s, T, ))(E" — 1) )

> Cy—2u—eb/(0)E —1)>0
for 0 < < ps1. ]

According to Lemma 3.4 and dropping the positive term
t
/O S 2 (S)u(E(s, i, )By (E(s. i, ) ds
i

in (3.13), we obtain the following basic energy estimate.

Lemma 3.5. It holds that

0
(3.16) 4 u®)l% < IWO)3 + Ca [ I3 ds, t=o0.
-r



974 Z.-X. YU AND R. YUAN

Using the standard Sobolev's embedding inequalifty— 1> and |2 < 12 for
v(i co® + j sind +ct) > 1 defined by (2.8), we finally have the following stability ués

Lemma 3.6. It holds that

(3.17) SUPW; j (t) — ¢(i cosd + j sind + ct)| = supu; j(t)| < Cse ™
ij ij

for all t > 0 and some positive constant.C
Proof. It follows from (3.16) and

|ui,j ()] < Siujldui,j(t)l < u@®lhz = lu®)l:

that the conclusion holds. O
STEP 2. Prove thatW; ,(t) converges tap(i cost + j sind + ct). Let

Ui j(t) = W; ; (t) — ¢(i cost + j sin6 + ct)
and
u’;(s) = WP, (s) — (i cost + j sing + cs).

Similar to the process in Step 1, we have the following lemma.
Lemma 3.7. It holds that
(3.18) sugW; ;(t) — ¢(i cost + j sind + ct)| = sugui j(t)| < Cege ™t
i,j ij
for all t > 0 and some positive constant.C

STEP 3. Prove that\ j(t) converges tap(i cos? + j sind +ct), i.e., the following
lemma holds.

Lemma 3.8. It holds that

(3.19) sugWi j(t) — ¢(i cost + j sind +ct)| < Ce ™
i

for all t > 0 and some positive constant C.

Proof. Since the initial data satistW; ;(s) = W (s) = Wi,j(s), se|[-r0] it
follows from Lemma 3.2 that the corresponding solutions i) and (1.2) satisfy

W, (1) < W) < Wi (), forall t>0,i,jez.
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According to Lemmas 3.5-3.6, the squeeze method vyields

(3.20) sugWi j(t) — ¢(i cosd + j sinf + ct)| < Ce ™™
i
for all t > 0 and some positive consta@t This completes the proof. []
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