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A property of Riemann's ~-function will be stated. The distribution of zeto 

points of a function similar to the former bas been studied. This is an extension 

of the result of Polya. ll § 1. Certain property of ~-function and the definition of a 

function Y(z ). § 2. Asymptotic formulae for Bessel functions. § 3. Distribution of 

zero points of Y(z). 

§ 1. Riemann defined the following ~-function 2l: 

1 ( 1 ) (00 
3 ( t .. Ht) = 2 - ! 2 + 4 J1 q,(x)x-4 cos 2 1og x) dx, (1) 

where <P(x)=:l.:l' exp ( -n2rrx), and it satisfies the relation 

1 ( 1' ' 2q,(x)+1 = /- 2<P{-)+ 1) 
Y X 'X' • 

(2) 

In -the following, !R/(z) and ':Jf(z) denote the real and imaginary part of a func­

tion f(z) respectively. Let us put as z=x+iy. 

When 1 x 1 < i , it is 

1 1 T';, '( 1) ) foo ( ( 1 ) ' 
422 

_ _!_ =- 2 (J0 exp(,z-·.r u du+J 0 exp,- z+ 4 )u du). 

4 

So that we have, for lxi<! , 

where 

Ç(2iz) = ~ (4zL-l) ~~~·(u)(ezu+e-zu)du, 

-'!:._ 1 ~­
~·(u) = q,(eu)e4 -- 2 e- 4. 

lt can easily be proved that ~·( -u)=~·(u), when we use the relation (2). 

(3) 

The distribution of the zero points of ~-function will be explained, if the dis­

tribution of zero points of a function 

E(z)= \co lJ!(u)ezudu 
.-co 

were explained. 

Let us now consider a suitable sequence of functions 

lJ!1(u), ~·z(u), ll!a(u), ......... , (4) 

where it is assumed that these functions are all even and they satisfy a conver­

gence condition 
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Then, by using Schwarz's inequality, we can prove that the functions 

S.,(z) = roo \lt.,(u)e"Udu, n = 1, 2, 3, ..... . J-oo 
tend to the function S(z) uniformly in a strip \x\<!- e, where e is an arbi­

trary small positive number. 

Accordingly, if such a suitable sequence (4) were found and the distributions 

of zero points of the functions Sn(z) were explained, the distribution of the zero 

points of S(z) would be explained. 

In this peper we take up a function 

"- "'-- 1 u u 
f/J(u) = .S'(e 4 + e- 4 )exp ( -n2 TC (eu+ e-u)) - 2 (e4 + e-4)-1, 

where the summation .S' means the same as that of IJp;;;u(l-p-•)- 1=l:'n-•, N 

being a fixed positive number. And we define a function 

(5) 

and, in this paper, let us consider the distribution of its zero points. 

~ 2. In order to solve the problem given in the preceding paragraph, we shâll 

state sorne necessary functions and sorne of their properties. 

fv(z) is the ordinary Bessel function of the fust kind of order 11 and argument 

z. When k is any constant 

]v(zé'"'i) = ekv"'fv(z), 1-v(zek"'i) = e-kV"if-v(z). 

Hankel function of the first kind is defined as 

H~l)(z) = U-v(z)-e-""''fv(z)} fi sin YTC, 

and it bas the following integral representation : 

1 ("' +i(,.- arg z+1•2) 
H~1)(z)=----. J exp(zsinht-vt)dt, (6) 

TCZ - oo +i(arg z+1•1) 

TC TC 
where z=t=O and - 2-<.uh J.!2<·2 . 

