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Abstract
We study the configuration space of equilateral and equiangular spatial hexagons

for any bond angle by giving explicit expressions of all the possible shapes. We
show that the chair configuration is isolated, whereas the boat configuration allows
one-dimensional deformations which form a circle in the configuration space.

1. Introduction

Let P be a closed polygon withn vertices inR3. We expressP by its vertices,
P D (P0, P1, : : : , Pn�1), with suffixes modulon. A polygon P is calledequilateral if
the edge lengthjPiC1 � Pi j is constant, andequiangular if the angle�Pi�1Pi PiC1 is
constant. This angle between two adjacent edges is called the bond angleand will be
denote by� in this paper. An equilateral and equiangular polygon can beconsidered as
a mathematical model of a cycloalkane. We are interested in the set of all the possible
shapes (which are called conformations in chemistry) of such polygons when the num-
ber n of the vertices and the bond angle� is fixed, i.e. the configuration space of equi-
lateral and equiangular polygons. We remark that we allow intersections of edges and
overlapping of vertices in this paper. If the condition for the bond angles is dropped
off, the configuration space of equilateral polygons has been intensively studied. See,
for example, [3], which is an excellent survey of linkages, [5], [6], [7], and [8]. On the
other hand, an equilateral and equiangular polygon is called a �-regular stick knotif
the edges meet only at their common vertices. This subject has appeared in [11], and
the space of�-regular stick knots and unknots has been studied in [10] forthe ideal
tetrahedral bond angle cos�1(�1=3)� 109.47Æ (Fig. 1) and for general values of� in
[1, 4, 9]. In particular, the space of�-regular stick hexagonal knots was studied in [9].

Gordon Crippen studied the configuration space of equilateral and equiangular poly-
gons forn� 7 ([2]). To be precise, what he obtained is not the configuration space itself,
but the space of the “metric matrices”, which aren�n matrices whose entries are inner
products of pairs of edge vectors, and then he gave the corresponding conformations.
When n D 4 (cyclobutanes) andn D 5 (cyclopentanes) he considered all the possible
bond angles, but whenn D 6 (cyclohexanes) andn D 7 (cyclopentanes) he fixed the
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Fig. 1. � D cos�1(�1=3).
Fig. 2. aboat. Fig. 3. achair.

bond angle to be the ideal tetrahedral bond angle. He showed that if nD 6 the conform-
ation space is a union of a circle which contains aboat (Fig. 2) and an isolated point of
a chair (Fig. 3), and that ifn D 7 it consists of two circles, one for boat/twist-boat and
the other for chair/twist-chair. In these two cases, he showed it by searching out all the
possible values of the entries of the metric matrix through numerical experiment with
0.05 step size.

In this paper we show that whenn D 6 a chair cannot be continuously deformed
into a boat for any bond angle. As there does not seem to be any geometric invariant
which implies that a chair and a boat belong to different components of the configur-
ation space, we will describe the configuration space of hexagons explicitly. Namely,
we express all the possible configurations in terms of the parameters illustrated in Fig. 7
by trigonometric computation.

The topological type of the configuration space depends on the bond angle� . First
remark that we distinguish vertices in our study, and hence our configuration space is
not equal to the space of shapes. If� is big (�=3 < � < 2�=3) the situation is same
as that of cyclohexanes of ideal tetrahedral bond angle studied by Crippen. On the other
hand, if � is small (0< � < �=3), a new configuration (“inward crown” illustrated in
Fig. 10) appears, and the one dimensional continuum of deformation of a boat is divided
into two pieces, which implies that we cannot deform a boat into its mirror image. In
between these two general cases, there is an exceptional case � D �=3, when the in-
ward crown, which degenerates to a doubly covered triangle,can be deformed to boats
via newly appeared families of configurations. In any case, achair is an isolated con-
figuration, whereas a boat allows one-dimensional deformations starting from and end-
ing at it. Moving pictures of deformation of a boat for some values of� can be found at
http://www.comp.tmu.ac.jp/knotNRG/math/configuration.html. They
illustrate how the configuration spaces when� is close to�=3 degenerate as� approaches
�=3. Of course, as extremal cases, we have a 6 times covered multiple edge and a regular
hexagon when� D 0, 2�=3.

This paper is based on the author’s talk at “Knots and soft-matter physics, Topology
of polymers and related topics in physics, mathematics and biology”, YITP, Kyoto, 2008
(A short announcement of the result without proof was reported in Bussei Kenkyuu92,
(2009), 119–122).
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Fig. 4. A chair when� is small and its mirror image.

