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Let R be a noetherian integral domain and K its quotient field, and
3 a semi-simple K-algebra with finite degree over K. If A is a subring
in > which is finitely generated R-module and AK =3, then we call it an
order. If A is a hereditary ring, we call it a hereditary order (briefly
h-order).

This order was defined in [1], and the author has substantially
studied properties of %-orders in [5], and shown that we may restrict
ourselves to the case where R is a Dedekind domain, and = is a central
simple K-algebra.

In this note, we shall obtain further results when R is a discrete
rank one valuation ring. Let R be such a ring, and Q a maximal order
with radical %, and Q/9t=A,,; A division ring. Then we shall show the
following results: 1) Every h-order contains minimal %-orders A such
that A/N(A)=~ZPA, where N(A) is the radical of A, (Section 3); 2) The
length of maximal chains for A-order is equal to #, and we can decide
all chains which pass a given #-order, (Section 5); 3) For two k-orders
I', and I', they are isomorphic if and only if they are of same form, (see
definition in Section 4); 4) The number of 7%-orders in a nonminimal
h-order is finite if and only if R/p is a finite field, where p is a maximal
ideal in R, (Section 6).

In order to obtain those results we shall use a fundamental property
of maximal two-sided ideals in A ; {0, WM, N2MIE, -, R7HMIT-}
gives a complete set of maximal two-sided ideals in A, where M=N(A),
(Section 2).

H. Higikata has also determined /%-orders over local ring in [8] by
direct computation and the author owes his suggestions to rewrite this
paper, (Section 6). However, in this note we shall decide %-orders as a
ring, namely by making use of properties of idempotent ideals and
radical.

We only consider %-orders over local ring in this paper, except Section
1, and problems in the global case will be discussed in [7] and in a
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special case, where X is the field of quaternions, we will be discussed

in [6].

1. Notations and preliminary lemmas.

Throughout this note, we shall always assume that R is a discrete
rank one valuation ring and K is the quotient field of R, and that A, T,
Q are h-orders over R in a central simple K-algebra Z.

For two orders A, I', the left I and right A-module C,(I)={x]| €3,
I'x <A} is called “(right) conductor of I’ over A”. By [5], Theorem 1.7,
we obtain a one-to-one correspondence between order I'(2A) and two-
sided idempotent ideal %A in A as follows:

' = Hom}(, A) and C,(I) =A.

Furthermore, we have a one-to-one correspondence between two-sided
idempotent ideals 9 and two-sided ideals 9 containing the radical 2 of
an order A by [5], Lemma 2.4 :

A+N =M.

Let A/R=A/M,D - HA/M,, where the M,’s are maximal two-sided
ideals in A. Then M is written uniquely as an intersection of some It;’s,
say ¢, M;,, ---, M; . We shall denote those relations by

A = I = I, My, -+, M, ).

Let A/M;=(A,),;; A; division ring. Then by [5], Theorem 4.6, we
know that the A,;s depend only on X, and we shall denote it by A. For
any order I', we denote the radical of I by N(I'). Let ' >A be h-orders,
and C()=I(M;,, M;,, -+, M; ). Then CI)/CU)N~A/M; D --- DA/M;,
BCI)AR/CAN as a right A-module; (i, 2y, o) Gry Ji» Jos s Fnor) =
(1,2, --+,n). By [5], Theorem 4.6 and its proof, we have

Lemma 1.1. I')N ([‘)%Hom]vm(C([‘)/C(F)%, CI)/C(ION), and every
simple component of C(I) AN/C(DYR appears in some AJI;,, t=1, -, n—r.

Let R be the completion of R with respect to the maximal ideal p
in R, and K its quotient field. Then ﬁ=2®1§' is also central simple K-
algebra and A=A®R is an order over R in 5. If Q is a maximal order
in =, then @ is also maximal in by [1], Proposition 2.5. Let IV be
any order in ﬂ, then we can find some # such that ﬁp"g[". Since
Q/p”Qzﬂ/p"ﬁ as a ring, there exists an order I' in Q such that f=r.
Furthermore, since ®Ié is an exact functor, we have

PropPoSITION 1.1. Let Q be a maximal order in =. Then there is a



STRUCTURE OF HEREDITARY ORDERS 3

one-to-one corvespondence between orders T in Q and order [ in 0.

If A is an A-order then M is A-projective, and hence, $ is f\-projective.
Therefore, by usual argument (cf. [2], p. 123, Exer. 11, and [5], Lemma
3.6), we have

COROLLARY. By the above correspondence h-orders in Q corrvespond to
those in O.

PROPOSITION 1.2. Let A, T, and Q be as above. If A=a’va’™ for a
unit & in O, then A=ala™, aend « is unit in Q.

Proof. Since ﬁ/p"ﬂzﬂ/p”ﬂ for some n, and p"Q is contained in
N(Q), it is clear.

From those propositions many results in %-orders over R are obtained
from those in %-orders in the ring of matrices of maximal order O in a
division ring A’ over a complete field. Furthermore, all %-orders in O,
are decided by Higikata [8]. However, in this note, we shall discuss
properties of f-orders as a hereditary ring, namely, by means of idem-
potent ideals and radical, except the following lemma and the last section.

Let © be as above. Then O contains a unique maximal ideal (7),
and every left or right ideal is two-sided and is equal to (") by [3],
p.100, Satz 12. In %=Aj}, we know by [6] that A={(a; ;)| €3, @ ;€R,
and a,,€ (=)} is an k-order in 3. Analogously, we have

LEmMA 1.2. Let 2Z=(A"),. Then A={(a;;)| €3, a; ;€9D, a; ;€ (=) for
1<j} is an h-order in =, and there exist no h-orders under A.

Proof. Let M= {(a;;)| €A, a;;€(x)}. It is clear that N is a two-
sided ideal in A. Furthermore, we can easily check that 9/(=) is nilpotent,
and A/NR~ZPO/(=). Hence, N is the radical of A. Let N '={(a; ;)| €3,
(@; )N A}, From the definition of N, we have N '>e¢;,,,, where the
¢; ;s are matrix units in =. Since N 'M3e ,0,,+ =+ +€,1 40, usT
1/=)e, e, ,=1E NN, NRNR=NN"'=A. Therefore, A is hereditary by
[2], p. 132, Proposition 3.2, and [5], Lemma 3.6. Since A/N=ZPHD/(x),
the second part is clear by [5], Theorem 4. 6.

We shall call such an k-order A “minimal h-order”, namely there
exist no %-orders contained in A and A/N(A)=ZPA.

THEOREM 1.1. In the centval simple K-algebra 3, there exists always
a minimal h-order.

In Sections 3, and 4 we shall show that every k-order contains a
minimal %-order, and all minimal k-orders are isomorphic.

