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A property of Riemann’s é-function will be stated. The distribution of zeto
points of a function similar to the former has been studied. This is an extension
of the result of Pdlya.?> $1. Certain property of &-function and the definition of a
function Y(z). §2. Asymptotic formulae for Bessel functions. $3. Distribution of
zero points of Y (2).

§1. Riemann defined the following é—function 2:

E(t) = % - (t2 + 1) S:,qb(x)x“% cos (% log x) dx , ¢H)
where ¢(x)=27 exp (—n?rx), and it satisfies the relation
2¢(x)+1 =/1—; (2¢(%)+ 1)_ @)

In the following, R7(z) and 37(z) denote the real and imaginary part of a func-
tion f(2) respectively. Let us put as z=x+1y.
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So that we have, for le<% ,
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£(2iz) = %(422—1) [ Mo e, 3)

where

3

zo ]
yw(u) = ¢(e*)es —-?e" 1.
It can easily be proved that W(—u)=w(«), when we use the relation (2).

The distribution of the zero points of é-function will be explained, if the dis-

tribution of zero points of a function
E(z)=g_ w(u)e* du

were explained.

Let us now consider a suitable sequence of functions

w1(u), Wa(uw), Ws(u), oo , @)

where it is assumed that these functions are all even and they satisfy a conver-
gence condition
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lim Sww(e%+ e_%)2 lw(u)—wa(u)|2du = 0.

n->00d =

Then, by using Schwarz’s inequality, we can prove that the functions
En<z> = Sio \p”(u)ezudu, n= 19 29 37 """

tend to the function ZE(z) uniformly in a strip ‘lx]_g_i—— e, where ¢ is an arbi-
trary small positive number.

Accordingly, if such a suitable sequence (4) were found and the distributions
of zero points of the functions E.(z) were explained, the distribution of the zero
points of Z(z) would be explained.

In this peper we take up a function

L u 1, »  w
O(u) =23"(e+ + e+ )exp(—nirn (e* + &%) —§(e4 + e 4 )1
where the summation 2’ means the same as that of [[,=<x(1—p~?)"1=2n"? N
being a fixed positive number. And we define a function
Y(2)= S_ O(u)e* du, (5)
and, in this paper, let us consider the distribution of its zero points.

§2. 1In order to solve the problem given in the preceding paragraph, we shall
state some necessary functions and some of their properties.

Jv(2) is the ordinary Bessel function of the first kind of order v and argument
2. When k is any constant

Jv(ze"™) = V™ | (2), J-(26"™) = e~®= J_\(2).
Hankel function of the first kind is defined as
HP(z) = {J-2)—e "™ J 2D} /i sin vy,

and it has the following integral representation :
1 S°°+£C“—argz+“2>

H$1)<Z> = —

-7 exp (zsinh ¢ —yt)dt, (6)

— oo -i(arg z+u1)
T T
where 20 and — :2<,ul, /,L2<~2 .
By using this function, the function
Ky(2) = 7;’ e M (iz2)

is defined. When z is real and positive, we can see from (6) that this function

has the integral representation
K(2) =% S_mexp(—z coshi—yt)dt . (D

Accordingly, from (5), we obtain
Y(2) =22 {K,+;(2n2n)+ K,-y(2n2n)} — R(2), ®
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where
R =3 "+ au.
~®ed te s

In the next place, we deduce the asymptotic formulae of H$’(Za), when a is
real and positive, the value of x is finite and y tends to plus infinity. In the
following, 0 means a fixed positive number. For example 6=1/40. And we
separate the interval (0, o) of @ into five parts as

Ln: 0=<a<y—y4*3
I: y—y3re<aly—yt,
Is: y—yf <a<ly+yt,
Li: y+yt Zaly+yds,
Is: y+y5+8<a<oo .

Then the following Theorems hold valid in each of these intervals. We can
prove these Theorems, using the method of the steepest descent as in Watson (3]
pp. 235-270.