The author thanks Jorge Alberto Calvo for the information ofthe study of the�-
regular stick knots and the reference [1].

NOTATIONS. Throughout the paper, we agree thatC D cos(�=2) andSD sin(�=2).
The suffixes are understood modulon. The angle�Pi means�Pi�1Pi PiC1.

2. Preliminaries

DEFINITION 2.1. Put

QMn(�) D

�

P D (P0, : : : , Pn�1)
(Pi 2 R

3)
jPi � PiC1j D 1,
�Pi�1Pi PiC1 D �

(8i (mod n))

�

.

Let G be the group of orientation preserving isometries ofR

3. PutMn(�)D QMn(�)=G,
and call it theconfiguration space of�-equiangular unit equilateral n-gons(0 � � <
�). Let us denote the equivalence class of a polygonP by [P].

REMARK 2.2. (1) We allow intersections of edges and overlapping of vertices.
(2) We distinguish the vertices when we consider our configuration space. Therefore,
two configurations illustrated in Fig. 4 correspond to different points inM6, although
their shapesare the same.
(3) When we express an equilateral and equiangular polygon we may fix the first three
vertices, P0, P1, and P2. There are (n � 3) more vertices, whereas we have (n � 2)
conditions for the lengths of the edges, and (n�1) conditions for the angles. Therefore,
we may expect that the dimension ofMn(�) is equal to 3(n� 3)� (n� 2)� (n� 1)D
n � 6 in general if the conditions are independent, which is not the case whenn � 6
as we will see.

When n � 5 the configuration space is given as follows. It can be provedby
trigonometric computation.
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Fig. 5. n D 4 case. The middle is a non-planar configuration.

Fig. 6. n D 5 case. A regular star shape (left) and a regular
pentagon (right).

Proposition 2.3 ([2]). The configuration spacesMn(�) of equilateral and
�-equiangular n-gons(n D 3, 4, 5) and the shapes of polygons which correspond to
the elements are given by the following.

M3(�) �

�

{1 point} (� D �=3) regular triangle,
; otherwise,

M4(�) �

8

�

�

�

�

�

<

�

�

�

�

�

:

{1 point} (� D 0) 4-folded edge(Fig. 5 left),
{2 points} (0< � < �=4) folded rhombus(Fig. 5 center)

and its mirror image,
{1 point} (� D �=4) square(Fig. 5 right),
; otherwise,

M5(�) �

8

<

:

{1 point} (� D �=5) regular star shape(Fig. 6 left),
{1 point} (� D 3�=5) regular pentagon(Fig. 6 right),
; otherwise.

3. Equilateral and equiangular hexagons

Put C D cos(�=2) and SD sin(�=2).
First note thatP0, P2, and P4 form a regular triangle of edge length 2S. We may fix

(3.1) P0 D

0

�

�S
0
0

1

A, P2 D

0

�

S
0
0

1

A, P4 D

0

�

0
p

3S
0

1

A.
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Fig. 7. Double cone or suspension expression.

Any element inM6(�) has exactly one representative hexagon withP0, P2, and P4

being as above. Let us use a “double cone” or suspension expression of a hexagon
(Fig. 7), namely, we expressP1, P3, and P5 by

(3.2)

P1 D

0

�

0
�C cos'1

C sin'1

1

A, P3 D

0

B

B

B

B

B

�

1

2
SC

p

3

2
C cos'3

p

3

2
SC

1

2
C cos'3

C sin'3

1

C

C

C

C

C

A

,

P5 D

0

B

B

B

B

B

�

�

1

2
S�

p

3

2
C cos'5

p

3

2
SC

1

2
C cos'5

C sin'5

1

C

C

C

C

C

A

for some'1, '3, and'5. Now the conditionsjPj � PjC1j D 1 (8 j ) and�P1 D �P3 D

�P5 D � are satisfied.
The condition�PiC1 D � (i D 1, 3, 5) is equivalent to

(3.3)
C2(cos'i cos'iC2 � 2 sin'i sin'iC2)C

p

3SC(cos'i C cos'iC2)

D 3� 5C2,

which is equivalent to

(3.4)
C(C cos'i C

p

3S) cos'iC2 � 2C2 sin'i sin'iC2

D 3� 5C2
�

p

3SCcos'i .

Remark that the equationsaxC byD d (a2
C b2

> 0) and x2
C y2

D 1 have solutions
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Fig. 8. The region of cos'1 so that there are'3 and'5 satisfying
�P0 D �P2 D � .

if and only if a2
C b2

� d2
� 0, when we have

(3.5) x D
ad� b

p

a2
C b2

� d2

a2
C b2

, y D
bd� a

p

a2
C b2

� d2

a2
C b2

.