Finally we shall consider the converse of [4], Theorem 7.2.
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THEOREM 1.2. Let R be a Dedekind domain and P a finite set of
primes in R, and Q a maximal order over R in Z. For any given h-order
A(p) in Q,, » € P, there exists a unique h-order A in Q such that A,=A(p)
for Y€ P, and A,=Q, for q¢ P.

Proof. First, we assume P={p}. By [4], Theorem 3.3, A(p)=
Q,AnQ%A ... nQ7:Q; maximal order over R,. Let €/ =Cgy,(Q;), then

i = Homp (€, €}) where Qf =Q,. Furthermore, €;2p"0Q,. Let
€, =€}~ Q, then €;,=€], and €; =0, since €;2p". Put Q,=Homy(C;, €;)
and A=/N\Q;. Then A,=/\Homj,(€;,, €, )=N\Q;=A(p), and A,=
NHomg (€;,, €;)=0, if p==q. Hence, A is a desired h-order. Let A%
be such an #k-order as above for p=q;. Then Az[\A"i has a property
in the theorem. ‘

By virtue of this theorem we shall study, in this paper, k-orders
over a valuation ring.

2. Normal sequence.

Let A be an %-order and N the radical of A. Let {}; i=1, -, m,
be the set of maximal two-sided ideals in A. Since M'N=NN"'=A by
[5], Theorem 6.1, A—->AT=N"AN gives a one-to-one correspondence
among two-sided ideals 9 in A, which preserves inclusion by [5], Pro-
position 4. 1.

THEOREM 2.1. Let A be an h-order with radical N such that A/N~
A, BA, D - BA,,. For any maximal two-sided ideal M in A, {I,
NWMR, NPMIE, -, |"TIMN"'Y gives a complete set of maximal two-
sided ideals in A.

Proof. We may assume that N EMRNi=M. If i< n, there exists an
h-order Q such that C(Q)=I(M, RNMN, ---, NMI-1)., Let €=C(Q)
and M;=N7OMP, W= R\ M)R=/\M;, and NEN=E by
the observation in Section 1. Since €A N/EN=C~N/NE, E+N/N is
contained in the annihilator of € N/EN on A/N. However, by Lemma
1.1 €A N/EN contains only simple components which appear in €-+9t/MN
~A/M; D - DA/M;, , as a right A-module, which is a contradiction.

From this theorem we can find a sequence of maximal two-sided
ideals {},, .., in A such that R-MN=M;,,, M,,,,=M, for alli. We
shall call such a sequence {9} “a normal sequence”.

LEMMA 2.1. Let A be an h-order with radical N. If Q is an order
containing properly A, then N'QN contains A and is not equal to Q.
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Proof. Let €=C(Q). It is clear that QN is an order containing
A, and that C(R'QN)=N"EN. Since €A, N'EN==E€ by Theorem
2.1 and the observation in Section 1.

PrOPOSITION 2.1. Let A, R be as above. For a two-sided ideal N in
A U is inversible” in A if and only if AN=NA.

Proof. If U is inversible, then A=N* by [5], Theorem 6.1, and
hence AN =NA. Conversely, let AN =NA, and Q= Hom, ¥, A)=
Hom4(NAN, NAN)DON'QN. Since 0, N QN contain same number
of maximal two-sided ideals, Q=N"'QN. Therefore, Q=A by Lemma 2.1,
and hence ¥ is inversible by [5], Section 2.

LEMMA 2.2. Let A be an h-ovder, and {W;} i=1, ---, n the complete set
of maximal two-sided ideals and N a two-sided ideal in A. If AM,;=MA
for all i, then N is principal, i.e., =aA=A«,

Proof. Since M=N\MW;= > W; W,,--- M, AN=NA. Hence A is

’.1;‘.2,"3'.”

inversible by Proposition 2.1, and A = Hom,(, ). Since A is A-
projective, we have a two-sided A-epimorphism «lr:A—>HomA7%(91/91€m,-,
AW/AM,)—0. Since Y (0)2M;, we obtain A/EJJE,-zHomAygﬁi(%I/%Wﬁ,-,
A/AM,). Hence, A/AM;~A/IM; as a right A-module. Since 2 is inver-
sible, WA/ AN~ZPUA/AM,;~A /N as a right A-module. Therefore, A=aA,
and A=Hom (cA, cA)=aAa™',

In any %Z-order A, we have N(A)”=pA for some m, we call m “the
ramification index of A”, and A “unramified” if m=1.

THEOREM 2.2. Let A be an h-order with radical R, and {0} i=1, -+, n
the set of maximal two-sided ideals. Then N" is principal. For a two-
sided ideal N, AW;=MAA for all i if and only if A=N"" for some r.
Let Q be an order containing A, and s, t are ramification indices of Q
and A, respectively. Then n|t, and t|\sn. Therefore, if Q is unvamified,
then n=t, and AW,=MA for all i if and only if U=p'A for some I, (cf.
Proposition 6. 2).

Proof. The first part is clear by Theorem 2.1 and Lemma 2.2.
Let W"=aA=Aa. Since a'Ma=M; for all i and €=C(Q)=I(W;,, -,
M; ), a'@x=E€. Therefore, O =Hom(€, €)=Hom,”,,,(¢ '€, a'Ca)=
a'Qa. Thus aQ=0«a is an inversible two-sided ideal in Q, and hence,
aQ=N(Q)* by [5], Theorem 6.1. It is clear by Theorem 2.1 that #|Z.

1) We call %« inversible in A if AN =A"N=A; A= {x| € 3, WA A}.
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Furthermore, '=(N")""=at"A=pA. Therefore, a!/"Q=N(Q)"*"=pQ,
and hence, /-(¢/n)=s.
As an analogy to Lemma 2.2,

PrROPOSITION 2.2. Let @ be a non-zero divisor in A, If a*Na is a
maximal ideal in A for a maximal ideal M, then AaA is principal ideal
in A.

Proof. Let a*Ma=M, then Ma=a, and a " M=Wa'. If we
set A=AaA, W=Aa"'A, then MA=APW and WM=PW’. Since MAW
=MW =a WY =aWa A=, AW Hom (M, M). Similarly, we obtain
AW S Hom/, (M, M). Therefore, AW & Hom (M, M) A Hom (M, M) =A by
[5], Corollary 1.9 and Theorem 3.3. It is clear that 23’ =A, and hence
AW =A. Since AW =A, A< A, which implies A=aA=Aa,

Next, we shall consider normal sequences of %-orders I' and A (< I).
Before discussing that, we shall quote the following notations. Let
{M;} i=1, ---, » be the normal sequence of A. We divide S= {I;} to the
subsets S7, .-, S/, such that \JS;=S, S/~ S}=¢, and for any M, €S},
M,eS;, 1<t if i<j. Let Si={D;, M,ui, =, Wyyipm—i}.  Si=Si—
{0, m;—}. Then we call m; the I>ngth of S; or S]. Let I' be %-order
containing A. Then C(I)=I(;, ---, M;,), and by the above definition,
C(I’) corresponds uniquely to S, -+, S,; for example if C(I')=I1(M,, I,
M,, M,), then S,= {N,, WM, M.}, S,=¢, S,={M}, S;=¢, for :°>3. Let
C,=I(S,, S,, -+, Si_1, Si\JSis1, -+, S,). Then Q;=Hom/(€;, €,) is an order
such that there exist no orders between Q; and I' by [5], Theorem 3. 3.

