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Let D, D’ be compact domains of a Riemann surface R relative to R such that
D C D’ and D be enclosed by a finite number of closed Jordan curves. Let P be a
finite point set contained in D, @  be a selected set of the collection of compact com-
ponents of D’-D relative to I, that is, any point of @ is contained in one and only
one element of the collection and conversely any element of the collection contains one
and only one point of €', and Q be a selected set of the collection of compact com-
ponents of R-D relative to R. Obviously both @ and @ are finite point sets. Then

we have the following theorems :

THEOREM 1°. There exists such a function as is meromorphic in D’ and has its
poles on P.

THEOREM 2. Any function which is regular in a certain domain containing D
is uniformly approximated on D by such a function as is mevomorphic on D’ and has
its poles on Q’.

THEOREM 3'. Any functon which is meromorphic in a certain domain containing
D and has its poles on P is uniformly approximated on D by such a function as is

meromorphic in D’ and has its poles on P U Q.

THEOREM 1. There exists such a function as is meromorphic in R and has its
poles on P.

THEOREM 2. Any function which is regular in a certain domain contiaining D
is uniformly approximated on D by such a function as is meromorphic in R and has
its poles on Q.

THEOREM 3. Awny function which is meromorphic in a certain domain containing
D and has its poles on P is uniformly approximated on D by such a function as is
meromorphic in R and has its poles on P U Q.

According to the method of Behenke and Stein', these theorems are easily derived

by the following process?’ :

1) Behnke und Stein: Entwicklung analytischer Funktionen auf Riemannschen Flichen,
Math. Ann. 120 (1948), pp. 430-461.

2) Theorem 1’ is trivial. Theorem 2 is a modified one of a theorem in the above paper
in which D is simply connected relative to D',
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The purpose of this paper is to bring Theorem 2, 3 in the following formulations.

THEOREM 2%. Amny function which is continuous on D and regular in D is
uniformly approximated on D by such a function as is meromorphic in R and has its
poles on Q.

THEOREM 3*¥. Any function which is continuous on D-P and meromorphic in D
is uniformly approximated on D by such a function as is meromorphic in R and has
its poles on P U Q.

Since Theorem 3* follows from Theorem 1, 2%, it is sufficient to prove Theorem
2% only. To see this, it is sufficient to prove the following theorem.

THEOREM 4. Any function which is continuous on D and regular in D is uni-
formly approximated on D by such a function as is regular in a certain domain
containing D.

We shall begin with some preparations. A closed Jordan curve is briefly called
a loop. When there exists a family of mutually homotopic loops, its order is denoted
by >>, the part enclosed by two mutually homotopic loops «, 8 by (a, B), and (a, )
Ua, (e, HUBRB, (a, BUaUPB by [« B), («, 8], [«, B] respectively. Also the defini-
tion domain or the range of a function f is denoted by dom f or ran f, and a function
which is defined on a set E by f|E. Throughout this paper, we assume that a function
is continuous on its domain and regular in the interior of its domain.

LEMMA 1. Let «,,a, B, B, be four mutually homotopic loops arranged in this
order. Then, for any positive number ¢, there exist two loops o', 3’ and a function ¢

such that

1. ay>a>a, B>B >B; .
2. dom ¢ =[ua'8), ran ¢ C [, B,);
3. [I—¢|< e on [« B].

where I is the identity function.

Proof. We can assume without loss of generality that [«,, 8,] lies on the z-plane.
On the w-plane, if the Jordan domain enclosed by £ contains 4, then we define the
ordering as £ > A. Let {un} be a sequence such that ¢, >u, | « and f, the function
which maps topologicallyr [#n, Bo] onto the closed ring [, fu(8,)] on the w-plane,
as onto &, (3, onto fn(B,) and conformally («.,B,) onto (k, f»(B,)), where &, fu(Bo)
are concentric circles. Then the circles fx(B,) are monotone-increasing and converge

to a certain circle (< k).
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Let g, be the inverse function of f,, then we shall show that g, form a normal
family on k. To see this, it is sufficient to prove that g, are equi-continuous on «.
Since f» form a normal family on («, 8,), if g» were not equi-continuous on &, there
would exist an increasing sequence {#;} of natural numbers, a function f |(«, 8,),
wi, 0", o( € k) and ¢’, ¢” such that

Sy - f on («, B,);
wi >0, 0 >w;

gNt(w‘/') —> C/) gni(wt//> — C//, C/ =‘:C// .