Theorem 1. In the interval I, put as z=iacosh¥, then the asymptotic for-
mula '
exp (z(tanh T=7)- %) T (m+ L)

2 An

HP (i)~ J 7 = r(}) (~Letanny)”
exp(-—z(tanh T_r>'lZ) F(m_’r%) Am
+ /mz b 1 lz tanh T\m
5 tanh 7 F( 2) (2 /

holds valid. Ifwe put as ¥ =u+iB3, then the position of 7' is decided as
4=0, og3<~’21 for x>0,

<0, 0= B>—g for x<0.

And Ao=1, A1=g — 5 coth?7, ......

From this result, we obtain the formula
2K.(a) = ‘/2” mz n)mew{%ﬂ)zexp(f(a))
w2y e"m(gg)—zexp(—f(a))%B(z)(lﬁLO(y"ga)), ©
where ¢=y 1ogl —y- 5. B(z)=y 7z : ¥221 g2 and
(@) = £, 2) =z =/ @ +zlog ; (/327 a) — 2 log 2,

The absolute value of exp(f(a)) decreases from 1 to 2-%, when @ increaes
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from 2 to y—y“} and x is positive, and increases from 1 to 2~ when x is nega-
tive. Put as @=ry, then we obtain

BG) = L—Tlm/__rz<1+o(y‘%))_

Especially, for the bounded a, we have

2K~y 22T 2] () 4 [2) T (E) T ao

a )

Theorem 2. In the interval I, put as z=iacosh?, then the asymptotic formula

Hgl)(ia)~—,—/—:§:; exp (z(tanh T—T))tanh?’exp<3 tanh® f)K_( tanh%e‘“‘)

3

hold valid, where 7 is in the same domain as in the Theovem 1.

+ 7%:; exp (—z(tanh?’— T))tanh 7 exp( —Z tanh® T)K% (% tanh?® 7’)

From this result, we obtain the formula ‘
ok 0y B (2] o el o )
) o). an

Here, Landau’s notation O is uniformly bounded with respect to all @ in Is.
Theorem 3. In the interval Is, put as z=ia(l—c¢), then the asymptotic for-

r(e3)
(s

mula

HY(Ga)~ — ?27? S dMURB (i) siné—(m%— Dr

6

2
holds valid. Here Bo(w)=1, By(w)=w, Bz(w)———l-g-—;—o, ......

From this result, we obtain the formula
e[ 1

¥ 6T (?) iz

- 2z . —3 15
e et po(1r0Ghy). (12)

Theorem 4. [In the interval I,, put as z=iacosT, then the asymptotic formula

2K.(a)=

(1) ~€° — _tz (2 7
H®(Ga)~° 1/ exp(zz(tan/ f))tanfexp( 3tan3 /’)H% (3tan3 f)
holds valid. Ifwe put as ¥=u+1B, then the position of T is decided as

0=y, 0<B§~—— for %<0,

0<a, 0;33>—% for x<0.

From this result, we obtain the formula

2,0 = B 2] 5 eplsolol],
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Here, Landau’s notation O is uniformly bounded for all @ in 4, and the absolute
value of exp(f(a)) is decreasing with respect to ¢ whether x is positive or nega-
tive and its approximated value for a=y+ y* is 7%,

Theorem 5. In the interal Is, put as z=iacos T, then the asympiotic formula

HY(Ga) ~

' 0
nZ, .
2'tan 7

holds valid. Here, A¢=1, Ax=%+§—»cot2 7y,

From this result, we obtain the formula

2K(a) = %Zie%w( N ) expl £ (0)) B(z) (1+0(y‘%6/)). (14)

The absolute value of exp(f(a)) is decreasing whether x is positive or negative
and its approximated value for ¢= y+¥% is 277, and is

exp{(—v/72 —1+tan~%/ 32 — 1y}
for a=ry (>>1). And in the inteval I;

/.

