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Abstract
We study the configuration space of equilateral and equilangpatial hexagons
for any bond angle by giving explicit expressions of all thesgble shapes. We
show that the chair configuration is isolated, whereas thet bonfiguration allows
one-dimensional deformations which form a circle in thefigpmation space.

1. Introduction

Let P be a closed polygon witm vertices inR3. We expressP by its vertices,
P = (P, Py, ..., Pr1), with suffixes modulon. A polygon P is called equilateral if
the edge lengthP,; — P/| is constant, angquiangularif the angle ZP, 1P, P .1 is
constant. This angle between two adjacent edges is caleetiahd angleand will be
denote byv in this paper. An equilateral and equiangular polygon cacdsidered as
a mathematical model of a cycloalkane. We are interestetidrset of all the possible
shapes (which are called conformations in chemistry) ohgualygons when the num-
ber n of the vertices and the bond anglées fixed, i.e. the configuration space of equi-
lateral and equiangular polygons. We remark that we allawréections of edges and
overlapping of vertices in this paper. If the condition fbletbond angles is dropped
off, the configuration space of equilateral polygons hambe&ensively studied. See,
for example, [3], which is an excellent survey of linkages, [6], [7], and [8]. On the
other hand, an equilateral and equiangular polygon is dalé-regular stick knotif
the edges meet only at their common vertices. This subjextajppeared in [11], and
the space ob-regular stick knots and unknots has been studied in [10]tHerideal
tetrahedral bond angle cd$—1/3) ~ 109.47 (Fig. 1) and for general values @f in
[1, 4, 9]. In particular, the space @Fregular stick hexagonal knots was studied in [9].

Gordon Crippen studied the configuration space of equdatard equiangular poly-
gons forn < 7 ([2]). To be precise, what he obtained is not the configanasipace itself,
but the space of thenietric matrice$, which aren x n matrices whose entries are inner
products of pairs of edge vectors, and then he gave the pomdsg conformations.
Whenn = 4 (cyclobutanes) and = 5 (cyclopentanes) he considered all the possible
bond angles, but when = 6 (cyclohexanes) and = 7 (cyclopentanes) he fixed the
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Fig. 2. aboat Fig. 3. achair.
Fig. 1. & = cosi(-1/3).

bond angle to be the ideal tetrahedral bond angle. He shadvetdfth = 6 the conform-
ation space is a union of a circle which containsaat (Fig. 2) and an isolated point of
a chair (Fig. 3), and that ifn = 7 it consists of two circles, one for boat/twist-boat and
the other for chair/twist-chair. In these two cases, he gbivby searching out all the
possible values of the entries of the metric matrix througmerical experiment with
0.05 step size.

In this paper we show that wham= 6 a chair cannot be continuously deformed
into a boat for any bond angle. As there does not seem to be emyefric invariant
which implies that a chair and a boat belong to different congmts of the configur-
ation space, we will describe the configuration space of dpaxs explicitly. Namely,
we express all the possible configurations in terms of thampaters illustrated in Fig. 7
by trigonometric computation.

The topological type of the configuration space depends erbtimd angled. First
remark that we distinguish vertices in our study, and hengeconfiguration space is
not equal to the space of shapes.flfs big (/3 < 6 < 27/3) the situation is same
as that of cyclohexanes of ideal tetrahedral bond angleextunly Crippen. On the other
hand, if6 is small (0< 6 < 7/3), a new configuration (tiward crowri' illustrated in
Fig. 10) appears, and the one dimensional continuum of mheftton of a boat is divided
into two pieces, which implies that we cannot deform a botd its mirror image. In
between these two general cases, there is an exceptior&b casx/3, when the in-
ward crown, which degenerates to a doubly covered triarmgle,be deformed to boats
via newly appeared families of configurations. In any casehair is an isolated con-
figuration, whereas a boat allows one-dimensional defaomststarting from and end-
ing at it. Moving pictures of deformation of a boat for someues of9 can be found at
http://ww. conp.tnmu. ac.j p/ knot NRG mat h/ confi guration. ht Ml . They
illustrate how the configuration spaces wtteis close tor/3 degenerate asapproaches
/3. Of course, as extremal cases, we have a 6 times covereiplmelige and a regular
hexagon whe = 0, 27/3.

