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Let R be a noetherian integral domain and K its quotient field, and 
k a semi-simple K-algebra with finite degree over K. If A is a subring 
in k which is finitely generated R-module and AK =k, then we call it an 
order. If A is a hereditary ring, we call it a hereditary order (briefly 
h-order). 

This order was defined in [1], and the author has substantially 
studied properties of h-orders in [5], and shown that we may restrict 
ourselves to the case where R is a Dedekind domain, and k is a central 
simple K-algebra. 

In this note, we shall obtain further results when R is a discrete 
rank one valuation ring. Let R be such a ring, and n a maximal order 
with radical SJè, and D/'Jè=D..n; D.. division ring. Then we shall show the 
following results: 1) Every h-order contains minimal h-orders A such 
that A/ N(A)=kEBD.., where N(A) is the radical of A, (Section 3); 2) The 
length of maximal chains for h-order is equal to n, and we can decide 
all chains which pass a given h-order, (Section 5) ; 3) For two h-orders 
r, and I\ they are isomorphic if and only if they are of same form, (see 
definition in Section 4); 4) The nmnber of h-orders in a nonminimal 
h-order is finite if and only if R/p is a finite field, where 'p is a maximal 
ideal in R, (Section 6). 

In order to obtain those results we shall use a fundamental property 
of maximal two-sided ideals in A; {\ffi, 1)(-'WC'Jè, <;Jè- 2WèSJè2, ... , <;Jè-r+'WC<;Jèr-'} 

gives a complete set of maximal two-sided ideals in A, where ffi=N(A), 

(Section 2). 
H. Higikata has also determined h-orders over local ring in [8] by 

direct computation and the author owes his suggestions to rewrite this 
paper, (Section 6). However, in this note we shall decide h-orders as a 
ring, namely by making use of properties of idempotent ideals and 
radical. 

W e only consider h-orders over local ring in this paper, except Section 
1, and problems in the global case will be discussed in [7] and in a 
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special case, where l is the field of quaternions, we will be discussed 

in [6]. 

1. Notations and preliminary lemmas. 

Throughout this note, we shall always assume that R is a discrete 
rank one valuation ring and K is the quotient field of R, and that A, r, 
n are h·orders over R in a central simple K-algebra Z.. 

For two orders A, r, the left f· and right A-module CA(r) ={x 1 E Z., 
rxCA} is called "(right) conductor of r over A". By [5], Theorem 1. 7, 
we obtain a one-to·one correspondence between order r C2'A) and two· 
sided idempotent ideal ~ in A as follows : 

r =Hom~(~,~) and CA(r) = ~. 

Furthermore, we have a one·to·one correspondence between two·sided 
idempotent ideals ~ and two·sided ideals WC containing the radical sn of 
an order A by [5], Lemma 2. 4 : 

~+sn= wc. 
Let Ajsn=A/WC,ffi ··· ffiA/WCn, where the WC/s are maximal two·sided 

ideals in A. Then IJJè is written uniquely as an intersection of sorne WC/s, 
say WC; , WC; , ···,WC; . We shall denote those relations by 

1 2 r 

~ = l(IJJè) = /(IJJè. wc. 0 0 0 wc. ) zl' Zz' ' t.r • 

Let A/Wè; = (~;)n; ; !li division ring. Then by [5], Theorem 4. 6, we 
know that the ~/s depend only on Z., and we shall denote it by ~- For 
any order r, we denote the radical of r by N(r). Let r ~A be h·orders, 
and C(f')=l(WC;,, WCi2 , ···, WèiJ Then C(r)/C(f')%"'='A/WChffi ... ffiA/IJJèjn-r 
ffi C(r) r\ snj C(r)sn as a right A-module ; (i, i2 , .. ·, in jn j 2 , • .. , jn-r) = 
(1, 2, ... , n). By [5], Theorem 4. 6 and its proof, we have 

LEMMA 1.1. r; N(r) = Hom}\;~(C(f')/C(r)sn, C(f')/C(r)sn), and every 
simple component of C(r)r\sn;C(r)sn appears in some A/WCh, t=1, ... , n-r. 

Let R be the completion of R with respect to the maximal ideal p 
in R, and Kits quotient field. Then i=Z.Q?;;K is also central simple k 
algebra and Â=AQ?;;R is an order over R in i. If n is a maximal order 
in Z., then Û is also maximal in ± by [1], Proposition 2. 5. Let r' be 
any order in Ü, then we can find sorne n such that ÛpnCr'. Since 
ü/t>"ü=Û/p"Û as a ring, there exists an order r in n such that Î'=r'. 
Furthermore, since Q?;;R is an exact functor, we have 

PROPOSITION 1. 1. Let n be a maximal order in Z.. Then there is a 
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one-to-one correspondence between orders r in n and order Î' in n. 
If A is an h-order then 91 is A-projective, and bence, sR is À-projective. 

Therefore, by usual argument (cf. [2], p. 123, Exer. 11, and [5], Lemma 
3. 6), we have 

COROLLARY. By the above correspondence h-orders in n correspond to 
those in .Ô. 

PROPOSITION 1. 2. Let A, r, and n be as above. If A=a'ra'-' for a 
unit a' in D, then A=ara-t, and a is unit in n. 

Proof. Since D/pnn~n/pnn for sorne n, and pnn is contained in 
N(n), it is dear. 

From those propositions many results in h-orders over Rare obtained 
from those in h-orders in the ring of matrices of maximal order D in a 
division ring .6.' over a complete field. Furthermore, ali h-orders in Dn 
are decided by Higikata [8]. However, in this note, we shall discuss 
properties of h-orders as a hereditary ring, namely, by means of idem­
potent ideals and radical, except the foliowing lemma and the last section. 

Let D be as above. Then D contains a unique maximal ideal (7r), 
and every left or right ideal is two-sided and is equal to (7rn) by [3], 
p.100, Satz 12. In ~=À~, we know by [6] that A= {(a;,j) 1 E ~. a;,j ER, 
and a,,2 E (7r)} is an h-order in ~. Analogously, we have 

LEMMA 1. 2. Let ~=(À')n. Then A= {(a;) 1 E ~.auE D, auE (7r) for 
i<j} is an h-order in ~. and there exist no h-orders under A. 

Proof. Let 91={(a;)l EA, a;,;E(7r)}. It is clear that 91 is a two­
sided ideal in A. Furthermore, we can easily check that 91/(Jr) is nilpotent, 
and Af91~~œD/(7r). Renee, 91 is the radical of A. Let m-'= {(a;) 1 E ~. 
(au)91CA}. From the definition of 91, we have 91-'3 ei,i+I• where the 
e;,/S are matrix units in ~. Since m-'913e,,2e2,1+ ... +en-I,nen,n-1+ 
(l/Jr)en 17l'e, n=1 E 9191-t, 91-'91=9191-'=A. Therefore, A is hereditary by 
[2], p. 132, Proposition 3.2, and [5], Lemma 3.6. Since A/91=~ffi0/(7t), 
the second part is clear by [5], Theorem 4. 6. 

We shali cali such an h-order A "minimal h-order", namely there 
exist no h-orders contained in A and A/N(A)=~ffi.6.. 

THEOREM 1. 1. In the central simple K-algebra ~. there exists a/ways 
a minimal h-order. 

In Sections 3, and 4 we shall show that every h-arder contains a 
minimal h-order, and all minimal h-orders are isomorphic. 

Finally we shall consider the converse of [4], Theorem 7. 2. 
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THEOREM 1. 2. Let R be a Dedekind domain and P a finite set of 
primes in R, and n a maximal arder over R in ~. For any given h-arder 
A(p) in ilp, pEP, there exists a unique h-arder A in n such that Ap=A(p) 
for pEP, and Aq=Üq for q ~P. 