B = g (1+0(75))

In the last place, we obtain, by expanding the integrand in series,

2R = " " du=2nsecenz .

et t+e &

Accordingly
R(z) = 0(e2™).
§3. The absolute value of [T,<»(1—p~?)"1=21n"? is greater than a fixed posi-
tive number in xgé . Then we divide the series 2/#~% into two parts as

S=3n7=Tnos + Then =S1+Sz,

and can make k so gredat that the absolute value of S is sufficiently near to that
of S and the absolute value of S, is sufficiently near to zero. Corresponding to
this division of S, the function Y(z) can be divided as

Y(2)=Y(2) +Y2) - R(2).
Moreover, if we put as

22V K.(2n*n) = G(2),
this function is also divided as
G(2) = Gy(2)+Go(2) = 20z, (2mP7) + 2 L u K (202m)

And the relations

Y(z) = G(z+ i)+ G(z—~-zll—) Rz, (15)
Yl(z)=Gl<z+ i)+G1<z—%) (16)

hold valid. And, as the function G(z) is even, we can see that
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Y(iy) =22RG(%+iy)y——R(iy), an

Y1<z'y>=2mal(_}+iy) . (18)

Lemma 1. The function Y1(z) has infinitely many zero poinis on the ima-
ginary axis. And they do not accumulate in the finite region.

Proof. By using the asymptotic formula (10), we obtain

Gl<%+iy> ~ \/ge‘%nw%”(-%\)%ei’éz;ékgn“5“2“’+ (»3:—>— %e‘%’én%*?“’% . (19)

The second series in the right hand side is negligible, compared with the first
series when y is sufficiently large. So that we can say that the argument of
Gy (i +z'y> increases infinitely when y tends to infinity. On the other hand, from
(18), the purely imaginary zero points of Y1(z) are obtained as the points satisfy-
ing the condition

arg G (%—+iy) =§>< odd number.

Accordingly the function Y1(z) has infinitely many purely imaginary zero points.
These zero points do not accumulate in the finite region, because the function
Y 1(2) is an integral function. Q. E.D.

Lemma 2. Let ¢ be any small positive number, then the function Y(z) has

1o zero point in the strip egxgia, when y is su fiiciently large.
Proof. From (10) and (16), we obtain

Vi~ 2o (2] 0 JART D ()7 e,

x| g% . 20)
Accordingly

Op Ty \THE j(gum
Vi~ 20 ¥ (L] SO D e, eas ] n

While the asymptotic formula (20) holds valid uniformly in the strip |x| gl,
the formula (21) does not hold valid exactly, unless the larger we make ¥ accord-
ing as the smaller ¢ is. And the right band side of the formula (21) has no zero
point in the strip eg_xg%. So that the function Y'1(z) has no zero point in the
same strip, when y is sufficiently large.

Lemma 3. Let ¢ be any small positive number, then there are infinitely many
v’s, satisfying the simultaneous inequalies

lylogn|<Ze (mod 27), 1¢(y)+-g |<le (mod 2m), (22)

where the number of the integers n is finite. And there is such y that its ma-
gnitude is greater than an arbitrary positive number. ‘
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Proof. Let x1, %2, ...... , Xy be N given positive numbers, ¥ be an arbitrary
positive integer. Then there are an integer { smaller that ¥ and N integers i,
B2y ...... , By, as satisfy the inequalities

ltxq~8ql<}1—r, g=1,2,..., N.