LEemma 2.3. Let I', A, €, and S; be as above, then {€I'} i=1, -, 7
is the set of maximal two-sided ideals in U’ if U is not maximal.

Proof. Since €,I'=Cn(Q;) by [5], Proposition 3.1, we may prove
by [5], Theorem 1.7 that every maximal two-sided ideal € in I' is
idempotent. Since L==N(I), € is not inversible, and hence, v4(8)*=% by
[5], Section 2. Therefore, ¢ is idempotent by [5], Lemma 1.5.

By Lemma 1.1, we obtain that €/ER~R,PR, - PR, as a right
A-module, where R; is a direct sum of simple components in A/IR,,,,._,.

LEMMA 2.4. Let AL, €, and C/CN be as above. Then by the isomor-
phism @ in Lemma 1.1: /N()~Homj (€/CR, €/CNR) the maximal
ideal €'/ N(I") corresponds to Hom} /m(z R, 22R).

2) 7L(¥) means the two-sided ideal in I' generated images of f;
f€Hom & (8, 1).
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Proof. Since €.I'/N(I") is a maximal two-sided ideal in I'/N(I),
@,['/N(I") is characterized by the image of €/EN by @(€I/N()).
C/EN=A/Ts sy, D - DA D, - 1@@,\%/@:% and G,I(€/ERN)=CC+
CR/EN=C;+CENR/EN=A/M, 1, D - EB @ A/, i, -1, which im-
plies the lemma.

LEmMA 2.5. Let A be an h-order with radical Nt and normal sequence
(M} i=1, -, r. Then MG/ MR~A/M, P DB A/, PR, as a
right A-module. Hence, Q;/N(Q;) =2, D DA D Amjimpr,DBmipy
PA,, , where R;., is a direct sum of m; simple components of AJM;.,,
and A|M;=A,,;, and Q;=Hom)(M;, M,).

Proof. We obtain similarly to the proof of Lemma 2.2 that
A/EUE,-zHomAT/%ﬂ(ER/%‘Jﬁ,-H, N/NM,_.), since A=Hom7(N, N) and W,;N
=NM,;,,. Furtheremore, since M;=C(Hom{(M;, WM,)), and N/MN =
N/NM,.,, we have the lemma by Lemma 1. 1.

COROLLARY. Let A be an h-order with radical N such that AJRN=~
2Am;, then 211%,- does not depend on A, and the length of maximal chain

for h-orders in = does not exceed n= 7> m,;.
i=1

Proof. Since, every maximal order is isomorphic, =m; does not
depend on A. Since n=3m;=r, the second part is clear by [5], Theorem
3.3.

REMARK. We shall show that every length of maximal chain is equal
to »# in the following section.

Before proving one of the main theorems in this section we shall
consider a special situation of Lemma 2.3. Let I'=Hom}(M,, M,). Then
€, =I(W,, M)).

LEMMA 2.6. Let I', A and €; be as above. Then {€,1} i=2, -, r is
the normal sequence in T.

Proof. Let ;=€ Then Q=Hom}(€,, €,)=Hom4(,, &,). If Q is
maximal, then I' contains only two maximal ideals, and hence, we have
nothing to prove. Thus, we may assume »=4. We denote N(I'), N(Q),
N(A) by |, W, N, respectively. Let T',=Hom}(M,, M,)<COQ. Then
M,/ MR = A/ MBA/ D, BR,EB -- BA/M, and €, + N[N = AJTM,D -
PA/M, and €,I',/N(I',) is a maximal two-sided ideal, we obtain (512+

3) ¢ means that we omit {th component.
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MR [ MR =A ) MDR,D --- DA/M,. We consider a natural right A-
homomorphism @ : €,/€N"—M,/MN". Then ¢ (C,/CN")=EC,+IM,N,”/
MR =A/MDR,D - DA/M,. On the other hand €,/C,N" =A/IN,P -
PA/M,PEC,AN/EN”. Hence, €, N’'/EN” contains a directsum Ri
of simple components which appear in A/M,. Let {D,=I(,, L.)Q} i=
3,:--,7 be the set of maximal ideals in Q. Since Q=Hom%(&,, £,), we
obtain by Lemmas 2.4, 2.5, ®;/W~I/%~A/M; as a ring for >3
except one k of indices ;. However, we have shown that G,/€N"'D
AJM,PRE, and hence, we know k=3. Therefore, by Lemma 2.5 we
obtain N 'YLN=L,. Similarly, we can prove N 'YL,N=Y,,, for i<n—1.
Therefore, we have proved the lemma by Theorem 2. 1.
Now, we can prove the following theorem.

THEOREM 2.3. Let A be an h-order with normal sequence {W;} i=1,
<,n. Then for an order I corresponding to a sequence {S;} i=1, -, 7,
{&} i=1, ., 7 is the normal sequence in I. Furthermore, CQI")/C(I)N
~RUPRED - DR7.Y  Hence, I'|N(I)=A, D+ DA,,, where R;is a simple

titmi—1

component in M|y, and L= 3% s;, and A=A, €;=I(S,, -+, S,
ceey 37)11‘ I=h

Proof. We shall prove the theorem by induction on the number 7»
of maximal two-sided ideals in I If »=#n, then A=D. If r=un—1, then
the theorem is true by Lemma 2.6. We assume < n—1. Let IV be
an order between A and I' such that CU0")=I{S,,S,, -, S,}, and {S;,
S} =S, S;=S; for i>>2. Then {I(S., -+, S}, ==, S)[V} i=0, ..., 7 is the
normal sequence in IV by induction hypothesis. Let ¢;=I(S,, :--, S/, -+,
S)IY. Since L=CI', I'=Hom{«(%,, &). Therefore, by Lemma 2.6,
{I/(2,, €T} i=1, ---, 7 is the normal sequence in I'. Since S,={S;, S,},
Iv(&,, eHr =1I(S,, -+, Si, -+, S,)I. Furthermore, I'/N(I)~A,/, ;DA -
®A, s, where IV/NI)=A, /DA, /BA,/P - DA, li=I; for i>>2. Since
ﬁoléz 21 l;, I,=10;+1;. Thus we have proved the second part by Lemma

2. 4.
Let A be an h-order with {W} i=1, -, 7. If A/MM;=A,,, then

(m,, --+, m,) is uniquely determined by A up to cyclic permutation. We
call it a form of A. Furthermore, we know that (m,, ---, m,) is a nonzero
integral solution of
( 1 ) z,: Xz' =n.
i=1

4) For any right A-module M, M*-means a direct sum of ¢ copies of N.
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COROLLARY. If A is a minimal h-order in = with normal sequence
{M} i=1, -, n then for any nonzero integral solution (m,,---,m,) of (1)
there exists an h-order U, whose form is (m,, -+, m,).