Proof. First, we assume P= {p}. By [4], Theorem 3. 3, A(p)= 

npfln~fl ... fini: ni maximal arder over RP" Let Œ:~ =C0 p(ili), then 
n~ = HomSp(Œ:f, Œ:;) where ili =nP. Furthermore, Œi ~ pnnP. Let 
Œ:;=Œifln, then Œ;P=Œ;, and Œ;.=ilq since Œ;~pn. Put il;=Hom;(Œ:;, Œ:;) 
and A=(\il;. Then Ap=(\Hom;P(Œ:;P' Œ:;)=(\n;=A(p), and Aq= 
(\Hom;.(Œ:;., Œ;.)=ilq if p=J=q. Renee, A is a desired h-arder. Let Aqi 
be such an h-arder as above for p=q;. Then A=(\Aqi has a property 

; 

in the theorem. 

By virtue of this theorem we shall study, in this paper, h-orders 
over a valuation ring. 

2. Normal sequence. 

Let A be an h-arder and 91 the radical of A. Let {IJJ1;} ; i = 1, ···, n, 
be the set of maximal two-sided ideals in A. Since 9(-'91=9191-'=A by 

[5], Theorem 6. 1, ~ --i> ~in= 9(-'~91 gives a one-ta-one correspondence 
among two-sided ideals ~ in A, which preserves inclusion by [5], Pro­
position 4. 1. 

THEOREM 2. 1. Let A be an h-arder with radical 91 such that A/'in= 

~m,EB~m/B ··· EB~mn· For any maximal two-sided ideal IJJ1 in A, {IJJ1, 
9(-'IJJ1'in, 9(- 21]1'fn2, • ··, m-n+'IJJ1?nn-'} gives a complete set of maximal two­

sided ideals in A. 

Proof. We may assume that 9(-ii])1SJèï=IJJ1. If i<n, there exists an 
h-arder n such that C(n)=l(IJJ1, 9(-'1]191, ···, m-i+liJJ191i- 1). Let Œ=C(n) 

and IJJèi='fn-i+'IJJ1SJèi-', IJR;=IJJ1. 9(-'((\IJJ1j)'in= (\IJJ1i, and ?n-'Œ:'in=Œ: by 
j=l j=l 

the observation in Section 1. Since Œ:fl'in/Œ:'in=Œ:A'in/'inŒ:, Œ:+'in/91 is 
contained in the annihilator of Œ:fl 91/Œ:'in on Aj'in. However, by Lemma 
1.1 Œ:f\91/Œ:'in contains only simple components which appear in Œ:+ifè/91 
=A/IJJ1hEB ··· EBA/IJJ1in-i as a right A-module, which is a contradiction. 

From this theorem we can find a sequence of maximal two-sided 
ideals {IJJ1;};~ 1 ..... n in A su.ch that 9(-'IJJ1;'in=IJJ1i+, IJJ1n+l =IJJ11 for ali i. We 
shall call such a sequence {IJJ1;} "a normal sequence". 

LEMMA 2. 1. Let A be an h-arder with radical 'in. lf n is an arder 

containing properly A, then m-'n'in contains A and is not equal to n. 
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Proof. Let Œ:= C(n). It is clear that sn- 1nllè is an order containing 

A, and that C('Jè- 1ü'Jè)=llè- 1Œ:llè. Since Œ:i=A, sn- 1Œ:'Jèi=Œ: by Theorem 

2.1 and the observation in Section 1. 

PROPOSlTION 2. 1. Let A, 'Jè be as above. For a two-sided ideal ?lt in 

A ?a is inversible1 ) in A if and only if ?lf'Jè='Jè?lf. 

Proof. If ?a is inversible, then ?lL=lJèt by [5], Theorem 6.1, and 

hence ?a'Jè = 'Jè?lt. Conversely, let ?allè = llè?a, and n = Hom~(?a, ?a)= 
Hom~('Jè- 1?lt'Jè, sn- 1?a'Jè)~91-'nllè. Since a, sn-'nllè contain same number 

of maximal two-sided ideals, n='Jè- 1ü'Jè. Therefore, n=A by Lemma 2.1, 

and hence ?a is inversible by [5], Section 2. 

LEMMA 2. 2. Let A be an h-arder, and {WC;} i=1, ···, n the complete set 

of maximal two-sided ideals and ?a a two-sided ideal in A. If ?lLWC1 =WC;?lL 

for al! i, then ?a is principal, i.e., ?lL=aA=Aa. 

Proof. Since 'Jè=(\WC1= ~ WC11WC;2 ···WC;n' ?lt'Jè='Jè?lt. Renee ?a is 
i 1,i2,···,in 

inversible by Proposition 2. 1, and A = Hom~(?a, ?a). Since ?a is A-

projective, we have a two-sided A-epimorphism t: A~HomA/wc/?lt/?ltWC1 , 

?aj?lLWC1)~0. Since 'o/- 1 (Ü)~WC1 , we obtain AjWC; = HomAfWC;(?aj?lLWC;, 

?aj?lLWC1). Renee, ?aj?lLWC1=A/WC1 as a right A-module. Since ?a is inver­

sible, ?lt/?lt%:::::e~EB?lt/?ltWC1 =A/'Jè as a right A-module. Therefore, ?lL=aA, 

and A=Hom~(aA, aA)=aAa- 1• 

In any h-order A, we have N(A)m =.PA for sorne m, we caU m "the 

ramification index of A", and A "unramified" if m=l. 

THEOREM 2. 2. Let A be an h-arder with radical 'Jè, and {WC;} i = 1, ···, n 

the set of maximal two-sided ideals. Then snn is principal. For a two­

sided ideal ?a, ?lLWC1 =WC;?lL for ali i if and only if ?lf='Jènr for some r. 

Let n be an arder containing A, and s, t are ramification indices of n 
and A, respective/y. Then n 1 t, and t 1 sn. Therefore, if n is unramified, 

then n=t, and ?lLWC1=WC1?lL for al! i if and only if ?lf=,P1A for some l, (cf. 
Proposition 6. 2). 

Prao f. The first part is clear by Theorem 2. 1 and Lemma 2. 2. 
Let 'Jèn=aA=Aa. Since a-'WC1a=WC1 for all i and Œ:=C(f1)=l(WC11 , ···, 

WC1), a-'Œ:a=Œ:. Therefore, n =Hom~(~, Œ:) = Hom"'~'M(a-'Œ:a, a-'Œ:a)= 

a-'na. Thus an=na is an inversible two-sided ideal in n, and hence, 

an=N(n)' by [5], Theorem 6. 1. It is clear by Theorem 2. 1 that n 1 t. 

1) We call ~l inversible in A if ~l~l-1 =~1-'~l=A; ~l-'={xl E.S,~lx~lCA}. 
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Furthermore, 9'èl = ('iJèn)ttn =at ln A =lJA. Therefore, atlnf], = N(n)t·et/nJ = 1JfJ, 
and hence, l·(tjn)=s. 

As an analogy to Lemma 2. 2, 

PROPOSITION 2. 2. Let a be a non-zero divisor in A. If a-lwca is a 
maximal ideal in A for a maximal ideal IJJè, then AaA is principal ideal 

in A. 

Proof. Let a-!1_,1Jèa='Wè', then 'Wèa=aJJè', and a- 1?.m='Wè'a- 1• If we 

set >tt= AaA, >tt'= Aa- 1A, then 'Wè'lt = 'l{\JJè' and 'lt''Wè= 'Wè''lt'. Since IJJè'lt'lt' 

='Wèa'lt' =aJJè''lt' =anè'a- 1A='Wè, 'lt>lt'CHom~(IJJè, IJJè). Similarly, we obtain 

'lt>lt'CHom~Cm, WC). Therefore, 'lt>lt'CHom~('Wè, IJJè)(\Hom~('Wè, IJJè)=A by 

[5], Corollary 1. 9 and Theorem 3. 3. lt is clear that 'lt'lt' ::::=::A, and hence 

'lt'lt' =A. Since 'l{a-~c~'l{' =A, >tt <Aa, which implies 'll=aA=Aa. 