(Dirichlet’s Theorem)

Put, in these inequalities, ¥/2m, log g and 2rn/¢ in place of ¢, x, and y respectively,
then we have the first inequalities of (22). And as ¢~y logy, ¢ varies very qui-
ckly when the sufficiently large y varies. So it is possible that the inequalities (22)
hold valid simultaneously by making y vary within the limit of validity of the
first inequalities of (22). That is, at least one y that satisfies (22) exists. Next,
let ¥;’s be solutions of

|ye log 7] <7 (mod 21D, §=1,2,3, ... (23)

In the above Dirichlet’s Theorem, f is an integer and non zero, so that the sclu-
tions wjs Of (23) are all greater than 1. Then the numbers

y=y1, y1+¥2, ¥V1+y2+¥3 ...
all satisfy the first inequalities of (22), and this sequence tends to infinity. We
can, here, make y vary slightly in order that the second of (22) also may hold
valid. Q.E.D.
Theorem 6. The function Y.(z) has only purgly imaginary zero points in
the strip lxlgl

4
of these zero points whose ordinates are smaller than v, is approximately

, when the ordinate of y is sujfficiently large. And the number

Yy Yy
- log +0(y) .

Proof. Consider a rectangle R whose vertices are A"(.%’ yo>, An(%“, yn)
Bn( ——%, yn) and BO(— 513’ y(,), where yo<'ys. And determine yo and y» in the
follbwing way. First., let yo be sufficiently large so that the asymptotic formula
(21) may hold valid sufficiently exactly on AoAx. Secondly, let ¥o and ¥, be solu-
tions of the inequalities (22) of the Lemma 3. ¥, is fixed and y» tends to infinity.
Here, the #’s in (22) are these which appear in the series of Yi(z).

Along the boundary of the rectangle R, let z make one round in the positive
sense and we examine the variation of the arg Y;(z). Let the variation of ¢+arg
SVn~22~% which arises when z moves along AoAn, be 0n. Then the variation of
arg Y1(z) is written as 0n+en, where the absolute value of ex is sufficiently small.
When ¢ in (22) is sufficiently small, the variation of the argument of the series of
(20) along AnBn is ~%+e;. In the same manner, the variation of argY(z)

along BoA, is %4— ef), where the absolute value is -eg is also sufficiently small.

Accordingly the variation of argY1(z) along the boundary of the rectangle R is
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201+ 2en -t ep 1 <. ' (24)
Next, we enumerate the number of the zero peints of Y'1(z) on the imaginary axis.
As has already been stated in the proof of the Lemma 1, the purely imaginary
zero points of Yi(z) are given as the points which satisfy the condition arg G,

(%-Fi y)=n/2><0dd number. On the other hand, from (10), we obtain
1, 2r Ty Dy N\t ig -} —20y o
Gl<7(+zy)~~/7e 2Ye8 (\?) e’2 n . (25)
So, if we put the variation of ¢+argY) 2 272 which arises when y varies from
Yo to ¥n, as s, then the variation of arg Gl(%-+iy) iS ¥n-+¢m, where the absolu-
te value of ¢n is sufficiently small. Accordingly, the number of purely imaginary
zero points of Y1(z) which are contained in the rectangle R, is not smaller than

4

?(19n+ en)—1. From this result and (24), we can conclude that the number

of zero points which are not purely imaginary is not greater than

%(2&&25“ e:,,+sé)~~71r—(19n+a',§)+ 1,

ﬂé—i—{v. 0.arg 3 n iy 0. arg ¥V n—%—21y+6n‘€%+(€;+6(’,)/2} +1,

)

where the notation ‘“‘v.0.” means ‘“variation of”.

The arguments of 3/ 7 172 and ¥/ #~ 72" are sufficiently near to those of
My=x(1—p"172")~1 and TTp=w(l— p"%'m )~1 respectively. So the difference v. o.
arg >V v i _p o, arg 3V nE7% ig sufficiently near to
arg ITy=x (P22 —1)(pt 27 — 1)1, (26)

As the radii p% and p% of two circles whose centers are both the point 1 are grea-
ter than 1, the absolute value of arg( péﬂw—l)( p%ﬂw—l)"l does not surpass
/2 for all values of ¥. So the value of (26) does not surpass a finite value for
all values of y. Accordingly the v.o0. S iy 0. arg Z’n-%—zw is finite for
all value of ¥. So that u is finite whatever large value of y, we may adopt. As
has already been shown in the Lemma 1, the function Y 1(z) has infinitely many
zero points in the strip legi—. So that the zero points of Y;(z) whose ordinates
are sufficiently large, are all purely imaginary.