This paper is based on the author’s talk at “Knots and softenahysics, Topology
of polymers and related topics in physics, mathematics awiddy”, YITP, Kyoto, 2008
(A short announcement of the result without proof was regzbih Bussei Kenkyu@2,
(2009), 119-122).
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PO P2
Fig. 4. A chair wher¥ is small and its mirror image.

The author thanks Jorge Alberto Calvo for the informationthe study of thex-
regular stick knots and the reference [1].

NOTATIONS. Throughout the paper, we agree tRat cosf/2) andS = sin@/2).
The suffixes are understood moduio The angleZP, means/ZP_;P P ;.

2. Preliminaries

DEFINITION 2.1. Put

~ . PZ(P01-~-,Pn—l) |P|_P|+l|=11 .
M0 = {(P. € RY) /P PRy =6 (7 (modm)y.

Let G be the group of orientation preserving isometrieR3f Put M () = M (0)/G,
and call it theconfiguration space of-equiangular unit equilateral n-gonf < 6 <
). Let us denote the equivalence class of a poly@oby [P].

REMARK 2.2. (1) We allow intersections of edges and overlapping esfices.
(2) We distinguish the vertices when we consider our conditjoim space. Therefore,
two configurations illustrated in Fig. 4 correspond to difiet points inMsg, although
their shapesare the same.
(3) When we express an equilateral and equiangular polygomay fix the first three
vertices, Py, P;, and P,. There are 1if — 3) more vertices, whereas we have - 2)
conditions for the lengths of the edges, and-() conditions for the angles. Therefore,
we may expect that the dimension 6f(,(0) is equal to 3(—3)—(h—2)—(n—1) =
n—6 in general if the conditions are independent, which is het tase whem < 6
as we will see.

When n < 5 the configuration space is given as follows. It can be proved
trigonometric computation.
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Fig. 5. n = 4 case. The middle is a non-planar configuration.

J

Fig. 6. n = 5 case. A regular star shape (left) and a regular
pentagon (right).

Proposition 2.3 ([2]). The configuration spacesM,(@) of equilateral and
6-equiangular n-gongn = 3, 4, 5) and the shapes of polygons which correspond to
the elements are given by the following.

{1 point} (6 = =/3) regular triangle
@ otherwise

{1 pointt (6 = 0) 4-folded edge(Fig. 5 left),
{2 pointg (0 < 0 < m/4) folded rhombugFig. 5 cente)

Mg(@) = {

My(0) = and its mirror image
{1 point} (6 = n/4) square(Fig. 5 right),
@ otherwise

{1 point} (6 = m/5) regular star shapgFig. 6 left),
Ms(0) = { {1 point} (¢ = 3r/5) regular pentagon(Fig. 6 right),
@ otherwise

3. Equilateral and equiangular hexagons

Put C = cos@/2) and S = sin(p/2).
First note thatPy, P,, and P4 form a regular triangle of edge lengtlis2We may fix

-S S 0
(3.1) P0=( 0), P2=(o), P4=(«/§S).
0 0 0
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Fig. 7. Double cone or suspension expression.

Any element inMg(@) has exactly one representative hexagon w#h P,, and Py
being as above. Let us use dduble coné or suspension expression of a hexagon
(Fig. 7), namely, we expresB;, P;, and Ps by

1 3
-S+ £C COSy3

0 2 2
Pr=| —Ccosg1 |, Ps=| /3 1

CSin(pl 7S+ EC COSg3
C Sin(p3
(3.2)
18 ﬁC cos
2 2 @5
Ps = V3

1
—S+ -Ccos
> + > @5

Csings

for somegs, @3, andgs. Now the conditiongPj — Pj11| =1 (V) and LPy = ZP; =
/Ps = 0 are satisfied.
The condition/ZP,,1 =6 (i =1, 3, 5) is equivalent to

C2(cosy; CoSgi42 — 2 Sing; SiNg;12) + v/3SC(COSp; + COSY; 42)

(3.3)
=3-5C?
which is equivalent to

C(C cosgi + +/3S) cosg; ,» — 2C? sing; singi 42

(3.4)
=3-5C?—+/35Ccosyi.