Next, we shall consider normal sequences of h-orders r and A (<r). 
Before discussing that, we shall quote the following notations. Let 

{WC1} i = 1, .. ·, n be the normal sequence of A. We di vide S = {IJJ11} to the 

subsets Si, .. ·, S~, such that V Si= S, s; (\ S~ =cp, and for any IJJè1 E Si, 
' 

M 1 E S~, l < t if i < j. Let Si = {WC11 , IJJèt;+1 , • • • , WCt;+m;-1}. S, = S~­

{mt;+m;- 1}. Then we call m1 the bngth of S, or s;. Let r be h-order 

containing A. Then C(r)=l(WC11 , ... , WC,), and by the above definition, 

C(r) corresponds uniquely to 51 , • • ·, Sr ; for example if C(r) = /(WC1 , WC 2 , 

'JJè" ~m.), th en 51 = {JJè1 , WC2, WC3}, 52 = cp, 53 = {WC6}, S, =cp, for i >3. Let 

Gr,=l(SJ) 52 , ... , 5,_ 11 Si,VS~+1 , ... , Sr)· Then n,=Hom>;.,(Gr,, Gr,) is an order 

such that there exist no orders between n, and r by [5], Theorem 3. 3. 

LEMMA 2. 3. Let r, A, Gr1, and 51 be as above, then {Gr,r} i=1, ... , r 
is the set of maximal two-sided ideals in r if r is not maximal. 

Proof. Since Gr,r=Cr(,n,) by [5], Proposition 3. 1, we may prove 

by [5], Theorem 1. 7 that every maximal two-sided ideal 2 in r is 

idempotent. Sin ce 2 cci~ N(r), 2 is not inversible, and hence, TH2)2l = 2 by 

[5], Section 2. Therefore, 2 is idempotent by [5], Lemma 1. 5. 

By Lemma 1. 1, we obtain that Gr/Gr'iJè = ffi1E8ffi2 ... ffiffir as a right 

A-module, where ffi; is a direct sum of simple components in AfWCt;+m;-l· 

LEMMA 2. 4. Let A, r, Gr, and GrjC:r'iJè be as above. Then by the isomor­
Phism cp in Lemma 1. 1: 1'/ N(r)=Hom1\_;9è(GrjGr'iJ1, Gr/Gr'iJè) the maximal 

ideal Gr11'/ N(r) corresponds to HomA.;mC~ ffij, ~ j}lj)· 
t J f~ J 

2) rf(2) means the two-sided ideal in r generated images of f; 
/E Hom~ (2, r). 
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Proof. Sin ce ff-1r 1 N(r) is a maximal two-sided ideal in r 1 N(r), 

ff-1I'/N(r) is characterized by the image of Œjff-ÇJC by cp(ff-;I'/N(r)). 

Œjff-ÇJC = A/'llit1+m1-/J3 .. · EBA/'llitr+mr- 1EBŒ(\ Ç]èjff-ÇJC, and ff.,r(ff-/ff-91) = Œ,Œ + 
; a) 

ff-91/ff-Ç]è = Œ, + ff-ÇJ(jff-ÇJC > A/'llit,+m1_, EB ... ffi ... EB ... Af'IRrr+mr-" which im-

plies the lemma. 

LEMMA 2. 5. Let A be an h-order with radical ÇJC and normal sequence 
i 

{'lli1} i = 1, .. · , r. Then 'IR;/'JR1Ç]è = A/'lli, EB · .. ffi .. · EB · .. Af'IRr EB lRi+1 as a 
right A-module. Renee, D;/ N(D;) = 6.m1 EB ... EB 6.m1_1 EB 6.m;+m;+1 EB ô.mi+z ... 

ffiô.mr, where lRi+1 is a direct sum of m; simple components of Af'llii+u 
and A/'IR1=D..mp and D1 =Hom~('lli1 , 'lli1). 

Proof. We obtain similarly to the proof of Lemma 2. 2 that 

A/'lli;=HomAlWl;+1(ÇJCfÇJC'JRi+u 91/91'llii+1), since A=Hom~(91, 91) and 'lli191 

= ÇJèiJJ11w Furtheremore, since 'IR;= C(Hom~('lli1 , 'lli1)), and 91/'lli191 = 

'iRfÇJC'IRi+u we have the lemma by Lemma 1. 1. 

COROLLARY. Let A be an h-order with radical 91 such that A/91= 

± 6.m1 , then ± m1 does not depend on A, and the length of maximal chain 
i=l i=l 

for h-orders in ~ does not exceed n = ± m1• 
i=l 

Proof. Since, every maximal order is isomorphic, ~ m1 does not 

depend on A. Since n=~m1 >r, the second partis clear by [5], Theorem 

3. 3. 

REMARK. We shall show that every length of maximal chain is equal 
to n in the following section. 

Before proving one of the main theorems in this section we shall 
considera special situation of Lemma 2. 3. Let I'=Hom~(IJJè11 IJJè,). Then 
rf-;= f('JR11 'IR;). 

LEMMA 2. 6. Let r, A and ff-1 be as above. Then {Œ,r} i=2, ... , r zs 
the normal sequence in r. 

Proof. Let 21 =ff-1I'. Then D=Hom~(ff-2 , ff-2)=Homr(22 , 22). If n is 

maximal, then r contains only two maximal ideals, and hence, we have 

nothing to prove. Thus, we may assume r:2:4. We denote N(r), N(n), 

N(A) by 91, ÇJC', 91", respectively. Let r, = Hom~(IJJè2 , 'lli2)Cn. Then 

iD1z/'lfl2Çfè" = A/9Jè,EBA/ 1JJè,EBlR,EB ... EflA/'llir and ff-2 + 91" /91" = A/'Ifl,EB ... 

EBA/'ùR.r and ff-21\/ N(l\) is a maximal two-sided ideal, we obtain ff-2 + 

3) ..!,. means that we omit i th component. 
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'ffi29è" / 1Dè29è" =A/'ûè3EB1R,EB ··· ffiA/IJRr. We consider a natural right A­
homomorphism rp : ~2/ ~29(" -->-l"fR2/I"fR29è". Then rp (~2/ ~29(") = ~2 + Wè2~2" 1 
Wè29è" =A/illè3 EB1J13 EB ··· ffiA/IJRr. On the other hand ~2/~2~" =A/WèaEB ··· 
EB Afillèr EB ~2 r1 9è" /~29è". Renee, ~2 r1 9è" /ff29è" contains a directsum :R~ 
of simple components which appear in AjWè3 • Let {~1 =!(2"' 21)!2} i= 

3, ···, r be the set of maximal ideals in n. Since il=HomH22 , 22), we 
obtain by Lemmas 2. 4, 2. 5, ~;/9è'=I'/21=A/Wè1 as a ring for (;;>3 
except one k of indices i. However, we have shown that ff2 1~2~"~ 

A/Wè3EB:R~, and hence, we know k=3. Therefore, by Lemma 2. 5 we 
obtain 9(-'2 29è=23 • Similarly, we can prove ~-'21~=2i+, for i<n-1. 

Therefore, we have proved the lemma by Theorem 2. 1. 
Now, we can prove the following theorem. 

THEO REM 2. 3. Let A be an h-arder wit h normal sequence { Wè;} i = 1, 
···, n. Then for an arder r corresponding ta a sequence {51} i = 1, ···, r, 
{~11'} i=1, ... , r is the normal sequence in r. Furthermore, C(r)jC(r)~ 

=1fli1 EB1fl12 EB .. ·EB1fl;r!l Hence, rjN(f')=6.1,EB· .. EB6.1r, where 1R1 is a simple 
fj+m;-1 

component in Afillènm·-u and l;= 2.: S;, and A/l"fR;=6.si' ~;=l(S,, ... , S~, 
t z j=tl 

···, Sr)I'. 