When » is a sufficiently large positive number, the number of zero points

whose ordinates are greater than zero and smaller than y, is approximately

T+ 0. B AT,

Y 1oe 2 7. D.
- log = +0(y). Q.E.D

Next, let us consider the whole function Y (2).
Lemma 4. On the boundary of the rectangle R, we have |Y2(2)]Y(2)|<1.
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Proof. We divide the summation Ya(z) into five parts: 2n<a<y—y*'?,
1+8 1 1 3 iy 1.
y—y <Zaly-—y*, y—y“gagy-iryﬁ, y+y“§a(y+y§ "% and y‘+y3 *8 <a< oo, where
a=2nr, and name the summations corresponding these parts as 1, D2, 203, 204
and 25 respectively.
We obtain
o=

27! ;tz

5 sv iV T if, L (l)_x ~i%_ 9z y/ L }

23 {( ) e'n ’0(y6)+ —) e n’O\ys)
from the asymptotic formula which has already been given. Then, on AyAnr, we
obtain

e 0= ol (2] " Mol

: (’Wy_)% %Z’ “22-%
T

j<e

And when y becomes sufficiently large, the number of terms of >s decreases suffi-
cienfily. So the numerator in the right hand side can be considered as of order
O(y21). And the absolute value of 3 7 2" % in the denominator is greager than
a fixed positive number. Accordingly the above ratio is of order O(y 23). On
AoBy and A,B,, we cbtain
z .., 1 \ =T . r1
20 Yi(z)= Z’%(l) e"‘"n’Z’O(yE)+ (%) e“lf‘nzzo yE)
AL IR ) i(p+3) n—2? l)ﬂm —i(g+5), 200
'Z(rc)lnl( +(r: € R

The denominator in the right hand side is sufficiently near to

1 x -2
() e ()T

8o that it is of order OC y%” 1y, Accordingly, the above ratio is of order O( y":lz"' z1y,
Eventually, on the boundary of the rectangle R, the absolute value of 2» is ne-
gligible, compared with that of Y;(2).

In the same manner, 35 and X4 are both of order e"?O( y~%), so that they
are also negligible, compared with Y'1(z) on the boundary of the rectangle R.

In the next place, let us consider X)) and X)s. From the asymptotic formula
(9). We obtain

Sy = \/2” Z:TZE' )?'f 2’:};%(%)zei¢n‘2‘0(1)+(%’C—)—we—i’bn”O(l)%(é’l—rz)_l

The interval between terms of this series grow greater in the similar manner as a

geometrical series does. So the absolute value of 3 #~2~%/#1—7% is of O( v k)
when x=0. In the same way y~2°3 nzz"%/ ¥1—p2=0 (77;) Accordingly, if &
is sufficiently large, the absolute value of 3, is very sma]lj compared with that of
Y,(2) on the boundary of R. In the same way, we can conclude that the absolute
value of 235 is also negligible, compared with that of Y y(2). R(z) is also negli-
gible,
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Consequently, from Rouche’s Theorem, the number of zero points of Y(z),
contained in R is equal to that of Y,(2).
The purely imaginary zero points of Y (z) are such ¥’s that satisfy the condition

1 T —omy 1

argG(A +zy)— 5 X odd number + O(e o )
i -7y

where « is the absolute value of G(~L11—+iy) and its magnitue is O( y"ffe 2). And,

on the abscissa %, the asymptotic formula of G(i—+ivy) is sufficiently near to that

of Gl(»1-+i y). So we obtain the following Theorem.

Theorem 7. The function Y(2) has only purely imaginary zero points in the
domain in which vy is sujficiently large, and the number of the zero points in

’

Y

T

log -17_:—4— oYy).
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