By using this function, the function 

Kv(z) = ;· e1v"'H~n(iz) 

is defined. When z is real and positive, we can see from (6) that this function 

bas the integral representation 

Kv(z) = ·~ [ooexp( -zcosht-vt)dt. (7) 

Accordingly, from (5), we obtain 

Y(z) = 22:' {K•+i(2n2TC)+ Kz-t(2n2TC)}- R(z), (8) 
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where 

In the next place, we deduce the asymptotic formulae of H~ll(t'a), when a is 

real and positive, the value of x is finite and y tends to plus infinity. In the 

following, o means a fixed positive number. For example o=1/40. And we 

separate the interval (0, oo) of a into five parts as 

h: o:::;;a<,y-y!+o' 

[ 2 : y-yt+o<a<y-yt, 

!3: y-y{ <a<.Y+yt, 

[ 4 : y+yt :::;;a<,y+yt+a, 

ls: y+yi+o<a<oo. 

Then the following Theorems hold valid in each of these intervals. W e can 

prove these Theorems, using the method of the steepest descent as in Watson (3J 

pp. 235-270. 

Theorem L In the interval l1o put as z=iacosh r, then the asymptotic for­

mula 

exp(z(tanh r-n-- in) r (m+ 1_) 
H (l)(. ) . 4 "'"' 2 z ta ~ r .. . . L.io 1 

'V -~~ztanhr r(2) 
Am 

(··-ï-- - . .,. 
-:rztanh r) 

exp ( -z(tanh r-n-x;) r (m+t) A 
+ ----=~~~~--- 2..:"' - ----."'---

~7!~2' tanh r 0 r( ~) ( tz tanh rr 
ho!ds valid. I 1 we put as i'=a+ i[3, thsn the position of r is decided as 

rl::;o, 0~[3<~ for x'2;0 , 

rr:S;O, 0~ [3>- E for x~O. 

A d A -1 A -- 1 - ,r:; th2 " n o-, 1-- 8 24 co 1, 

From this result, we obtain the formula 

l'X- "' 1" 1 'y)" ·<f>(2rr)" ( ') 2K.(a)= -yJez((rr et~~· exp !(a) 

+ (~r" e-i'/>(~n:r"exp( -/(a))(BCz)(1+0(y-~ 0 )), (9) 

where ç&=ylog·~-y-~. B(z)= 1/z: Vz2+ti2 and 

f(a) =!(a, z) = z -~/.z-z+a2+z log ~-(z+ 1/,Z2-+a2)- z log ?.f. 
t z 

The abEolute value of exp( !(a)) decreaEes from 1 to 2-", when a increaes 
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from 2rr to y- yt and x is positive, and increases from 1 to 2-"' when x is nega­

tive. Put as a=ry, then we obtain 

Especially, for the bounded a, we have 

2K,(a)-~~rr e";• { ( ~ r eiib (2;)" + ( ~-) -"' e -i9' (2;) -• S. (10) 

Theorem 2. In the interval Iz, put as z=iacosh r, then the asymptotic formula 

H~ll(ia)~- ~-~rr exp (z( tanhr-r))tanhrexp(; tanh3r)Kt(ltanh3ïe- 1"') 

+ ~ ~ rr exp ( -z( tanhï- r ))tanh r exp(-~ tanh3 r )Kt({- tanh3 r) 

hold valid, where r is in the same domain as in the Theorem 1. 

From this result, we obtain the formula 

(11) 

Here, Landau's notation 0 is uniformly bounded with respect to all a in I z. 

Theorem 3. In the interval I 3 , put as z=ia(l-ê), then the asymptotic for­

mula 

w 2 1 
holds valid. Here Bo(w)=1, B1(w)=w, B2(w)= 2--20, 

From this result, we obtain the formula 

$F - ( 1 \ 
,6rs/":l,•l .1. 

2K,(a)= 2 / · e~ 37=Cl+O(y-•)). (12) 
1 3rr ""a 

Theorem 4. In the interval I 4, put as z=ia cos r, then the asymptotic formula 

"i 

H~1)( t'a )-7~= exp ( iz (tan ï- r)) tan r exp (- ~tan3 r) Ht1) ( -j-tan3 r) 

holds valid. If we put as ï=a+z'{1, then the positz"on of r z's decided as 

for x<O, 

O::S;a, 0:?11>- ~- for x::S;O. 