1. Obviously ¢/, ¢” € «. Describe two circles with their centers ¢’, ¢” and with the
common radius / = % ¢—¢”|and let U,(¢"), U,(¢”) be the interiors of these circles.

2. Since ¢/, ¢” are accessible boundary points of («,f,), there exist such two
curves 7o, 7" as end in ¢/, ¢” and are contained in [«, B,)NU,(¢"), [« BONU(c),
respectively., Let 2/, 27 be the initial points of 7/, 7,”.

3. There exist two curves i, 7 such that, (i) 7, 7” contain gu,(w:'), s (ws”) and

end in ¢’, ¢” respectively, (ii) the parts 74/, 7" of i/, 7” rising respectively from gn; (i),

gn;(@g”) are contained in [dn,, «].
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4. Put @' = f(2), wy = f, (), then wy — w’.
Put w” = f(2"), w’ = fa;(2"), then w;” —w” .
5. Let Ugz(w), Uw"), U(w”) be neighbourhoods of w, w’, w”, and mutually

exclusive.
Under these circumstances, for any given positive number e(<R), there exists

a natural number 7 such that

1. o€ U(w), o€ U(w),

2. w'eUw), w”cUw”),

3. 1WCU(), 1/CUL).
Then

70 +18 C Lonmg, BONUKD, 70" +78” C Lamg, BONU(”)
Hence
dis (7o' +74, 77 +1dH) = 1.

Next we consider on [, fu;(B,)) the images of y,'+74, 7o” +7¢” by fa;. They form
curves conbining w;" and w;, w;” and w;”. For any » such that R >r» >¢, w;', w”
lie in the exterior of the circle |w—w|=7r, while @, w;” lie in the interior of that
circle. Hence fn; (") +7¢') (resp. fu,(70”+7¢”)) intersects that circle. Let wg* (resp.

w¥*) be one of the intersecting points. Then

lgnt(“’f*) — gy (wi*) |=1.

Hence
area of (a,, B,) > area of (dn;, 3,)

>\ lgnw® du ao
where A= (&, )DN{w:R>w—0w>ec},w =u+iv,

= (Tar | lgg w12 1aw)

-
wiwy

7

CCE, wrwR (L R P
= (LR (g1 1wl = §ar 5 1w [ 1 gaga) o]
sy Wi wpops

and by Schwarz’s inequality,

SR P

gy ok
wiw;

(A%

| £ns(W0T") ~ guy(wh)|

.
W;wy

- E 1 | ’ 2 B 1
= | = il
ST



Meromorphic approximations on Riemann surfaces 67

2 _ I R

=~ (%4 1
égz Tor @ 8

2
Hence the area of (a,, B,) >l; log § for all positive number & (< R), which is impos-

sible.

Since we have seen that g, form a normal family on x, we shall go to the next
step. Of course, g, form a normal family on (%, 1), so that g, form a normal family
on [k, 2), while f,, form a normal family on («, 8,) . Then there exist an increasing

sequence {7’} of natural numbers and two functions f|(«, 8,), £|[«, ) such that

Sfw—f on (4 B) .
gv—>g on [k 4).

\

A £(8) fn(3) AN Fn(Bo)

Since fu(B) > fw(Bo) == f1(B,), the oscilation of f,v on 8 is not smaller than the
diameter of the circle f,(8,). Consulting with f,v — f on (3, we conculude that f is

Oo Av\ [ 8N\ G \ ,90\\

nonconstant and hence univalent and regular, so that f is an open mapping. Then
ran f is an open set contained in [«, 2], and therefore ran f C (x, 2). As well as f, g
is also an open mapping. Then g((k, 4)) is an open set contained in [«, 3,], and there-
fore g((k, ) C (u, 8,). Also g(k) C«. We have then

ran g = g([x, A C [« Bo) -

From ran f C (&, 4), it follows f(8) C (x, 2). Take A* such that f(8) > 1% >4,
then
SB) C (k, £%).

Consulting with fv —>f on § and g» — g on [k, 4), for any positive number e,
there exists a suitably large natural number N(=#’) such that
fx(B) C (k, &%),
lgx—gl<e on [k #*].