Proof. We associate a solution (m,, ---, m,) to a set {Si, -, S/},
S{ = {wztp A mtg+mi—1}) where tLi=my+ o +my;_, M= 1. Then I'=
Hom/(I(S,, **+, S,), I(S,, -, S,)) is a desired order by the theorem.

3. Minimal h-orders.

By Theorem 1.1, we know that there exist minimal /4-orders A in
the central simple K-algebra, namely A/N(A)=A® .--PBA. In this section,
we shall show that every h-order contains minimal #%-orders.

LEmMA 3.1. Let T be an h-order and A, N’ be h-orders in I’ such that
there exist no orders between I' and A, N, rvespectively. If C\(I)/N~
Cy(D)/N, then A is isomorphic to N by an inner-automorphism of unit
element in L', where N=N(I).

Proof. Let €=C,I'), €=Cy(I'). Since €/N~C'/N, there exists a
unit element & in I' such that €=Cé=¢&"'C6 [’=Hom)(€, €)=
Homi(67'€s, 67'€'6) 26~ Hom4 (€, €)6=¢"1"¢, where I =Hom}(€, €).
On the other hand, by Theorem 2.3, we obtain that [V and I/ contains
the same number of maximal two-sided ideals as those in I'. Hence,
[Y=&"'1"¢ by [5], Theorem 3.3. Furthermore, A=I'AIV=I'AE V€=
(T AL)=6"AE,

LEMMA 3.2. Let I'2A be h-orders, then N(A)DN(I).

Proof. Let M=N(A), and W =N(I'). We may assume that there are
no orders between A and I Then €,(I')=9M is a maximal two-sided
ideal in A by Lemma 2.4. Hence, we obtain by Lemma 1.1 that
NRTHWMTMNRTN. Therefore, W =NWATMA=IM. For any maximal
two-sided ideal W==M in A, we have =/ (W+ M) TN+ P W
since A=M+W. Therefore, W T N\M=N.

THEOREM 3.1. Ewvery h-order contains minimal h-orders.

Proof. We obtain a minimal k-order A by Theorem 1.1. Let I' be
h-order. Since every maximal order is isomorphic, we may assume A
and I’ are contained in a maximal order. Let {M} i=1,---,7 be the
normal sequence of I' with form (m,, -, m,), and Q=Hom%(M,, M,).
We assume that QDA. Let M=N(Q), and N'=N(). Since WO N,
W, 2N. Now, we consider a left ideal M,/N’ in Q/N=Hom/ g, (M,/ MK,



10 M. HARADA

WM, /MIN). Since (M;, M;)=1 if i==j, there exist m in M, and y in M, ---
M, such that 1=m+y, m*—m=m(m—1) € MM, +-- M, =M, (MM, .- M,) &
MNR. Therefore, M, /MR =mA+ MR/ MRNPR /M I, Itis clear that
WM /M N)=(0). Hence, IM,/N=(Q/N)m~"PQ/LD - PQ/L,, where
the 8’s are maximal ideals in Q, and ! is a simple component in Q/%,.
On the other hand, since Q contains A, Q contains an k-order IV with
form (m,, --,m,) by Corollary to Theorem 2.3, and Q=Hom (], M]),
and [V/M,=A, . Therefore, M,/N~IM{/N by the above observation.
Hence, I' is isomorphic to IV which contains A. We can prove the theorem
by induction.

COROLLARY. Every minimal h-order is isomorphic. If two minimal
h-orders are contained in an order T, then this isormorphism is given by
a unit element in T.

Proof. In the above, we use the fact that any %-order is isomorphic
to an order containing a fixed minimal #%-order, which implies the first
part of the corollary. The second part is clear from the proof of the
theorem.

THEOREM 3.2. Let Q be a maximal order such that QJN(Q)=A,.
Then every length of maximal chain for h-orders is equal to n.

Proof. 1t is clear from Theorems 1.1 and 3. 1.

4. Isomorphisms of h-orders.

In this section, we shall discuss isomorphisms over R among #k-orders.
For this purpose, we shall use the following definition. Let I';, I', be
h-orders containing an /-order A. If there exists an isomorphism 6 of I,
to I', such that 8(A)=A, we call 8 “isomorphism over A”, and “T',, T, are
isomorphic over A”. Let A be an k-order with normal sequence {{k;} i=
1, ---,#. Then we shall call that A is »th order, and the rank of A is 7.
1st order is nothing but maximal order Q, and #th order is minimal if

Q/N(Q)=A,.
We have introduced an equation

=1
in Section 2. We shall only consider nonzero integral solutions of (1).
Hence, by solution we mean always such solutions. We shall define a
relation among solutions (a,, -, @,) as follows: (a,, -, a,)=(a}, -+, al)
if they are only different by a cyclic permutation. We shall denote the
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number of classes of solutions by ¢(n, 7). It is clear that o(n, )=

@(n, n—r), and that @(n, 2)=[xr/2], and ¢(p, r)=<£> / p, where p is prime
and [ ] Gauss’ number.

We note that every isomorphism is given by an inner-automorphism
in 2.
Let A be an /Z-order with radical . If M is principal, we call A
“a principal h-order”. Every maximal order and minimal order are
principal.

THEOREM 4.1. Let A be an h-order with form (my, ---, m,). Then A
is principal if and only if m,= - =m,, (cf. [9], Theorem 1).

Proof. If m,=.--=m,, A is principal by the fact A=Hom,(N, N)
=Hom(N, N) and by [5], Corollary 4.5. Conversely, if N=aA=A«,
then a '(A/IM)a=A/a* M, @ by Theorem 2.1, and hence, m;=m;,, for
all i.

PrROPOSITION 4.1. Let A be an h-order with radical N, and T, T,
orders containing A. If Iy, I, are isormovphic over A, then this isomor-
Dhism is given by an element in N. In this case C(L,)=N"*CI,)N* for
some £.

Proof. If B7'I')B=T,, and BAB'=A for B€ 3, then we may assume
that B€ A. Since BA=AR is inversible two-sided ideal in A, BA=% for
some ¢ >0. It is clear that C(I',)=8""'C(I'))B=RN"*C(C)N".