In our case (3.4), by substituting

(3.6)
a D C(C cos'i C

p

3S), bD �2C2 sin'i ,

d D 3� 5C2
�

p

3SCcos'i ,

we havea2
C b2

D 4� (S�
p

3C cos'i )2, which is positive unless� D �=3 and'i D

� , and

(3.7) a2
C b2

� d2
D �

p

3(C cos'i �
p

3S)(
p

3C cos'i � (3� 8C2)S).

It follows that when (� ,'1)¤ (�=3,�) there are'3 and'5 so that�P0D �P2D �

if and only if cos'1 satisfies

(3� 8C2)S
p

3C
� cos'1 �

p

3S

C
,

which can happen if and only ifC D cos�=2� 1=2, i.e. 0� � � 2�=3 (Fig. 8).
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3.1. The general case when (� ,'1) ¤ (�=3,�). Let us first assume that� and
'1 satisfy the conditions above mentioned and search for the case when'3 and'5 that
make�P0 D �P2 D � also satisfy�P4 D � . (We will study the case when (� , '1) D
(�=3, �) later.) We have two cases, either'3 ¤ '5 or '3 D '5.

CASE I. Assume'3 ¤ '5. Remark that this can occur if and only if'1 satisfies

(3� 8C2)S
p

3C
< cos'1 <

p

3S

C
(0< � < 2�=3).

Then the conditions�P0 D �P2 D � imply that '3 and '5 are given by

(3.8)

{(cos'3, sin'3), (cos'5, sin'5)}

D

( 

ad� b
p

a2
C b2

� d2

a2
C b2

,
bd� a

p

a2
C b2

� d2

a2
C b2

!)

,

wherea, b, and d are given by (3.6). Computing the left hand side of (3.3), we have

C2

�

a2d2
� b2(a2

C b2
� d2)

(a2
C b2)2 � 2

b2d2
� a2(a2

C b2
� d2)

(a2
C b2)2

�

C

p

3SC
2ad

a2
C b2

D 3� 5C2,

which implies that the condition�P4 D � is always satisfied in this case. Now (3.2)
shows thatP3 and P5 are given by

(3.9)

P3D

0

B

B

B

B

B

B

B

B

B

B

�

S�

p

3C cos'1� (3�8C2)S�
p

3C sin'1

p

a2
Cb2
�d2

4� (S�
p

3C cos'i )
2

2
p

3
S�

C cos'1� (1=
p

3)(3�8C2)S�C sin'1

p

a2
Cb2
�d2

4� (S�
p

3C cos'i )
2

�

2C(3�5C2
�

p

3SCcos'1)sin'1� (C cos'1C
p

3S)
p

a2
Cb2
�d2

4� (S�
p

3C cos'i )
2

1

C

C

C

C

C

C

C

C

C

C

A

,

P5D

0

B

B

B

B

B

B

B

B

B

B

�

�SC

p

3C cos'1� (3�8C2)S�
p

3C sin'1

p

a2
Cb2
�d2

4� (S�
p

3C cos'i )
2

2
p

3
S�

C cos'1� (1=
p

3)(3�8C2)S�C sin'1

p

a2
Cb2
�d2

4� (S�
p

3C cos'i )
2

�

2C(3�5C2
�

p

3SCcos'1)sin'1� (C cos'1C
p

3S)
p

a2
Cb2
�d2

4� (S�
p

3C cos'i )
2

1

C

C

C

C

C

C

C

C

C

C

A

,

wherea2
C b2

� d2 is given by (3.7).
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CASE II. Assume'3 D '5. Let us first study the condition for�P4 D � without
assuming�P0 D �P2 D � . If '3 D '5, which we denote by', and�P4 D � , then
(3.3) implies that' must satisfy

cos' D �

p

3S

C
or

S
p

3C
.

CASE II-1. Assume

(cos'3, sin'3) D (cos'5, sin'5) D

 

S
p

3C
,

p

4C2
� 1

p

3C

!

.

Then (3.3) implies that�P0 D �P2 D � if and only if

(cos'1, sin'1) D

 

S
p

3C
,

p

4C2
� 1

p

3C

!

or

 

(3� 8C2)S
p

3C
,

(4C2
� 3)
p

4C2
� 1

p

3C

!

.

Note that we have
���!

P0P5 D
���!