Remark that the equatiorex + by = d (a® + b? > 0) andx? + y?> = 1 have solutions
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Fig. 8. The region of cag; so that there ares; and ¢s satisfying
LPy= /P, =0.

if and only if a?> 4+ b? —d? > 0, when we have

y_adEb/R@TB—d | bdFa/@ibz-d

35 :
(3:5) a2 + b2 a? 4 b?

In our case (3.4), by substituting

a = C(Ccosg + v/39), b= —2C%sing,

(3.6)
d =3-5C?—+/3SCcosy;,

we havea? + b? = 4 — (S— +/3C cosg;)?, which is positive unlesg = /3 andg, =
w, and
(3.7)  a?+b?>—d? = —+/3(C cosg; — v/39)(+/3C cosg; — (3—8C?)S).

It follows that when @,¢;) # (;t/3,7) there areps and ¢s so that/Py = ZP, =0
if and only if cosp; satisfies

3-8C?)S
g S COS(p]_ S \/__38’
V3C C

which can happen if and only i€ = cos9/2 > 1/2, i.e. 0< 6 < 27/3 (Fig. 8).
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3.1. The general case whemd(¢,) # (r/3,m). Let us first assume that and
¢ satisfy the conditions above mentioned and search for the wdienys and ¢s that
make £LPy = £P, = 0 also satisfy/P, = 6. (We will study the case wherd(¢;) =
(m/3, ) later.) We have two cases, eith@s # g5 or g3 = @s.

Case l. Assumegs # ¢s. Remark that this can occur if and only ¢f satisfies

(3—8C?)S
V3C

Then the conditions/ Py = ZP, = 6 imply that ¢3 and ¢5 are given by

3S
< COSg; < \/—? (0 <6 < 27/3).

{(cosgs, sings), (Cosys, Sings)}

(3.8) _ |{ad£bvaZ+b2—d? bdFava®+b?—d?
- a? + b2 ! a2 + b? ’

wherea, b, andd are given by (3.6). Computing the left hand side of (3.3), vageh
242 h2(a2 2 42 242 ~2(n2 2 42
Cz(ad b(a+2 d)_zbd a(a+t2) d))+\/§SC
(a2 +b?) (a2 + b?)
= 3-5C?,

2ad
a? 4 b?

which implies that the conditior P, = 0 is always satisfied in this case. Now (3.2)
shows thatP; and Ps are given by

V/3C cosp; — (3—8C2) S+ +/3C sing; /a2 + b2 —d?
- 4—(S—+/3Ccosy)’
by 2 s Ccospr —(1/+/3)(3—8C2)S+ Csingiv/a2+b2—d?
V3 4—(S—+/3Ccosy)’
_ 2C(3—5C%— /3SCcospy) sing; & (C cosp; + +/39) Va2 + b2 — a2

4—(S—/3Ccosp)

st V/3C cosp; — (3—8C2)STF +/3C sing1+v/a2 + b2 —d?
4—(S—+/3Ccosp)’
P 2 s Ccospr —(1/+/3)(3—8C2)SF Csingi1v/a2+b2—d?
V3 4—(S—+/3Ccosy)’
_ 2C(3—5C%—+/3SCcospy) sing: T (C cosps + v/39) va? +b? —d?

4—(S—+/3Ccosp)’

S

(3.9)

wherea? + b? — d? is given by (3.7).
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Case Il. Assumegs = ¢s. Let us first study the condition far P, = 6 without
assumingZPy = ZP, = 6. If ¢3 = ¢s5, which we denote byp, and ZP, = 0, then
(3.3) implies thatp must satisfy

Y C J3c’
CAsE II-1. Assume
(cosgs, sings) = (COSys, Sings) = S aci-1
§03! §03 - (p51 (p5 - \/éc 1 \/éc .