From the former, it follows
Falox, B =[x, fx(B)IC [k, 4%),

and from the latter and the above fact,

|gnofw—gofw|<e on [uy, 8],
that is,

|I--gofyl<e on [ux,B],
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and «, > ay >, B> gx(A) > By from fx(B) > >212>fx(By), dom (gofw) =gx
(dom &) = [uw, gw(2), ran (gofy) =ran g C [«, Bo)-

Putting «’ = ay, B’ =gx(1), ¢ = gofy, we get the statement.

LEMMA 2. Let ay,«, B, B, be four mutually homotopic loops arranged in this
order. Let f be a function suchk that dom f =[«, B,]. Then, for any positive number
e, there exist two loops o', 8" and a function g such that

L ay>d >a, B>B 2> B0
2. dom g=[u«,B);
3. |f—gl<e on [« A].
Proof. Since f is uniformly continuous on [«, 8,], for any positive number e,
there exists a positive number ¢ such that
if 2,2 €[a, B,1, |2—2|< 8, then | f(2) —f(2")|<e.

By Lemma 1, for this ¢, there exist two loops «’, 8’ and a function ¢ such that

1 ay>d >a, > >80
2. dom ¢ =[«, ), ran ¢ C [a, Bo) ;

3. [I-¢|<d on [«,B].
From these conditions we have

|f=fopl<e on [«,fB],
dom( fop) =dom ¢ =[a, §).
Putting g = foyp, we get the statement.
All preparatians have been achieved ; now we proceed to prove the theorem.
Proof of Theorem 4. Let {u;} be a finite number of loops enclosing D. In a
planer neighbourhood of «;, we take g, Bi*, Bi, B¢ such that wy >as > 8% > s
> Bo, where wy lies in the exterior of D, 8:%, Bi, Bo¢ lie in the interior of D and

B¢ is rectifiable.
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By lemma 2, for any positive number e, there exist two curves «, 8¢, and a
function g: such that
L aw>ad >ai, Bi>Bi > Poi;
2. dom gi=[a, pi);
3. |f-gil<e on [as,pB:].
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Moreover we take a rectifiable loop «;* such that «;' > a* >w«;, whence wi*
depends on ¢.

Let D’ be the domain enclosed by {«;’}, then there exists a many valued function
wy(m)|m €D’ depending on the parameter p( € D’) such that, for any univalent regular
function ¢ defined in G'(C D"),

_ _ dwy(m)
H(m, p) = Hp(w) = 52252
(v, p) = Hy() = 055
is meromorphic for (m, p) in G’XD’ and Hp(w) has its singular part
at p(€G).?

Take any rectifiable loop B:¥* such that «; > ;%% > @*% Then for all p € (B;%*,

Bj*)y

S
(@) —c(p)

2%,‘; Sﬁi**f<ﬂ)d(l)p(ﬂ) = E}?z S s F@) dwp(m) +04; ()

where 05 = {(1)8 :T:';% ,

2%53, FH(r, p)dei(m) +84; F( )

Il

where ¢; is a univalent regular function defined in a planar neighbourhood of «; and

dwy(T)

Hi(w, p) :d”i(ﬂ'> .

Similarly

oni | i@ oy =55 @i HiE, DY+ p)

Putting

max |Hi(m, p)|= My,
(7, p) € By X[, B;*]

M;; does not depend on &, and

1

. M,
2mi

[ gy @ d0n ) = b im0y (m)| < (Mus{ | 1deuc1+3, ).
Putting

(Y, 1 12,) .

for all p¢ L}} (Bs¥*, B5%),

| |
2% SBL-** f(@)dw,(m) _Q%r_z; Li* gi(m)dwy(m) | < Mie .

Putting

3) Behnke und Stein, ibid.
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for all p¢€ L}’ (B5**, B5%),

| 7= 5 W00, () | < M=

Since B was arbitrarily chosen under the condition «; > 87%% ~> 7%, the above
formula is satisfied for all p € U («y, 37%). Putting

() = g M 810y ()

g(p) is defined on the domain enclosed by {a;*}, that is, a certain domain eqntaining D.
Since l})(aj,ﬁj*) is a boundary strip of D, we have by the maximum principle,

|f-g!<Me on D.

Since M does not depend on ¢, g is the function which we have desired.