Proof. We shall prove the theorem by induction on the number r 
of maximal two-sided ideals in r. If r=n, then A=r. If r=n-1, then 
the theorem is true by Lemma 2. 6. We assume r<n-1. Let r' be 
an order between A and r such that C(r')=l {S0 , 51>···, Sr}, and {S~, 
S,} =51> S1=S1 for Ç;;;2. Then {l(So, ... , S~, ... , Sr)r'} i=O, ... , r is the 

normal sequence in r' by induction hypothesis. Let 21 =l(S0 , ···,Si, ···, 
Sr)r'. Since 20 =C(r)r', I'=HomF,(20 , 20). Therefore, by Lemma 2. 6, 
{Ir'(20 , 21)r} i=1, ... , ris the normal sequence in r. Since S,= {S~, S,}, 
Ir'(20 , 21)1' = l(S, ... , s;, ... , Sr)r. Furthermore, 1'/ N(r) = 6.to'+t,EB6.t/ ... 
ffi6. 1r', where I'' / N(I'')=6. 101 E86. 1,tffi6.1z'EB ... EB6.tr'; li= l; for i>2. Since 

:8 li= :8 l1 , l, = n + l~. Thus we have proved the second part by Lemma 
z=O z=l 

2. 4. 

Let A be an h-order with {IJR1} i=1, ... , r. If A/Wè1=t:..mp then 
(ml> ... , mr) is uniquely determined by A up to cyclic permutation. We 
call it a form of A. Furthermore, we know that (m, ... , mr) is a nonzero 
integral solution of 

r 

( 1) 'Z:X1 = n. 
i=l 

4) For any right A-module IJJè, 9Jèl-means a direct sum of t copies of IJJ(. 
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CoROLLARY. lf A is a minimal h-order in ~ with normal sequence 
{IJJ11} i = 1, ···, n then for any nonzero integral solution (mu ···, mr) of (1) 

there exists an h-order r, whose form is (mu ···, mr). 

Proof. We associate a solution (mo ···, mr) to a set {S~, ···, S~}, 
S~= {IJJ1t1 , ···, IJJèt;+m;-J, where t1 =m1+ ... +m1_u m0 =1. Then r= 
Hom~(l(Su ... , Sr), !(Su ... , Sr)) is a desired order by the theorem. 

3. Minimal h-orders. 

By Theorem 1. 1, we know that there exist minimal h-orders A in 
the central simple K-algebra, namely AJN(A)=D..ffi ... ffib... In this section, 
we shall show that every h-order contains minimal h-orders. 

LEMMA 3. 1. Let r be an h-order and A, A' be h-orders in r such that 
there exist no orders between r and A, A', respective/y. If CA(r)/'in= 
CA'(r)j'in, then A is isomorphic to A' by an inner-automorphism of unit 
element in r, where in=N(r). 

Proof. Let ~=CA(r), ~~ =CA'(r). Since ~/in=~' jin, there exists a 
unit element c in r such that ~=C'c=c- 1 C'c. r'=Hom~(~.~)= 

Hom~(c- 1~'c, s- 1~'c)~c- 1 Hom~(~'. ~')c=c- 1r"c, where r" =Hom~(~',~'). 
On the other hand, by Theorem 2. 3, we obtain that r' and r" contains 
the same number of maximal two-sided ideals as those in r. Renee, 
r'=c-1r''c by [5], Theorem 3. 3. Furthermore, A=rf\r'=rf\s-1r"c= 
s- 1(r(\ r") =c- 1A'c. 

LEMMA 3. 2. Let r~A be h-orders, then N(A)~N(r). 

Proof. Let in=N(A), and in'='in(r). We may assume that there are 
no orders between A and r. Then ~A(f')=IJJè is a maximal two-sided 
ideal in A by Lemma 2. 4. Renee, we obtain by Lemma 1.1 that 
in' 'in Cin'IJJè C IJJèin C in. Therefore, 'in'= 'in' AC W1A = IJJè. For any maximal 
two-sided ideal IJJè' =!= IJJ1 in A, we have 'in'= 'in'(IJJè + IJJè') C in+ 9)19)1' C 1))(' 

since A= IJJ1 + IJJè'. Therefore, in' C (\ IJJ1 =in. 

THEOREM 3. 1. Every h-order contains minimal h-orders. 

Proof. We obtain a minimal h-order A by Theorem 1.1. Let r be 
h-order. Since every maximal order is isomorphic, we may assume A 
and r are contained in a maximal order. Let {IJJè;} i = 1, ... , r be the 
normal sequence of r with form (mu ... , mr), and n=Romr(IJJè" IJJ11). 

We assume that n~A. Let in=N(n), and in' =N(r). Since 'in'~'in, 

IJJ11 ~in. Now, we consider a left ideal IJJ11/in' in nj'in = Homr/!n(IJJ11/IJJ11in', 
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IJJlJIJJl1'R.'). Since (IJJl;, IJJlj) = 1 if i =t= j, there exist m in IJJl1 and y in smz ... 

IJJlr such that 1 =m+ y, m2 -m=m(m-1) E IJJl11JJl2 ···IJJlr=IJJl1(1JJl11JJl2 ... IJJlr)C 
IJJl1 'R'. Theref ore, IJJlJ IJJè1 'R' =mA + IJJl1 'R' / IJJl1 'R' EB 9è' / IJJl1 9è'. lt is clear tha t 
IJJl1(9è'/IJJl1'R')=(0). Hence, IJJè1/W.=(n/9è)m=ImzEBn/2aEB ... EBn/2n where 
the 2/s are maximal ideals in n, and I is a simple component in n/22 • 

On the other hand, since n contains A, n contains an h-order r' with 
form (mu ... , mr) by Corollary to Theorem 2. 3, and ü=Hom~~(Wè~, IJJlD, 
and r' /IJJl1 =Âm1 • Therefore, IJJlJ'R.=IJJlif9è by the above observation. 
Hence, r is isomorphic tor' which contains A. We can prove the theorem 
by induction. 

CoROLLARY. Every minimal h-order is isomorphic. If two minimal 
h-orders are contained in an order r, then this isormorphism is given by 

a unit element in r. 
Proof. In the above, we use the fact that any h-order is isomorphic 

to an order containing a fixed minimal h-order, which implies the first 
part of the corollary. The second part is clear from the proof of the 
theorem. 

THEOREM3.2. Let n be a maximal order such that n/N(ü)=Ân. 
Then every length of maximal chain for h-orders is equal to n. 

Proof. It is clear from Theorems 1. 1 and 3. 1. 

4. Isomorphisms of h-orders. 

In this section, we shall discuss isomorphisms over R among h-orders. 
For this purpose, we shall use the following definition. Let ru rz be 
h-orders containing an h-order A, If there exists an isomorphism e of I\ 
to rz such that O(A)=A, we cali 0 "isomorphism over A", and "ru rz are 
isomorphic over A". Let A be an h-order with normal sequence {IJJl,} i = 
1, ... , r. Then we shall call that A is rth order, and the rank of A is r. 
1st order is nothing but maximal order n, and nth order is minimal if 
n/N(n)=Ân. 

We have introduced an equation 

( 1) ~X;= n 
j=l 

in Section 2. We shaH only consider nonzero integral solutions of (1). 
Hence, by solution we mean always such solutions. We shall define a 
relation among solutions (au ... , ar) as follows: (au ... , ar)=(a~, ... , a~) 
if they are only different by a cyclic permutation. We shall denote the 
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number of classes of solutions by rp(n, r). It is clear that rp(n, r) = 

rp(n, n-r), and that rp(n, 2)=[n/2], and rp(p, r)=(~)jp, where pis prime 

and [ ] Gauss' number. 
We note that every isomorphism is given by an inner-automorphism 

in ~-
Let A be an h-order with radical 91. If 91 is principal, we call A 

"a principal h-arder". Every maximal order and minimal order are 
principal. 

THEOREM 4. 1. Let A be an h-arder with form (m,, ···, mr)· Then A 
is principal if and only if m, = ... =mn (cf. [9], Theorem 1). 

Proof. If m, = ... =mn A is principal by the fact A=Hom~(91, 91) 
=Hom~(SJè, SJè) and by [5], Corollary 4. 5. Conversely, if N=aA=Aa, 
then a~'(Aj'JJè,)a=Afa~'mi+,a by Theorem 2. 1, and hence, m;=mi+, for 

all i. 