COROLLARY. If A is principal, then U, and U, are isomorphic over A
if and only if NRI)=NTCLYON* for some t, where N=N(A).

m
THEOREM 4.2. Let A be a principal h-order of a form (s, -, s).
Then the following statements are true:

1) Iy, I, are isomorphic if and only if Iy, I, are isomorphic over A.

2) The number of classes of isomorphic m—rv th orders containing A
is equal to o(m, r).

3) Those isomorphisms are given by inner-automorphisms of & for
some i, where N(A)=aA=A«,

4) Let A, A, be h-orders. Then A, and A, are isomorphic if and
only if they are of same form.

Proof. Let I', and I', be m—7th orders and €;=C(Q,) i=1,2. Let
@1=I(m;1, mizi ) gﬁir) @2:I(mh’ my‘z’ ) mfr)’ Z1<Z2< <ir; j1<j2
< +<j,, and {M;} i=1,---, m the normal sequence of A. If I', and I,
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are isomorphic over A, then €,=a~*€ .’ for some # by the above corollary.
Furthermore, a"i’ﬁi;afzi)ﬁ(il+t), where (i, +#)=i,+¢ modm, and 0< (i +¢)
<m. Therefore, ((i,.,+1), (i,1+2+t), ) (i11+s+t)7 (i12+1+t), A (i12+(r—s>+t))
=(4,, Jo» ***» 7»)» We shall associate the set (4, f,, -, 7,) to a class of
solution of (1) as follows: X, =j,—Ji, **y X=Fs—Fa, ***) Xp1=Fr—Fr-1»
x,=j,+m—j,. Then (4, -, 7,), and (i, -+, 7,) correspond to the same
class. Coversely, for any m—rth h-orders T, and I, if (§,), (¢,) correspond
to the same class, then there exists some ¢ such that ((i,+#))=(4)).
Hence, 87'I'S=I',. Let (x,, -+, x,) be any solution of (1). Let €=I(IM,,
My oo Moy 4o, _,)> then I'=Hom{(€, €) is an #%-order containing A
and I' corresponds to (x,, -+, x,) by the above mapping, which implies 2).
Next, we shall consider »th order I['; (=1, 2) containing A. If I’ and I,
are isomorphic, then they are of same form (st,, st,, -+, st,). If we asso-
ciate (¢,,t,, =+, £,) to I;, then I', and I, correspond to the same class of
solution of (1) replacing #» by m. Conversely, for any solution (¢;) of (1),
we can find an order I'(2A) of a form (st,, -+, st,) by Theorem 2.3.
Hence, the number of classes of isomorphic 7 th orders is equal to or larger
than @(m, ). On the other hand, that number does not exceed the number
of classes of isomorphic »th orders over A, which is equal to @(m, m—r)
=@(m, r) by 2). Therefore, we have proved 1). 3) is clear by 1) and
Proposition 4.1. 4) is clear from the above and Theorem 3. 1.

COROLLARY 4.1. Let I'y and [, be isomorphic over A, then they are
isomorphic over any principal h-orders N’ contained in A. In this case the
form of A has a periodicity.”

Proof. The first part is clear by the theorem, and the isomorphism
is given by «f, where =N(A)=aA’. Hence, ¢ *Aa’=A, which means
Cy(A) =M Cp(A)T.

COROLLARY 4.2. Let I'y, and I, be h-orders contained in an order Q,
and which are isomorphic, then this isomorphism is given by a unit element
in Q and an element o, where « is a generator of radical of minimal
h-order contained in I,.

It is clear by Theorem 4.2 and Corollary to Theorem 3. 1.

COROLLARY 4.3. For principal h-orders I, T';,, the following state-
ments are equivalent :

5) If a form is the following type: (m,,m,, -, m,m,, ), then we call
the form has a periodicity.
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1) I, and I, are isomorphic,
2) Iy/N) and U,/N(L,) are isomorphic,
3) I, and U, are of the same rank.

REMARK. The above corollary is not true for any k-order. For in-
stance, let {I,, M,, ---, M.} be the normal sequence of a minimal z-order A
in K, and € =10, M,, M,), €,=I(M,, M,, M,). Then I',=Hom,(€,, €,)
and I',=Hom/{(€,, €,) have different form (1, 2, 3) and (2, 1, 3), but I',/N(I",)
~I,/N(L';).

COROLLARY 4.4. Let I, and I, be h-orders containing principal h-
orders A, and A, such that there exist no orders between T; and A;. Then
the statements in Corollary 4.3 are true.

Proof. Every I' containing A which satesfies the condition of the
corollary is isomorphic by Theorems 2.3 and 4.2. Hence, the corollary
is true by Corollary 4. 2.

COROLLARY 4.5. Let n be the length of maximal chain for h-orders.
If n<5, 1) and 2) in Corollary 4.3 are equivalent for any orders. If
n<3, 1), 2), and 3) in Corollary 4.3. are equivalent for any orders.

We shall recall the definition of same type in [5], Section 4. If
there exists a left I, and right I', ideal % in % for two orders I', and T,
such that I',=Hom{ (%, ), and I',=Hom4 (U, A), we call “I', and T, belong
to the same type’.

LemmA 4.1. Let A, and A, be h-orders which belong to the same type,
and Q,, Q, containing A,, A,, respectively. Then Q,, Q, belong to the same
type if and only if Q, and Q, are of same rank.

Proof. By the assumption, we have a left A, and right A, ideal 2
such that A,=Homj, (2, ), A,=Hom{ (2, A). Then A=A, AA=A,,
and hence, A, A=A,, and AAA'=A, by [5], Section 4. Let €=C, (Q,).
Then O,=Homj (€, €). Itis clear that Q,=Homj (€, €)=Homy . Alm(@ﬁl,
GA)=Homj (CA, €A). Let Os=Homg (CA, €A), then 0;>A,. Since O,
Q4% belong to the same type, they are of same rank. Therefore, Q,, Q}
belong to the same type by [5], Theorem 4.2. Hence, Q, and Q, belong
to the same type.

The following theorem is a generalization of [5], Theorem 4. 3.

THEOREM 4.3. Let T, I, be orders in 5. Then U, and I, belong to
the same type if and only if I', and U, are of same rank.
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Proof. Let A,, A, be minimal %-orders in I';, I, respectively. Then
A,=8Ag" by Corollary to Theorem 3.1. Hence, A,=Homgf (€A,, €A,),
and A,=Homj} (A&, A¢). Thus, we obtain the theorem by Lemma 4. 1.