From this result, we obtain the formula 
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Here, Landau's notation 0 is uniformly bounded for all a in l 4• and the absolute 

value of exp(/(a)) is decreasing with respect to a whether ::c is positive or nega­

tive and its approximated value for a= y+ yt is ~-". 
Theorem 5. ln the interal ls, put as z=iacos Y, then the asymptotic formula 

( ll( exp(iz(tanr-n-~i)" r(m+~) Am 

H. ia)~ . ~~;~nr. ~0' r(t -@t~nrf 

holds valid. Here, Ao=1, A1=t+?4cot2 r, 

From this result, we obtain the formula 

2K.(a) = ~~rr.e~"'i•( ~)" i:t>(2J)"exp(!Ca))B(z )(1+0(y-{6)). (14) 

The absolute value of exp(/(a)) is decreasing whether ::c is positive or negative 

and its approximated value for a=y+ y:l· is 2-", and is 

exp{( --1/ r2 -1 +tan- 1~ r2 ..:Dy} 

for a= ry ( r > 1). And in the inteval I 5 

~i 1 
B(z) = v-==(l+O(y-6)). 

v r 2 -1 

In the last place, we obtain, by expanding the integrand in series, 
("" e-zu 

2R(z) = J-oo .':':.. -.ô'.. du= 2rrsec2rrz. 
e4 +e 4 

Accordingly 
R(z) = O(e- 2"'-Y). 

~ 3. The absolute value of ITP~N(l-p-•)- 1 =2.:'n-• is greater than a fixed posi-
1 

tive number in ::c> 2 . Then we divide the series L:'n-• into two parts as 

5 =: 2.:' n-z = I.:~~k + L:~<n =: sl +52 ' 

and can make k so great that the absolute value of 51 is sufficiently near to that 

of S and the absolute value of 52 is sufficiently · near to zero. Corresponding to 

this division of 5, the function Y(z) can be divided as 

Y(z) = Y !Cz) + Y2(z) -- R(z). 

Moreover, if we put as 
2 L.;' Kz(2n2rr) = G(z), 

this function is also divided as 

G(z) = G1(z)+ G2(z) = 2 2.:~-s;kKz (2n2rr)+ 2 2.:~;;.~cKzC2n2 rr). 

And the relations 

(15) 

(16) 

hold valid. And, as the function G(z) is even, we can see that 
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Y(iy) = 2mc(! +iy ),- R(iy), (17) 

Y1(iy)=2lRGl(! +z'y). (18) 

Lemma 1. The !unction Y I(z) has in:/initely many zero points on the ima­

ginary axis. And they do not accumulate z'n the :/inite region. 

Proof By using the asymptotic formula (10), we obtain 

c 1(! +z'y)~ ~~e-~ .. ll+t"{})* il"I:~~kin-~-2ill+ (~r~e_ziy;n~+2i11~. o9) 

The second series in the right band side is negligible, compared with the first 

series when y is sufficiently large. So that we can say that the argument of 

G1 (! + iy) increases infinitely when y tends to infinity. On the other hand, from 

(18), the purely imaginary zero points of Y 1Cz) are obtained as the points satisfy­

ing the condition 

arg G1 ( i + iy) = ; x odd number. 

Accordingly the function Y lz) has infinitely many purely imaginary zero points. 

These zero points do not accumulate in the finite region, because the function 

Y 1(z) is an integral function. Q. E. D. 

Lemma 2. Let e be any small positive number, then the lunctz'on Y 1(z) has 

no zero point in the strip e<x<-}. when y is su.fficiently lçtrge. 