PROPOSITION 4. 1. Let A be an h-arder with radical 91, and I'u I'2 
orders containing A. If I'u I'2 are isormorphic over A, then this isomor­
phism is given by an element in SJè. In this case C(I'2) =91~tC(r;)91t for 

some t. 

Proof. If t3~'f'/?=f'2 , and t]At]~'=A for t3E ~. then we may assume 
that t3 E A. Since t]A =At] is inversible two-sided ideal in A, t]A = 91t for 
sorne r;;;;o. It is clear that C(r2)=t3~'C(r,)t3=SJè~tqr,)SJèt. 

CoROLLARY. If A is principal, then r, and I'2 are isomorphic over A 
if and only if SJè(I',)=SJè~tqr,)91t for some t, where 91=SJè(A). 

m 

THEOREM 4. 2. Let A be a principal h-arder of a form (s~). 
Then the following statements are true : 

1) ru I'2 are isomorphic if and only if f'u f'2 are isomorphic over A. 
2) The number of classes of isomorphic m-r th orders containing A 

is equal to rp(m, r). 
3) Those isomorphisms are given by inner-automorphisms of a• for 

some i, where N(A)=aA=Aa. 
4) Let A,, A2 be h-arder s. Then A, and A2 are isomorphic if and 

on/y if they are of same form. 

Proof. Let r, and I'2 be m-rth orders and Œ:;=C(ü;) i=l, 2. Let 
rr- -I('JR. m .... m.) Œ: =I('JR. m .... m ) i <• < <z· · 1· <1· \2..-1- '1' z2' ' tr 2 J1' 12' ' j,. ' 1 1/2 • • • r ' 1 2 < ... <Jn and {'IR;} i=1, ... , m the normal sequence of A. If r, and I'2 
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are isomorphic over A, then ~2 =a-t~pt for sorne t by the above corollary. 
Furthermore, a-t'im;1ct1 =1Jllu1+tl> where (i11 +t)=i1+t modm, and O<(i +t) 

~m. Therefore, ((il+l+t), Cit 1+z+t), ···, Cit 1+s+t), (itz+l+t), ... , Cit2+er-sl+t)) 
=(j, j 2 , ... , j,.). We shall associate the set (j, j 2 , ... , j,.) to a class of 
solution of (1) as follows: X1 =j2-j, ... , X2 =j3 -j2 , ... , x,._ 1 =j,.-j,._u 

x,.=j1 +m-j,.. Then Un ... ,j,.), and Cin ... , i,.) correspond to the same 
class. Coversely, for any m-rth h-orders r 1 and r 2 if (j1), (i1) correspond 
to the same class, then there exists sorne t such that ((i1+t))=(j1). 

Renee, ~- 1r1~=r2 • Let (x11 ···, x,.) be any solution of (1). Let ~=I(IJJln 
IJJll+x1 , ... , IJJll+x 1+···+x,._), then r=Hom';,.(~, ~) is an h-order containing A 
and r corresponds to (x11 ... , x,.) by the above mapping, which implies 2). 
Next, we shaH consider rth order r; (i=1, 2) containing A. If r 1 and r 2 

are isomorphic, then they are of same form (st 11 st2 , ... , st,.). If we asso­
ciate (t, t 2 , ... , t,.) to r;, then r 1 and rz correspond to the same class of 
solution of (1) replacing n by m. Conversely, for any solution (tj) of (1), 

we can find an order r (~A) of a form (st, ... , st,.) by Theorem 2. 3. 

Renee, the number of classes of isomorphic r th orders is equal to or larger 
than rp(m, r). On the other hand, that number does not exceed the number 

of classes of isomorphic rth orders over A, which is equal to rp(m, m-r) 
=rp(m, r) by 2). Therefore, we have proved 1). 3) is clear by 1) and 

Proposition 4. 1. 4) is clear from the above and Theorem 3.1. 

CoROLLARY 4. 1. Let I\ and r 2 be isomorphic over A, then they are 
isomorphic over any principal h-orders A' contained in A. In this case the 
form of A has a periodicity.5 l 

Proo f. The first part is clear by the theorem, and the isomorphism 
is given by at, where IR=N(A')=aA'. Renee, a-tAa1 =A, which means 

cA'( A)= r;n-tc A'(A)\R1• 

CoROLLARY 4. 2. Let I\ and I'z be h-orders contained in an order n, 
and which are isomorphic, then this isomorphism is given by a unit element 
in n and an element at, where a is a generator of radical of minimal 
h-order contained in I\. 

It is clear by Theorem 4. 2 and Corollary to Theorem 3. 1. 

COROLLARY 4. 3. For principal h-orders I\, I'z, the following state­
ments are equivalent : 

5) If a for rn is the following type : (m1 , m2 , • .. , m11 m2 , • .. ), th en we call 
the form has a periodicity. 
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1) r, and r2 are isomorphic, 

2) r,/ N(r,) and r 2/ N(r2) are isomorphic, 

3) r, and r 2 are of the same rank. 

REMARK. The above corollary is not true for any h-order. For in­

stance, let {Wèn W12, ···, W16} be the normal sequence of a minimal h-order A 

in K6, and Œ:, =l(W12 , WC., W15), Œ:2 =l(IJJ~u W., W15). Then f\ =Hom';.(Œ:u Œ:,) 

and r2=Hom~CŒ:2, Œ:2) have different form (1, 2, 3) and (2, 1, 3), but r2/N(I\) 

=r2/N(r2). 

CoROLLARY 4. 4. Let r, and r 2 be h-orders containing principal h­
orders Au and A2 such that there exist no orders between r; and A;. Then 
the statements in Corollary 4. 3 are true. 

Proof. Every r containing A which satesfies the condition of the 

corollary is isomorphic by Theorems 2. 3 and 4. 2. Hence, the corollary 

is true by Corollary 4. 2. 

COROLLARY 4. 5. Let n be the length of maximal chain for h-orders. 
If n<5, 1) and 2) in Corollary 4. 3 are equivalent for any orders. lf 
n<3, 1), 2), and 3) in Corollary 4. 3. are equivalent for any orders. 

We shall recall the definition of same type in [5], Section 4. If 

there exists a left r, and right 1\ ideal ~ in 4 for two orders r, and r 2 

such that r,=Hornf/~. %1), and r2 =Hom~,(%l, %1), we call "r, and r 2 belong 
ta the same type". 

LEMMA 4. 1. Let A, and A2 be h-orders which belong to the same type, 
and ilu il2 containing Au A2, respective/y. Then ilu il2 belong ta the same 
type if and only if n, and 0 2 are of same rank. 

Proof. By the assumption, we have a left A, and right A2 ideal %1 

such that A,=Horn~2(~l, %1), A2 =HomJ,,(~, %1). Then %l%l-'=A11 %'(-'%l=A2, 

and bence, %'(-'A,%l=A2, and mA2m-'=A, by [5], Section 4. Let Œ:=CA,(O,). 

Then il,=Hom~,(Œ:, Œ:). It is clear that O,=Hom~,(Œ:, Œ:)=Hom12[-,A,Ill(Œ:m, 

Œ:%l)=Hom~2(Œ:m, Œ:m). Let O~=Hom6,(Œ:m, Œ:m), then n;>A2. Since 0 11 

n~ belong to the same type, they are of same rank. Therefore, 0 2 , 0~ 

belong to the same type by [5], Theorem 4. 2. Hence, o, and 0 2 belong 

to the same type. 

The following theorem is a generalization of [5], Theorem 4. 3. 

THEOREM 4. 3. Let ru r 2 be orders in 4. Then r, and r 2 belong ta 
the same type if and only if r, and r2 are of same rank. 
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Proof. Let Au A2 be minimal h-orders in I'u I'2, respectively. Then 
A1=cA/;-l by Corollary to Theorem 3.1. Renee, A1 =Hom~2(cA2, cAz), 
and A2 =Hom_AJA1c, A/). Thus, we obtain the theorem by Lemma 4. 1. 