5. Chain of h-orders.

In this section, we shall study by making use of arguments in the
proof of Theorem 3.1 how we can find maximal chains of 4-orders which
pass a given k-order . We have already known by [5], Theorem 3.3
how we can construct chains of A-orders containing I', which is determined
by the structure of I'/N(I').

First, we shall study a relation between left conductor D( ) and
right conductor C( ).

THEOREM 5.1. Let 2D A be h-orders. Then C)=NDIN, where
N=N(A).

Proof. Let {M;} i=1, ---,» be the normal sequence in A, and let
I'=Hom}(M,, M,), then D(')=IM,. There exists some M; such that
'=Homj(M;, M,), and hence, {I(M;, M,)['} i==; is the normal sequence
in I. Since M,/NM,~A/M,BA/I,P - PA/IM,BL, where L=N/NI, is
a direct sum of m, simple components yglhich apper in AR, VIR, WM, O
LRI,/ NI, = A/, DA/, D -+ D D e B A/TM,BRIE;, ;)L /NI,
Hence, if i==1,n, /I, M;. )I'~A,, or A, by Lemma 2.1. However,
LI, W D=2, s ., by Lemma 2.5, which is a contradiction. If
i=n, then L,(J(M,, M,))=(0), and hence, WI(IWM,, W) +TDL,/ NI, =
A/M,Q - QA/M,_,, which also contradicts the fact that I(W,, M,)I is
a maximal two-sided ideal. Let €=I(I,, ---, M,) and D=I(M,, ---, M,_),
then €=N"DN. We assume that I'=Hom}(€, €)=Hom}(D, D). Then
Q = Hom}(I(€, M,.), I(€, M,.,)) = HomH(TI(€, M,,,), LI(€, M,,,)) = Hom7
(TI(€, M), I'I[(€, M,)) by the first part. Hence, Q=Homi((€, M,.)),
I(€, M, , ) =Hom  (NRI(€, M, )N, NI(C, M,,)N""). Thus, we can prove
by induction that for maximal orders Q; DA, €;=C(Q;)=ND(Q,)N""
Let '=/N\Q;=/\Hom/,(€,, €)= "\Hom\(MN'EN, N'E€N)=Hom (N 'CIN,
NICIHM), since EIN)=3C;.

THEOREM 5.2. Let A be a principal h-order and U an order containing
A, Then every h-order containing A which is isomorphic to I' is written as
TUX), where T is the following functor: for Q2OA T(Q)=Hom(C(Q), C(Q)),
and T"(Q)=T(T" Q).

Proof. It is clear by Theorems 4.2 and 5.1, and Proposition 4. 1.
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We note that for two k-orders ADT, CL(A)2N(I) by Lemma 3. 2.

LEMMA 5.3. Let I be an v th order with radical W and & a left ideal
containing N in T' such that L N=A, ® - QA,,,QLRA,, R4, ; L a
proper left ideal in A,,;. Then A=Hom)(€, ) A Hom(8, 8)=T~ Hom}(&, 2)
is an v +1th h-order and C(I")=L. Hence, A is uniquely determined by the
rank and conductor. Furthermore, every v-+1th h-order in U' is expressed
as above.

Proof. Since 8I'=T, 75(8)=I. If we put IV=Homi(8, £), then I'=
Homj3(%, £) by [1], Theorem A 2. By the same argument in the proof
of Theorem 3.1, we can find an »-+1th k-order A’ such that C,/(T)/N
~%/N. Hence, there exists a unit element & in T" such that C./(I')=2&.
Furthermore, A’=T"~Hom}(C\/(I'), C,/(I))=T"~ Hom4(LE, 8E)=TAE1TE=
E(I'AIV)8. Therefore, A=I'AI" is an r-+1th h-order. Since &'8=
Cy(D), 8=C,(I"). If A’ is an r+1th h-order (ZI') such that C,/(I')=¢.
Then A=I"AHomi(C,([), Cy(I'))22A’. Hence A=A’. The last part is
clear.

Let A be an k-order of form (m,, m,, -+, m,) ; A/ N(A)=A,, B - DA,,,
and & ; a left ideal in A such that & ,2O%, and &, ;/N=A,, BB ;P
DA, , I;; anon-zero left ideal in A,,;. We denote Hom}(%; ;, £;,) by
A, ;) and [;; by X(®;,). Let k(l;;) be the length of composition series
of I;; as a left A-module.

t,8(4)
THEOREM 5.3. Let A, A(8;;) be as above. Then I'=A n l[j\_lA(&',j)
is an h-order if and only if {{(®; )}3R is linearly ordered by inclusion for
all i. Every r+s(@) th h-order in A is uniquely written as above.

Proof. We assume that I' is an %-order and A, is a minimal A-order
in I Let S;={M,,, M., -+, My,1;-,} be a set of maximal two-sided
ideals in A, such that C 2,M)=I(S,, S;, -+, S,), (cf. Section 2). We denote
A~A(R; ;) by I';. Since I; is an r+1th order from Lemma 2.5 we
obtain C, (I';)=I(S,, =+, Si-s, S¥, =+, S,); SF=S,—{M,;;}. We assume
P(j1)<P(jz)- Let S-i:Sz'" {‘Jﬁ,,(,-l), mp<j2>}, C=I(S,, -, Siis gi» Sivr o S,).
Then IV=Hom}(€, €) is an 7+2th h-order and [V=I; NI;, A=I; I},
Let ®,=I(S,, -+, Si_y, Si— {mm;'z)}’ o SO and N,=I(S,, -+, S;— {impcjl)},
-+, S,)IV, then we obtain a normal sequence {%,, N,, N,, -~} in IV by
Theorem 2.3, and Cp(I;)=R,, Cx(I';)=N,. Since Cp(A)=IDN,, N,),
Crv(M)/N(A)=A,, D - DA, PBI*PA,,,, @+ by the usual argument in
Sections 2 and 3, where I/, =A,, and | is a simple left ideal in A,
On the other hand, since 8,-,1-2=C11j2(A)=I(§R1, Ny, and {I(R,, N,)C

a2
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IR, NIy, -} is a normal sequence in I';,, we obtain €; ;,/N(A)=A,, D
GlaAmi_léBI"’@Amm@ o~ Cy(A)/N(A). However, &;; 2Cy(A), and
hence &, ;,=C(A)&%; ;. Thus we have proved that {/(%; )}, is linearly
ordered for any i. Conversely, we assume that {/(8;,)}; is linearly
ordered for all i, and k(l; ) >k(l;,) >k(l; «»»). Let A, be a minimal order
in A and {S;} be as above. If we denote I(S,, -, Si-1, Si— M tmj-pct; p»
Si+1, ) by €, ;, then I} ;=Homj (€, ;, €, ;) is an r+1th order in A and
8} ;=Cp,; (A)=~ZL; ;. Furthermore, we know by the above argument that
{/(8; ;)}; is linearly ordered. Therefore, there exists a unit element & in
A such that 8; ;=] ;6 forall 4,7. Hence '=A~ NA®R; j)=A~NEAEL; ;)E
=EAANA®] ;))E is an h-order containing 8:]1A08. The sec’;nd part is
clear frorr; the proof.
From the above proof we have

CorOLLARY 5.1. Let T=A~NAE&; ), and kG, )=k(U(E; ). If ki;
>k; i, for j<j, T is of a form],('ml—kl,l, kyy—kysy oo By o my—Fy s,
ki,l_ki,z’ ** ki,s(t‘): we).