Then (3.3) implies thaZPy, = ZP, = 0 if and only if

. S J4c2-1 (3—8C?S (4C?—-3)v/4C2—-1
(cosgs, sing;) = ﬁ W or Jic J3C .

Note that we haveP,Ps = P,P; by (3.2). The pointsP; and P, are in the opposite
(or same) side of the plane containiiRy, P>, Ps, and Ps if cosg; = S/(+/3C) (or
respectively cos, = (3 — 8C?)S/(+/3C)). Namely, the hexagon is a chair §f; =
w3 = g5 and a boat ifp; # @3 = ¢s in this case. Both coincide if and only #f = 0
or 27 /3, whenP is a 6-times covered multiple edge or a regular hexagon. Hadr c
is given by

0 S -S
S 2S 2S
p=| V3@ | m=| V3@ | m=| V3 |
4C7 -1 4C2-1 4C7 -1
V3 V3 V3

whereas the boat is given by substituting (pessing:) = ((3—8C?)S/(+/3C), (4C2 —
3)v/4C2 - 1/(+/3C)) to (3.9),

0 s ~s
(3-8C?)S 25 25
p=| V3 = VB | m=| 3
(4C? — 3)V/aCZ 1 ac7_1 4C7—1
V3 T3 N

CASE II-2. Assume

V3S J4c? -3

(cosgsz, sings) = (COSgs, SiNgs) = <_T’ T)
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which can occur if and only ifv¥/3/2 < C < 1, namely, 0< 6 < /3. Then (3.3)
implies thatZPy = ZP, = 0 if and only if 2C+/4C2 — 3 sing; = 8C? — 6. Therefore,
when 0 # 7 /3 (we will study the case whefl = /3 and ¢3 = ¢5 = 7 later) then
£LPy = £P, =6 if and only if

V38 ¢4c2—3) or <f_3$ «/402—3)

C C

(cosgs, singy) = (- c c

Note thatP; and Ps are aboveP, and P, respectively. Whemp; = ¢3 = ¢s the hexagon
is an “inward crown” (Fig. 10) given by

0 -S S
P = V3s | p= 0 , Ps= 0 ,
4C7_3 4C7—3 4CZ—3

whereas the other is given by substituting (@@ssing;) = (+/3S/C, v/4C2 —3/C)
to (3.9),

0 -S S
pb=| —-v3S |, P;= 0 . P = 0
4CZ_3 4C2_3 4C2_3

Let us summarize the argument above wifeg /3.

Theorem 3.1. Suppose &-equiangular unit equilateral hexago(® # n/3) is
parametrized by the angleg:, ¢3, and ¢s by (3.1), (3.2) Let C = cosf/2) and S=
sin@/2) as before.

(1) Whené = 2r/3 i.e. C=1/2 we have

1 =¢3 =95 =0,
which corresponds to a regular hexagon.
(2) Whenn/3 <6 <21/3i.e.1/2 < C < +/3/2 we have

_ 2 _ 2
arccod B=8C)S (3—8C )S)

V3C Jac /)

() Wheng; = +arccos((3- 8C2)S/(+/3C)) we have

S
= @5 = Farccog§ —— |,
s { J3c )

which corresponds to a bodFig. 2).

) < ¢1 = arcco
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A

Fig. 10. ‘inward crowr’ in a
Fig. 9. A boat with a small bond angle. prism. Two edges intersect each
other in a side face of the prism.

(i) When —arccos((3- 8C2)S/(v/3C)) < ¢1 < arccos((3— 8C2)S/(v/3C)) we
have either
* @3 # ¢s, Which are given by(3.8),
% @1 = @3 = g5 = £arccosB/(~/3C)), which corresponds to a cha(Fig. 3).
(3) When0 < 6 < /3 i.e. v/3/2 < C < 1 we have

(3— 8C2)S)
NEoa

() Wheng; = + arccos((3- 8C?)S/(+/3C)) we have

S
= = tarccog§ —— |,
ISRG ( V3C )

which corresponds to a bodFig. 9).
(i) Wheng; = + arccos(/3S/C) we have

Y3 = @5 = :I:arccos(—\/_%s) = :l:(]t - arcco:(f%s)).