P2P3 by (3.2). The pointsP1 and P4 are in the opposite
(or same) side of the plane containingP0, P2, P3, and P5 if cos'1 D S=(

p

3C) (or
respectively cos'1 D (3 � 8C2)S=(

p

3C)). Namely, the hexagon is a chair if'1 D

'3 D '5 and a boat if'1 ¤ '3 D '5 in this case. Both coincide if and only if� D 0
or 2�=3, whenP is a 6-times covered multiple edge or a regular hexagon. The chair
is given by

P1 D

0

B

B

B

B

B

�

0

�

S
p

3
p

4C2
� 1

p

3

1

C

C

C

C

C

A

, P3 D

0

B

B

B

B

B

�

S
2S
p

3
p

4C2
� 1

p

3

1

C

C

C

C

C

A

, P5 D

0

B

B

B

B

B

�

�S
2S
p

3
p

4C2
� 1

p

3

1

C

C

C

C

C

A

,

whereas the boat is given by substituting (cos'1, sin'1) D ((3� 8C2)S=(
p

3C), (4C2
�

3)
p

4C2
� 1=(

p

3C)) to (3.9),

P1 D

0

B

B

B

B

B

B

�

0

�

(3� 8C2)S
p

3

(4C2
� 3)
p

4C2
� 1

p

3

1

C

C

C

C

C

C

A

, P3 D

0

B

B

B

B

B

�

S
2S
p

3
p

4C2
� 1

p

3

1

C

C

C

C

C

A

, P5 D

0

B

B

B

B

B

�

�S
2S
p

3
p

4C2
� 1

p

3

1

C

C

C

C

C

A

.

CASE II-2. Assume

(cos'3, sin'3) D (cos'5, sin'5) D

 

�

p

3S

C
,

p

4C2
� 3

C

!

,
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which can occur if and only if
p

3=2 � C � 1, namely, 0� � � �=3. Then (3.3)
implies that�P0 D �P2 D � if and only if 2C

p

4C2
� 3 sin'1 D 8C2

� 6. Therefore,
when � ¤ �=3 (we will study the case when� D �=3 and '3 D '5 D � later) then
�P0 D �P2 D � if and only if

(cos'1, sin'1) D

 

�

p

3S

C
,

p

4C2
� 3

C

!

or

 

p

3S

C
,

p

4C2
� 3

C

!

.

Note thatP3 and P5 are aboveP0 and P2 respectively. When'1D '3D '5 the hexagon
is an “inward crown” (Fig. 10) given by

P1 D

0

B

�

0
p

3S
p

4C2
� 3

1

C

A

, P3 D

0

B

�

�S
0

p

4C2
� 3

1

C

A

, P5 D

0

B

�

S
0

p

4C2
� 3

1

C

A

,

whereas the other is given by substituting (cos'1, sin'1) D (
p

3S=C,
p

4C2
� 3=C)

to (3.9),

P1 D

0

B

�

0
�

p

3S
p

4C2
� 3

1

C

A

, P3 D

0

B

�

�S
0

p

4C2
� 3

1

C

A

, P5 D

0

B

�

S
0

p

4C2
� 3

1

C

A

.

Let us summarize the argument above when� ¤ �=3.

Theorem 3.1. Suppose a�-equiangular unit equilateral hexagon(� ¤ �=3) is
parametrized by the angles'1, '3, and '5 by (3.1), (3.2). Let CD cos(�=2) and SD
sin(�=2) as before.
(1) When� D 2�=3 i.e. CD 1=2 we have

'1 D '3 D '5 D 0,

which corresponds to a regular hexagon.
(2) When�=3< � < 2�=3 i.e. 1=2< C <

p

3=2 we have

�arccos

�

(3� 8C2)S
p

3C

�

� '1 � arccos

�

(3� 8C2)S
p

3C

�

.

(i) When'1 D �arccos((3� 8C2)S=(
p

3C)) we have

'3 D '5 D �arccos

�

S
p

3C

�

,

which corresponds to a boat(Fig. 2).
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Fig. 9. A boat with a small bond angle.
Fig. 10. “inward crown” in a
prism. Two edges intersect each
other in a side face of the prism.

(ii) When �arccos((3� 8C2)S=(
p

3C)) < '1 < arccos((3� 8C2)S=(
p

3C)) we
have either

∗ '3 ¤ '5, which are given by(3.8),
∗ '1D '3D '5D�arccos(S=(

p

3C)), which corresponds to a chair(Fig. 3).
(3) When0< � < �=3 i.e.

p

3=2< C < 1 we have

arccos

�

p

3S

C

�

� j'1j � arccos

�

(3� 8C2)S
p

3C

�

.