COROLLARY 5.2. Let {Q}7_, be h-orders. Then OQ,- is an h-order

if and only if intersection of any two of the Q;s is an h-order.

Proof. Since every h-order is written as an intersection of maximal
orders, we may assume that the Q;s are maximal. If Q,~Q; is an &
order, then Q;=Hom{ (&;, &,), for a left ideal £; (ON(Q,) in Q,. Let
8, +8;=8. Then 0,,0Q;CHom{ (%, &). Hence Q; or Q; is equal to
Hom{ (8, 8) by [5], Theorem 3.3. Therefore, 8=8; or 8; which shows
that {€;} is linearly ordered. Hence /\Q; is an k-order by the theorem.
Converse is clear by [5], Corollary 1.4.

PROPOSITION 5.1. Let A be an h-order and % a left ideal containing
N(A) such that A=A. Then I'=A~Homi(2, &) is a unique maximal
order among orders I in A such that Cy(A)=%. Hence % is idempotent.

Proof. Let 8=/N&;; &;/N=A, D - LD - PA,,,. Then I'=An
NAE,). Hence, CL(A)ZNC A(8‘)(A)= NE;=2. It is clear that Co(A) 2.
If C(A)=2 for an h-order <A, Then I"T A Homi(g, 8)=I, since
C/(A) is a two-sided ideal in IV,

COROLLARY 5.3. Let T=A~NAQ&;)), then C(A)= [}8,-,,-.

Proof. Let C(A)=/\8;, where the ®/s are as in the proof of
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Corollary 5.2. 1 =AA~Homi(Ch(A), CH(A) DT and I'=An~/N\AE).
Since A®,)DTI, 8,=8,; for some k, j. Hence Cn(A)=/NE; ;.

PROPOSITION 5.2. Let A be a principal h-order and £ a left ideal in
A. Then & is principal if and only if v\(R)=A and M) is principal.

Proof. If &=Ac«, then A(R)=a'Aa, and hence A(R) is principal, and
T () =88 '=Aaa'A=A. If 4 (@)=A, A=HomA’(g>(8, ). Furthermore
if A(R) is principal, A and A(R) have the same form, and hence 2 is
principal by [5], Corollary 4.5.

We shall discuss further properties of one-sided ideals in the forth-
coming paper [7].

ProOPOSITION 5.3. For any rth order T, there exist n—vr—+1 minimal
h-orders A; such that T'=\JA;, where n is the length of maximal chain
for h-orders in .

Proof. We prove the proposition by induction on rank # of orders.
If »=n, then I" is minimal. If T" is an rth order (r<'#u), then I'/N(I")
=A,, DDA, , and m; >1 for some i. Therefore, there exist two
distinct left ideals %, and &, in I’ by Theorem 5.3 such that L,=Cg (I),
and Co,(1)=2%, for some r+1th orders Q, and Q,. Since Q,=+Q,, I'=
0,vQ,. By induction hypothesis we obtain that Q,-zn\/_rA,-,j, where the
j=1
A, /s are minimal A-orders. Since Q,==Q,, there exists A, ;C0Q,. Hence
n—-r+i

P=‘Q'1UA2,j= U A;.

i=1

6. Numbers of h-orders.

We shall count numbers of %-orders in an /%-order.

LEmMmA 6.1. Let PO A be h-orders and & a unit in I. If E7'AE=A
then & € A,

Proof. Since EA=AE is a two-sided inversible ideal with respect to
Ain 3, As=%°" by [5], Theorem 6.1, where M=N(A). Let Y=pA, then
AS=*=p°A. Hence, E%p" is a unit in A, and hence in . Therefore,
p=0, which implies Aé=A.

PROPOSITION 6.1. Let Q be an h-order. If T, and T, are isomorphic
by an inner-automorpism in Q for I''TQ (i=1, 2), and I',==T,, then I',AT,
is not an h-order.

Proof. If I''AT, is h-order, there exists a minimal %-order A in
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I, and I,. Since I', and T, are isomorphic by an inner-automorphism in
Q, they are isomorphic over A by Theorem 4.2. Hence, A& '=A.
Therefore, & is a unit in A, and in T;, which is a contradiction to the
fact I',==1I,.

COROLLARY 6.1. Let Q be a maximal order and T, I', nonmaximal
distinct principal h-orders of same rank in Q, then U,AT, is not an h-
order.

Proof. Let A, and A, be minimal %-orders contained in I', and I},
respectively. Then A,=&'A&; & unit in Q by Corollary to Theorem 3. 1.
However, by Theorems 2.3 and 4.1, I',=&'I' €.

COROLLARY 6.2. Let Q be an h-order, and {U';}} the set' of r th h-orders
between Q and a fixed minimal h-order A in Q. Then every rth order in
Q is isomorphic by inner-automorphism in Q to some T, and those iso-
morphic classes by units in Q do not meet each other.

It is clear by the proof of Theorem 3.1 and the proposition.

THEOREM 6. 1. The following conditions are equivalent :

1) The number of h-orders in a maximal order is finite,

2) The number of h-orders in a nonminimal h-order is finite.

3) R/p is a finite field.

To prove this we use the following elementary property.

LEMMA 6.2. Let B=A, be a simple ring and L=Be, D - DBe,,,
then for any unit element & in B LE=L if and only if

v

olen)
Nt
Clé

&, &, are units in A, and A,_,, and C is an arbitrary element in (n—rv) xr
matrices over A.

Proof of Theorem 6.1. Let I' be a nonminimal 7 th 4-order. By Theo-
rem 5.3 7r+1th %-orders contained in I' correspond uniquely to left ideals
g5 &/INI)=A,,D - ®LDB - DA, . Hence, the number of »+1th &
orders in I' is equal to the number of those left ideals. The number of
left ideals in I'/N(I') which are isomorphic to %,/N(I') is equal to
[(C/N@)*: 17/LE(8;) : 1], where * means the group of units and E(%;)=
{€1e(/NID))*, (8;/N(I)ESR,/N(I)}. Since [A: R/p]<oo, [(I/NI))*: 1]/
[E®,):1]<eo if and only if [R/p:1]< e by Lemma 6.1. Thus, we
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obtain 2)=3). Since the length of maximal chain is finite, we have 1)
=2).