5. Chain of h-orders. 

In this section, we shall study by making use of arguments in the 
proof of Theorem 3. 1 how we can find maximal chains of h-orders which 
pass a given h-order I'. We have already known by [5], Theorem 3. 3 
how we can construct chains of h-orders containing r, which is determined 
by the structure of r; N(r). 

First, we shall study a relation between left conductor D( ) and 
right conductor C( ). 

THEOREM 5.1. Let r~A be h-orders. Then C(I')=WD(r)W-', where 
9è=N(A). 

Proof. Let {\Dè;} i = 1, ... , r be the normal sequence in A, and let 
I'=Hom~(9Jè2 , 9Jè2), then D(I')=9Jè2 • There exists sorne \Dè; such that 
I'=Hom';.,(9Jè1 , \Dè;), and hence, {l(\Dè;, \Dèj)r} i+j is the normal sequence 
in r. Since IJR2 j9è9Jè2=Af\DèJJ7Af\DèiJJ .. · EBA/9JèrEB2, where 2 = 9èfln9Jèz is 
a direct sum of m2 simple components which apper in AjWè" 9Jè2fC:JJè1, \JJèH1)I' 

i i+l 

+ 91\JJèzfln\JJèz = A/9Jè1 EB A/ \Dès EB ... ffi ffi ... EB Af9JènEB9èl(Wè;, \Dè1+1)r fln\Dèz. 
Renee, if i + 1, n, I'/ l('rfl;, 9Jè;+ 1)I'=Âm; or Âm;+1 by Lemma 2.1. However, 
I'jl(9Jè1 , 9Jèi+1)I'=Âm;+mi+1 by Lemma 2. 5, which is a contradiction. If 
i=n, then 22(!(\Dè" Wl:n)I')=(Ü), and bence, IJR.f(\Dè" Wn)I'+9è9Jèj9è9Jè2 = 
A/9Jè3 &;J ... &JAf\JJèn-u which also contradicts the fact that I(W" \Dèn)r is 
a maximal two-sided ideal. Let Œ=l(9Jè2 , ... , Wt) and c;J=f(\Dè" ... , \Dèt-1), 
then fr=W-1;§)91. We assume that I'=Hom~(Œ, Œ)=Hom';._(;§J, c;J). Then 
n = Hom~(I(Œ, 9Jèt+1), /(fr, IJJèt+1)) = HomHri(Œ, Wt+ 1), rl(Œ, Wt+l)) =Hom~ 
(rl(Œ, 9Jè1), rl(Œ, Wè1)) by the first part. Renee, ü=Homi(l(Œ, Wt+1), 
l(Œ, Wl:t+l)) = Hom';.,(WI(G:, 9Jèt+1)91-', 9èl(Œ, 9Jèt+1)9è-1). Thus, we can prove 
by induction that for maximal orders ü;~A, Œ;=C(D;)=WD(D;)W- 1• 

Let I'= (\D; = (\Hom~(G:;, Œ;) = (\Hom~(W- 1Œ;91, W-1Œ;91) = Hom~(W- 1C(I')9è, 

W-1C(I')9è), since Œ(r) = lŒ;. 

THEOREM 5. 2. Let A be a principal h-order and r an order containing 
A. Then every h-order containing A which is isomorphic to r is written as 
Tt(r), where T is the jollowing functor: for n~A T(ü)=Hom~(C(n), C(n)), 
and Tr(D)= T(Tr- 1(D)). 

Proof. It is clear by Theorems 4. 2 and 5. 1, and Proposition 4. 1. 
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We note that for two h-orders A~r, Cr(A)~N(r) by Lemma 3. 2. 

LEMMA 5. 3. Let r be an r th arder with radical 91 andE a le ft ideal 

containing 91 in r such that 2f%:::::;D.m/i!) ... Q9D.m1Q9l@D.m1+2 ... @D.mr; I a 

proper le ft ideal in D.m;. Then A= Rom~(2, .2) f"\ Rom~(E, E) =I' f"\ Rom~(.2, .2) 
is an r + 1 th h-arder and C(r) = E. Hence, A is unique/y determined by the 
rank and conductor. Furthermore, ev er y r + lth h-arder in r is expressed 
as above. 

Proof. Since Er=r, <rh(E)=I'. If we put I''=Rom~(E, E), then I'= 
Rom_;:,(E, E) by [1], Theorem A 2. By the same argument in the proof 

of Theorem 3.1, we can find an r+lth h-arder A' such that CAt(r)/91 
-;::::;E/91. Renee, there exists a unit element c in r such that CA'(I')=Ec. 
Furthermore, A' =I' f"\Rom~(CA'(r), CA'(r))=r f"\Rom~(Ec, Ec) =I' f"\c- 1I''c= 
s- 1(I'f"\I")c. Therefore, A=r f"\r' is an r+1 th h-arder. Since s-1Ec= 
CA'(r), E=CA(I'). If A' is an r+1 th h-arder (Cr) such that CA'(I')=2. 

Then A=rf"\Rom~(CA'(I'), CA'(I'))~A'. Renee A=A'. The last partis 
clear. 

Let A be an h-arder of form (mu m2 , ... , mr); A/N(A)=D.m/B ... EBD.mr• 
and E;,i a left ideal in A such that Eu~91, and E1,i/91=Àm1 EB .. ·EBI;,jEB 
... ffit;,mr• I;,i a non-zero left ideal in D..m;· We denote Rom~(21,i, Eu) by 
A(Eu) and I;,j by /(Eu). Let k(Iu) be the length of composition series 
of I1,i as a left A-module. 

t, s(i) 

THEOREM 5. 3. Let A, A(Eu) be as above. Then I'=A f"\f\ A(E;) 
i=l,j=l 

is an h-arder if and only if {l(E1)}j~i is linearly ordered by inclusion for 
al! i. Every r+s(i) th h-arder in A is unique/y written as above. 

Proof. We assume that I' is an h-arder and A0 is a minimal h-arder 

in r. Let S;= {Wèt;• Wèt;+u ... , Wèt;+m;- 1} be a set of maximal two-sided 
ideals in A0 such that CA0(A)=l(Su 52 , ... , Sr), (cf. Section 2). We denote 

Af"\A(E;,j) by ri. Since ri is an r+1 th arder from Lemma 2. 5 we 
obtain CAo(rj)=l(Su ... ,si-u sr, ... ,sr); 57=5;-{IJRp(j)}. We assume 

p(j1)<PUz). Let S;=S,- {Wèp(j,)> Wèp(jz)}, (J;=f(Su ... , s,_u §,, Si+u ... , Sr). 

Then I''=Rom~((J;, Œ) is an r+2th h-arder and I''=I'hf"\I'h, A=I'hvf'iz. 
Let 911 =/(Su ... , S1_u 51- {Wèpciz)}, ... , Sr)I'' and 91z=l(Su ... , S;- {W1pcj,)}, 
... , Sr)I'', then we obtain a normal sequence {91, 912 , 913 , ... } in I'' by 

Theorem 2. 3, and Cr1(I'h)=912 , Cr1(I'iz)=911. Since Cr'(A)=l(91u 912), 

Cr'( A)/ N(A) = D..m1 EB .. · EBD..m1_ 1 EBfkEBD..m1+1 EB .. · by the usual argument in 

Sections 2 and 3, where I''/913 =D..k, and r is a simple left ideal in D.m;· 

On the other hand, since 21,iz=C1,h(A)=l(91, 912)1\2 , and {1(91, 912)l'i2 , 
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J(ç_nu ç_na)r j 2 , • .. } is a normal sequence in rh, we ob tain 2,,j)ç_n(A) = Àm, EB 

···ffi Àm;_, EB fk EB Àm;+I EB ··· = Cr,~(A)/ N(A). However, 2,.h=:J Cr'( A), and 
hence 2,,h =Cr'( A)* 2;,h. Thus we have proved that {1(2,.})} j is lin earl y 
ordered for any i. Conversely, we assume that {l(2u)} j is linearly 
ordered for all i, and k(I,,) >k(l;) >k(l;,sw). Let A0 be a minimal order 
in A and {S,} be as above. If we denote I(Su ···, S,_,, S,-Mt;+m;-kct;,jl> 

Si+, ... ) by Œ,,j, then r~.J=Rom~0(Œ,,j, Œ;,j) is an r+l th order in A and 
2i,J=Cr'u(A)=2;,j· Furthermore, we know by the above argument that 
{l(2;,j)} j is line.arly ordered. Therefore, there exists a unit element ê in 
A such that 2;,;=2~.jê for alli, j. Renee l'=A11 (\A(2,,j)=A11 (\s-'A(2i,j)é 

1,} '·' 

=ê-'(A11 (\A(2i,j))ê is an h-order containing s-'A0é. The second part is 
•,J 

clear from the proof. 