(iii) Whenarccos{/3S/C) < |¢1| < arccos((3- 8C?)S/(+/3C)) we have either
* @3 # @5, Which are given by3.8),
% @1 = @3 = g5 = +arccosB/(~/3C)), which corresponds to a cha(Fig. 4).
% @1 = @3 = g5 = % arccos{-~/3S/C), which corresponds to atiinward
crown’ (Fig. 10).
(4) When6 = 0 the hexagon degenerates to6etimes covered multiple edge.

3S
arccoz(\/_?) < |¢1] < arcco

Corollary 3.2. The configuration spacé1g(9) of 6-equiangular unit equilateral
hexagong® # 7/3) is homeomorphic to a point # = 0, 27/3, the union of a circle
and a pair of points ifr/3 < 6 < 2r/3, the union of two circles and four points if
0 <6 < /3, and the empty set if <0 or 6 > 27/3.
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Boat configurations are included in circles above mentignethd chairs
are isolated.

We will see that a boat degenerates to a planar configuratiteenw = /3.

Corollary 3.3. (1) A boat and its mirror image can be joined by a path in the
configuration spacei.e. they can be continuously deformed from one to the piher
and only if the bond angle satisfies/’3 < 6 < 27/3.

(2) A boat and a chair cannot be joined by a path in the configuragpacei.e. they
cannot be continuously deformed from one to the other.

3.2. The exceptional case whed = n/3. Finally we study the exceptional
cased = /3, when the cases when = (j =1, 3,5) have not been considered yet.
When 6 = /3 the equation (3.3) becomes

(cosg; + 1)(cosgi,2 + 1) — 2 sing; sing;,» = 0.

If ZP, = /3 theng;s is determined byy; as follows;

o if 91 = m thengs is arbitrary,

e if ¢p1 =0 theng; =7,

o if ¢ # 0,7 thengsz =7 or f(p1) (f(p1) # ), where f () (¢ # +x) is given by

(cosf(p), sin f(p))
(3.10) B (—(COS(/) + 12 +4sifg  4sing(cosy + 1) )
(cosg + 12+ 4sirf¢ ' (cosg + 12 +4sif g )

Remark thatf (0) = = and thatf (p) = ¢ if and only if ¢ = £arccos(¥3). Put f(r) =
0 as lim_, f(p) =0.

Theorem 3.4. Suppose & /3-equiangular unit equilateral hexagon is parametrized
by the angles:, ¢3, and ¢s by (3.1), (3.2) Then we have

{91, 03, g5}

={m, ¢, T(p)}, {m, m, @}, or {i arccos(%), + arccos(é), + arccos(%)},

whereg is arbitrary. The first case contains a boat whign,¢s,¢s} = {r,+arccos(}3),
+arccos(}3)}, and the last triples correspond to a chair.

Corollary 3.5. The configuration spaceMsg(w/3) of equilateral and x/3-
equiangular hexagons is homeomorphic to the union of a pdipants and the
space X illustrated inFig. 11 which is a 1-skeleton of a tetrahedron with edges
being doubled.



488 J. O’HARA

D
Ei Pal
z Eg _ c R :4 0 ’

Fig. 11. The configuration spacé = Msg(r/3) \ {chairg. The
numbers 0,2, and 4 in the figure indicate the vertiPgsP,, and

P, respectively. The figures of six hexagons aroukdare seen
from above. The non-planar configurations left below is atboa
when P, occupy five vertices of a regular octahedron. The four
vertices A, B,C, and D of X correspond to planar configurations
parametrized by, ¢3, ¢s) = (7, 7, ), (7, 7, 0), (0,7, 7), and
(7r,0,7) respectively. The circle throughA and D consists of the
configurations parametrized byi( ¢z, ¢s5) = (m,¢,7) (-7 <9 <
). The circle throughB and C consists of the configurations
parametrized by, ¢3, ¢s5) = (¢, 7, f(9)) (-7 < ¢ = 7).

The author would like to close the article with an open probléind a new invariant
which can show that a boat cannot be deformed continuousdyarchair.
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