If we want to count the number of %-orders in I', we may use the
argument in the proof of Theorem 6.1. However, it is complicated a little.
By virtue of Corollary 6.2, we may fix a minimal A-order in A. From
this point, we shall study the numbers of k-orders in the special case
as follows.

In Section 1, we have noted that we may restrict R to the case of
a complete, discrete valuation ring. By A we mean completion with
respect to the maximal ideal p in R. Let Q be a maximal order with
radical N; Q/N=A,. Let 2=7T, ; T division ring, then 0=9,/, where
0 is a unique maximal order with radical () in 7. Since Q/Sﬂzﬁ/ 5?2,
w=mn.

In order to decide all types of k-orders in =, we may consider k-
orders containing a fixed minimal %-order by Theorem 3.1. By Lemma
1.2, we obtain a minimal %-order A, which we shall fix in this section ;
namely

A= {a;)] €2 a,;€90, a;,;€(x) for i>j},
N(A) = {(@; ;)| €A, a;;€ (@)} =N,
Nt = {(@; ;) €3, 4, ;€0 if idm i31; a;;€(x) if i+1<J
and a,,€(1/7)O} .

From now on we denote 3, ﬂ, K by =, Q, R, respectively.

Let MM;={(a; ;)| €A, a;;€ (=)}. Then the M,’s are the set of maximal
two-sided ideals in A. Since e¢;_, ;7e; ;€; ;-1 =7¢€;_; ;- € NTMMN, we know
that NN =U,_,. Hence, {M,, M,_,, -+, M.} is the normal sequence
in A. We can easily check that I';=Hom%(3;, M,)=the ring generated
by A and e;_, ; if <=1, and that I =Hom’(M,, M,)= {(@; ;)| €3, a; ;€ (=)
for i<(j, a; ;€90 for i==mn, j==1, and a,, € (1/7)O}. Hence, {I',, -, '}
is a complete set of #—1th order in Q. For any order I' between
and A, C(D)=I(M,;,, -+, M; ) (5;>>1). Then I' is the ring generated by
A and {e;,;} j=iy, 0.

Summarizing the above, we have

THEOREM 6.2.° Every h-order in 3 is isomorphic to the following
type

6) Those types are changed by the suggestion of Mr. Higikata.
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ml m2 ''''''''' mr
Q(Wh X m1) ”g(ml X mz) """"" ”Q(Wh X mr)
my
O(m, xmy) | O, Xm,) | ceeveeeee 70(m, X m,)
m,
m,
Q(”"l;">< ml) 9(er X mz) """"" "D(mr X mr)

where n=3m;, and O xj): all (ixj) matrices over Q.

We shall return to problem of counting the number of /i-orders. By
virtue of Theorem 6.1, we may assume that R/p is a finite field and
hence, /7 =GF(p™).

LEMMmA 6.3. Let T, Q be as above. Then the number of isomorphic
classes of T' by unit element in Q is equal to [(Q/=Q)*: (I'/=Q)*].
Proof. By Lemma 6.1, this number is equal to [Q* : I'*], and by the
above remark #I'N(I'). Hence, we have (Q2/7Q)*/(I'/7zQ)*~Q* [T,
Lowvia 6.4, [(@/=0)*: (0/wQ)¥]=(p"" = 1)(™ = p")(5™ ")
[T =) — 57 e (B = i), 5= Sy (=, — g e —m)
Proof. 1t is clear that Q/zQ=(D/=), and [(D/=)¥:1]=[GL(n, p™):1]
=(p""=1)(p"" —p") - (p""—p" ") by [4], p. 77, Theorem 99. I'/zQ=

B, 0\
{ * B)}

and hence, 7(€I'/#Q) is unit if and only if the B;; are unit in (O/=)m;.
Therefore, [(I'/=Q)*: 1]——{[[ (GL(m;, p™) : 1) p™, s= Z’I] m(n—m,—m,—
—m;). ‘

By Corollary 6.4, and Theorem 4.1, we have

THEOREM 6.3. The number of rth h-orders in a maximal order is
equal to

o D, DI ) (B = ) L (7 = (" )
(p'”¢’”—~p”’<”’r”)p’”(glm,(n—«ml—---~m,-)}. The number of rith principal
h-orders in v’ th principal h-order is equal to
LD 1) — e (g — -
{7 =1)( ™7 = ) <o (P — PRI p =T

Especially, the number of minimal h-orders in a maximal order is equal to
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T(L+p"+ e +p™).

i=1

We shall describe A as follows :

Al,l”Al,zn-Az,s ......... ”Al,m

A A n'A seveesces TT . .
A = rariteeARes Asm ; A;; is matrices of

m; X m; over .

Ay Ay wovvromeeeees A

Since
TA A, oo A,

N= A2’17I.’A2’2 ............ ”Az,m ’Nm=7t’A.

Am,l Am,z ot Am,m-l 7r‘4m,m

Let # be the ramification index of a maximal order, namely 7= pe,
¢€0. Then we have a explicit result of Theorem 2. 2.

PROPOSITION 6.2. Let A be an rith h-order, then its ramification index
is equal to tr.

PrOPOSITION 6.3. Let A be an rth principal h-order, and & an element
in A such that Ac*”"=N(A) for some n. Then U'=A~a'Adpq -+ A
VI N =M s qn nith principal h-order, and any nith principal h-order
I in A is written as above and N(I')=al'=T'«, where 7|n.

Proof. If T' is an nth principal k-order with N(I')=al' in A, we can
easily show, by Theorems 2.1 and 2.3, that a*"A=Aa™” and T'=An
aAQ e f @O AT, Since @' A=Aa"", a*"A=N(A). However
o A=pA, and hence /=1 by Proposition 6.2. Therefore, Aa*”=N(A). Con-
versely if Aa™”=N(A), Aai is a left ideal in A containing N(A) for i< n/r,
and Aai/Aait'~A/Acx as a left A-module. If AaA==A, A/Aa=~[ PP
DA, D - Pl, for some i. Hence, since A/Aa~Aa/Ad?, Aa’ D N(A),
we have a contradiction. Since A is principal, Aa”"~'/N(A)=1,PL,PH.--P
[, AG/N(A) =L PG 0 o GEAP, Then I'=A - Homh(Ae, Ad)
AHomi(Ad?, Aa?) A - A Homy(Aa™ ™=t AQim=1) = A n e Al oo p QP
Aa™-' s a principal nth A-order by Corollary 5.1. It is clear that
al'=T'a. Hence aI'=N(I')’8I. However, p=(a™")s¢ =L =p'c”, where
&, & and &” are units in A, Hence /=1.
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