From the above proof we have 

CoROLLARY 5.1. Let r=A11 {\A(2, j), and k(i, j)=k(l(2u)). If ku 
j,i ' 

>ki,jt, for j<j', r is of a form (m,-k,,, k,,,-k,,2, ... , kl,s(l)> ... , m,-k,,, 

k;,l-kl,2> ···, ki,sCil> '"). 

CoROLLARY 5. 2. Let {il,}l=, be h-orders. Then (\il; is an h-arder 
i 

if and only if intersection of any two of the n;'s is an h-arder. 

Proof. Since every h-order is written as an intersection of maximal 
orders, we may assume that the n./s are maximal. If n, 11 n, is an h­
order, then f2;=Rom6,(2,, 2,), for a left ideal 2, (~N(n,)) in f21 • Let 
2;+2j=2. Then f2;(\f2jCRom61(2, 2). Renee n, or nj is equal to 
Rom~/2, 2) by [5], Theorem 3. 3. Therefore, 2=2; or 2j which shows 
that {2;} is linearly ordered. Renee {\f2; is an h-order by the theorem. 
Converse is clear by [5], Corollary 1. 4. 

PROPOSITION 5. 1. Let A be an h-arder and 2 a left ideal containing 
N(A) such that 2A=A. Then r=Af'\Rom~(2, 2) is a unique maximal 
order among orders r' in A such that Cr'( A) =2. Hence 2 is idempotent. 

!)A(2,). Renee, Cr(A)C(\CA.(B;)(A)= (\2,=2. It is clear that Cr(A)=:J2. 
' 

If Cr'(A)=2 for an h-order P'CA. Then r'CA11 Rom~(2, 2)=r, sinee 
Cr'(A) is a two-sided ideal in r'. 

CoROLLARY 5. 3. Let r=AII{\A(2; ;), then Cr(A)=(\2; j• 
i,j • i,j • 

Proof. Let Cr(A)={\21, where the 2;'s are as in the proof of 
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Corollary 5. 2. 

Since A(2;) ~I', 2;=2k,j for sorne k, j. Renee Cr(A)= (\2;,j· 

PROPOSITION 5. 2. Let A be a principal h-arder and 2 a left ideal in 
A. Then 2 is principal if and only if <r~(2)=A and A(2) is principal. 

Proof. If 2=Aa, then A(2)=a-'Aa, and hence A(2) is principal, and 
<r~(2)=22-'=Aaa-'A=A. If <r~(2)=A, A=HomA(2)(2, 2). Furthermore 
if A(2) is principal, A and A(2) have the same form, and henee 2 is 
principal by [5], Corollary 4. 5. 

W e shall discuss further properties of one-sided ideals in the forth­
coming paper [7]. 

PROPOSITION 5. 3. For any r th arder I', there exist n-r+l minimal 
h-orders A; such that I'=VA;, where n is the length of maximal chain 
for h-orders in ~-

Proof. We prove the proposition by induction on rank r of orders. 
If r = n, th en r is minimal. If r is an r th order (r< n ), then r / N(I') 
=~m,EB ··· EB~mr• and m;>l for sorne i. Therefore, there exist two 
distinct left ideals 2, and 22 in r by Theo rem 5. 3 such tha t L, = C0 ,(I'), 
and Ca2(1')=22 for sorne r+l th orders n, and Dz. Since ü,=FD2 , I'= 

n, Vü2 • By induction hypothesis we obtain that D;= }1 Ai,j, where the 

A,js are minimal h-orders. Since n, =Fü2 , there exists Az,jçt:n,. Renee 
n-r+1 

I'=ü,v~.j= V A,. 
t=l 

6. Numbers of h-orders. 

We shall count numbers of h-orders in an h-order. 

LEMMA 6.1. Let I'~A be h-orders and c a unit in I'. If c-1Ac=A 
then c EA. 

Proof. Since cA= Ac is a two-sided inversible ideal with respect to 
A in~. Ac=SJèP by [5], Theorem 6.1, where SJè=N(A). Let SJè1 =,PA, then 
Aé1 = SJètP =.pp A. Renee, s-t.pP is a unit in A, and hence in r. Therefore, 
p = 0, which implies Aé =A. 

PROPOSITION 6. 1. Let n be an h-arder. If I\ and I'2 are isomorphic 
byaninner-automorpisminüfor I';CD (i=l,2), and f\=FI'2 , then r,f"'I'z 
is not an h-arder. 

Proof. If I',f'\I'2 is h-order, there exists a minimal h-order A in 
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r, and r,. Sinee r, and I'2 are isomorphic hy an inner-automorphism in 
n, they are isomorphic over A by Theorem 4. 2. Renee, éAé-'=A. 

Therefore, s is a unit in A, and in r,, which is a contradiction to the 

fact r,+rz. 

COROLLARY 6.1. Let n be a maximal arder and r, I'2 nonmaximal 
distinct principal h-orders of same rank· in n, then r,f\I'z is not an h­
arder. 

Proof. Let A, and A, be minimal h-orders contained in r, and I'z, 
respectively. Then A,=ê-'A,é; s unit in n by Corollary to Theorem 3.1. 
Rowever, by Theorems 2. 3 and 4.1, I',=s-'r,s. 

CoROLLARY 6. 2. Let n be an h-arder, and {r,} the set· of r th h-orders 
between n and a fixed minimal h-arder A inn. Then every r th arder in 
n is isomorphic by inner-automorphism in n ta some r,, and those iso­
morphic classes by units in n do not meet each other. 

It is clear by the proof of Theorem 3. 1 and the proposition. 

THEOREM 6. 1. The following conditions are equivalent : 

1) The number of h-orders in a maximal arder is finite, 
2) The number of h-orders in a nonminimal h-arder is finite. 
3) R/v is a jinite field. 

To prove this we use the following elementary property. 

LEMMA 6. 2. Let B=lln be a simple ring and L=Be,,/J:J ... (J)Ber,n 
then for any unit element c in B Lê=L if and only if 

s, 82 are units in Àr and lln-n and C is an arbitrary element in (n- r) x r 
matrices over Il. 

Proof of Theorem 6.1. Let r be a nonminimal r th h-order. By Theo­
rem 5. 3 r+1 th h-orders contained in r correspond uniquely to left ideals 
2,; 2;/N(I')=Ilm,ffi ... EBI,œ ... EBilmr· Renee, the number of r+1 th h­
orders in r is equal to the number of those left ideals. The number of 
left ideals in r / N(r) which are isomorphic to 2;/ N(I') is equal to 
[(I'/ N(I'))*: 1]/[E(B;) : 1], where * means the group of units and E(B;) = 
{c 1 E (r 1 N(r))*, (.2;/ N(r))cCB;/ N(r)}. Sinee [Il: R/vJ< oo, [(r 1 N(r))*: 1]/ 
[E(B,): 1]< oo if and only if [R/v: 1]< oo by Lemma 6.1. Thus, we 
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obtain 2) = 3). Since the length of maximal chain is fini te, we have 1) 

=2). 
If we want to count the number of h-orders in r, we may use the 

argument in the proof of Theorem 6. 1. Rowever, it is complicated a little. 