(i) When'1 D � arccos((3� 8C2)S=(
p

3C)) we have

'3 D '5 D �arccos

�

S
p

3C

�

,

which corresponds to a boat(Fig. 9).
(ii) When'1 D � arccos(

p

3S=C) we have

'3 D '5 D �arccos

�

�

p

3S

C

�

D �

�

� � arccos

�

p

3S

C

��

.

(iii) Whenarccos(
p

3S=C) < j'1j < arccos((3� 8C2)S=(
p

3C)) we have either
∗ '3 ¤ '5, which are given by(3.8),
∗ '1D '3D '5D�arccos(S=(

p

3C)), which corresponds to a chair(Fig. 4).
∗ '1 D '3 D '5 D � arccos(�

p

3S=C), which corresponds to an“ inward
crown” (Fig. 10).

(4) When� D 0 the hexagon degenerates to a6 times covered multiple edge.

Corollary 3.2. The configuration spaceM6(�) of �-equiangular unit equilateral
hexagons(� ¤ �=3) is homeomorphic to a point if� D 0, 2�=3, the union of a circle
and a pair of points if�=3 < � < 2�=3, the union of two circles and four points if
0< � < �=3, and the empty set if� < 0 or � > 2�=3.
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Boat configurations are included in circles above mentioned, and chairs
are isolated.

We will see that a boat degenerates to a planar configuration when � D �=3.

Corollary 3.3. (1) A boat and its mirror image can be joined by a path in the
configuration space, i.e. they can be continuously deformed from one to the other, if
and only if the bond angle satisfies�=3< � < 2�=3.
(2) A boat and a chair cannot be joined by a path in the configuration space, i.e. they
cannot be continuously deformed from one to the other.

3.2. The exceptional case when� D �=3. Finally we study the exceptional
case� D �=3, when the cases when' j D � ( j D 1, 3, 5) have not been considered yet.

When � D �=3 the equation (3.3) becomes

(cos'i C 1)(cos'iC2C 1)� 2 sin'i sin'iC2 D 0.

If �P2 D �=3 then'3 is determined by'1 as follows;
• if '1 D � then '3 is arbitrary,
• if '1 D 0 then'3 D � ,
• if '1 ¤ 0,� then'3 D � or f ('1) ( f ('1)¤ �), where f (') (' ¤��) is given by

(3.10)

(cos f ('), sin f ('))

D

�

�(cos' C 1)2C 4 sin2
'

(cos' C 1)2C 4 sin2
'

,
4 sin'(cos' C 1)

(cos' C 1)2C 4 sin2
'

�

.

Remark thatf (0)D � and that f (')D ' if and only if ' D�arccos(1=3). Put f (�)D
0 as lim

'!�

f (') D 0.

Theorem 3.4. Suppose a�=3-equiangular unit equilateral hexagon is parametrized
by the angles'1, '3, and'5 by (3.1), (3.2). Then we have

{'1, '3, '5}

D {� , ', f (')}, {� , � , '}, or

�

� arccos

�

1

3

�

, � arccos

�

1

3

�

,� arccos

�

1

3

��

,

where' is arbitrary. The first case contains a boat when{'1,'3,'5} D {� ,�arccos(1=3),
�arccos(1=3)}, and the last triples correspond to a chair.

Corollary 3.5. The configuration spaceM6(�=3) of equilateral and �=3-
equiangular hexagons is homeomorphic to the union of a pair of points and the
space X illustrated inFig. 11 which is a 1-skeleton of a tetrahedron with edges
being doubled.



488 J. O’HARA

Fig. 11. The configuration spaceX DM6(�=3) n {chairs}. The
numbers 0, 2, and 4 in the figure indicate the verticesP0, P2, and
P4 respectively. The figures of six hexagons aroundX are seen
from above. The non-planar configurations left below is a boat,
when Pi occupy five vertices of a regular octahedron. The four
verticesA, B, C, and D of X correspond to planar configurations
parametrized by ('1, '3, '5) D (� , � , �), (� , � , 0), (0,� , �), and
(� , 0,�) respectively. The circle throughA and D consists of the
configurations parametrized by ('1,'3,'5)D (� ,',�) (�� � ' �
�). The circle throughB and C consists of the configurations
parametrized by ('1, '3, '5) D (', � , f (')) (�� � ' � �).

The author would like to close the article with an open problem: find a new invariant
which can show that a boat cannot be deformed continuously into a chair.
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