By virtue of Corollary 6. 2, we may fix a minimal h-order in A. From 

this point, we shall study the numbers of h-orders in the special case 

as follows. 

In Section 1, we have noted that we may restrict R to the case of 

a complete, discrete valuation ring. By 1\ we mean completion with 

respect to the maximal ideal ,p in R. Let 0 be a maximal order with 

radical ~; 0/~=t:.n. Let ±= Tn'; T division ring, then D=:On'• where 
:0 is a unique maximal order with radical (n-) in T. Since 0/~r::::::ôjsJè, 
n'=n. 

In order to decide all types of h-orders in ~. we may consider h­

orders containing a fixed minimal h-order by Theorem 3.1. By Lemma 

1. 2, we obtain a minimal h-order A, which we shall fix in this section; 

nam ely 

A = {(au) 1 E ~. auE :0, auE (n-) for i > j} , 

N(A) = {(au) 1 E A, a1,1 E (n-)} =~, 

~- 1 = {(au)l E~, auE:O if i+n, i+1; auE(n-) if i+1<j 

and an, 1 E (1/n-):0} . 

From now on we denote i, n, K by ~. ü, R, respectively. 

Let Wè1 = {(ai,j) 1 E A, a;; E ( n-)}. Then the SJJè;'s are the set of maximal 
two-sided ideals in A. Since e1_ 1 ,1 n-e1,1e1,;- 1 =n-e;-1,;-1 E ~-lwc,~, we know 

that ~- 1IDC;~=Wè,_l" Renee, {Wèn, Wèn-u ···, Wè1} is the normal sequence 

in A. We can easily check that r,=Rom~(Wè1 , Wè1)=the ring generated 

by A and e;-1,1 if i =l= 1, and that r 1 = Rom~(Wè1 , SJJèl) = {(ai,j) 1 E ~. auE ( n-) 
for i <j, au E :0 for i + n, j + 1, and an,l E (1/ n-):0}. Renee, {I'z, · ··, 1\} 
is a complete set of n-1 th order in O. For any order r between 0 

and A, C(r)=l(illè11 , ... , 9Jè1) (ij>l). Then f is the ring generated by 

A and {ej-l,j} j=i1 , ... , ir. 

Summarizing the above, we have 

THEOREM 6. 2.6) Every h-arder in ~ zs isomorphic to the following 
type 

6) Those types are changed by the suggestion of Mr. Higikata. 
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m2 ......... mr 

D(ml xml) n:D(ml x m2) ......... n:D(m1 x mr) 

D(mz xml) D(mz Xmz) ......... n:D(m2 x mr) 

......... 

D(mrXm1) D(mr Xmz) ......... D(mrXmr) 

where n = ~ m;, and D(i x j) : ali (ix j) matrices over D. 
We shall return to problem of counting the number of h-orders. By 

virtue of Theorem 6. 1, we may assume that ffi/1J is a finite field and 
hence, DJn:=GF(pm). 

LEMMA 6. 3. Let r, n be as above. Then the number of isomorphic 
classes of r by unit element in n is equal to [(.Djn:.D)*: (r/77:.!1)*]. 

Proof. By Lemma 6.1, this number is equal to [ü*: r*], and by the 
above remark n:rCN(r). Renee, we have (.Djn:.D)*j(rjn:.D)*R;ü*jr*. 

LEMMA 6. 4. [(.Djn:.D)*: (rjn:.D)*]=(Pmn_1)(pnm_ pm),·(pnm_ pmcn-l)) 

j TI (pm;m-1)(pm,m- pm) ... (pm;m_ pmcm,-ll)pms, S= t m;(n-ml -mz- ... -m,). 
i=l i=l 

Proof. It is clear that .Djn:.D= (Djn:)n and [(D/n:);!': 1] = [GL(n, pm): 1] 
=(Pmn_1)(pnm_ pm) ... (pmn_ pmcn-l)) by [4], p. 77, Theorem 99. rjn:.D= 

and hence, r( E rjn:.D) is unit if and only if the B;,; are unit in (Djn:)m,. 

Therefore, [(rjn:.D)*: 1]=rTI (GL(m;, pm): 1)pms, s= 'ij m;(n-m1 -m2- ... 
i=l i=l 

-m,). 
By Corollary 6. 4, and Theorem 4. 1, we have 

THEOREM 6. 3. The number of r th h-orders in a maximal order is 
equal to 

~ {pnm_1)(pnm_ pm),, (pnm _ pmcn-l))j TI (pm;m -l)(pm;m_ pm),,. 
m1+m2+···+mr=n r i=l 

(pm,m_pmcm,-ll)pm(~m;(n-m1 - .. ·-m,)}. The number of rth principal 
i=l 

h-orders in r' th principal h-arder is equal to 

{(pmn;r' -l)(pmn;r1 _ pm) ... (pmn;r' _ pmcn;r1 -l))V' J 
{(pmn;r -l)(pmntr _pm) ... (pmn;r _ pmcn;r-l))Y pcmn2(2)(T-r'trrl), 

Especially, the number of minimal h-orders in a maximal order is equal to 
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•-1 n (1 +pm+ .. . +pmi) . 
j=l 

W e shall describe A as follows : 

Sin ce 

1,1 1,2 1,3 1,m 

A A A 7l'A ··• · ·• · ·• 7l'A _ 2,1 2, 2 2,3 2 m (

A 7l'A ?l'A · ·• ··· · ·· 7l'A 

-A il ···············A. 

N= 

m,1~,2 m,m 

7l'Al,l 7l'A1,2 ··· ··· ··· ··· 7l'Al,m 

A2.1 7l'A2.2 ··· ··· ··· ··· 7l'A2,m 

Ai.i is matrices of 
m, x mj over :0. 
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Let t be the ramification index of a maximal order, nam ely 7l'1 = pe, 
e E :0. Then we have a explicit result of Theorem 2. 2. 

PROPOSITION 6. 2. Let A be an r th h-order, then its ramification index 
is equal to tr. 

PROPOSITION 6. 3. Let A be an r th principal h-order, and a an element 
in A such that Aantr =N(A) for some n. Then r=Af\ a-'Aaf\ ··· f\ 
a-cntrH'Aai-CntrJ is an n th principal h-order, and any n th principal h-order 

r in A is written as above and N(r) =ar= ra, where r 1 n. 

Proof. If r is an nth principal h-order with N(r)=ar in A, we can 
easily show, by Theorems 2.1 and 2. 3, that antrA=Aantr and r=Af\ 
a-'Aaf\ ... f\ a-cntrJ+'Aa'-cn;rJ. Since an;r A=Aantr, antr A=N(A)!. Rowever 

an1A=pA, and hence 1=1 by Proposition 6.2. Therefore, Aantr =N(A). Con­
versely if Aantr =N(A), Aa' is a left ideal in A containing N(A) for ï<nfr, 
and Aa•jAai+'=AfAa as a left A-module. If AaA=FA, A/Aa=l,EBl2 EB 
··· EBL\.m;EB ··· EBir for sorne i. Renee, since A/ Aa=Aaf Aa2, Aa2~ N(A), 
we have a contradiction. Since Ais principal, Aa'ntrJ-'/N(A)=I,EBI2 EB···EB 

ln Aa• / N(A) = I;cn/rJ-i)EB l~cn/rJ-ilEB · · · EB I~cn/rJ-n. Then I' = Af\ Rom~(Aa, Aa) 

(\ Rom~(Aa2, Aa2) (\ • •• (\ Rom~(Aacn{T)-l' AaCn{r)- 1) =A(\ a-'Aa(\ ... (\ ai-(n{r) 

Aacn;rJ-1 is a principal n th h-order by Corollary 5. 1. lt is clear that 
ar=ra. Renee ar=N(r)1,81r. Rowever, \J=(an;ryts=,Srttê'='J,J'ê", where 
ê, ê' and ê" are units in A. Renee l = 1. 
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