Proof From (10) and (16), we obtain 

\xl<!. (20) 

Accordingly 

Y1(z)~ /2n e~· (L). "'+~- ei(Y'+~):E' n-z·-~- e<x< 1 (21) 
'Vy .TC '--4 

While the asymptotic formula (20) holds valid uniformly in the strip lxi <_1-
--4' 

the formula (21) does not hold valid exactly, unless the larger we make y accord-

ing as the smaller e is. And the right band side of the formula (21) bas no zero 

point in the strip e<x::;!. So that the function Y 1Cz) has no zero point in the 

same strip, when y is sufficiently large. 

Lemma 3. Let e be any small positive number, then there are infinitely many 
y's, satis/ying the simultaneous inequalies 

lylognl<e (mod 2n), \çb(y)+ ~ l<e (mod 2n), (22) 

where the number of the integers n is finite. And there is such y that its ma­

gnitude is greater than an arbitrary positive number. ' 
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Prao/. Let X1. x 2 , ••.•.. , X.N be N given positive numbers, y be an arbitrary 

positive integer. Then there are an integer t srnaller that y.N and N integers fh, 

liz, ...... , li .N• as satisfy the inequalities 

(Dirichlet's Theorem) 

Put, in these inequalities, y /2rr, log q and 2rr / e in place of t, Xq and y respectively, 

then we have the first inequalities of (22). And as cp-y log y, cp varies very qui­

ckly when the sufficiently large y varies. So it is possible that the inequalities (22) 

hold valid simultaneously by making y vary within the limit of validity of the 

first inequalities of (22). That is, at least one y that satisfies (22) exists. Next, 

let Yi 's be solutions of 

!ydogn!<2i~ 1 (mod 2rr), i=1,2,3, ..... . (23) 

In the above Dirichlet's Theorem, t is an integer and non zero, so that the solu­

tions y;s Of (2~~) are ali greater than 1. Then the numbers 

y=y1, Y1 + Yz, Y1 + Yz + y3, ······ 

all satisfy the first inequalities of (22), and this sequence tends to infinity. We 

can, here, make y vary slightly in order that the second of (22) also may hold 

valid. Q. E. D. 

Theorem 6. The function Y 1(z) has only pure! y z"maginary zero points in 

the strip lx 1:;;:::;!, zvhen the ordinate of y is sufficiently large. And the number 

of these zero points zvhose ordinates are smaller than y, is approximately 

}'--log J' + 0( y) . 
7r 7r 

'1 ) ( 1 •, P~oo/. . Consider( a 1recta)ngle R whose vertices are Ao(g, Yo , A,. B' Yn) 

Bn(- ·~p y,) and B 0 ·.- 8 , Yo , where Yo<yn. And determine Yo and y, in the 

following way. First, let y 0 be sufficiently large so that the asymptotic formula 

(21) may hold valid sufficiently exactly on AoAn. Secondly, let Yo and y, be solu­

tions of the inequalities (22) of the Lemma 3. Yo is fixed and Yn tends to infinity. 

Here, the n's in (22) are these which appear in the series of Yl(z). 

Along the boundary of the rectangle R, let z make one round in the positive 

sense and we examine the variation of the arg Yl(z). Let the variation of ift+arg 

L:'n-z•-~ which arises when z moves along AoAn, be Bn. Then the variation of 

argY1(z) is written as Bn+en, where the absolute value of en is sufficiently small. 

When e in (22) is sufficiently small, the variation of the argument of the series of 

(20) along A,.B, is ---~+ e~. In the same manner, the variation of argY 1(z) 

along BoAo is ~ + e~, where the absolute value is e~ is also sufficiently small. 

Accordingly the variation of argY I(z) along the boundary of the rectangle R is 
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2fin+2t::n+t::~ +- <::~. (24) 

Next, we enumera te the number of the zero points of Y 1(z) on the imaginary axis. 

As has already been stated in the proof of the Lemma 1, the purely imaginary 

zero points of Y 1Cz) are given as the points which satisfy the condition arg G1 

(! + z"y) =rr/2x odd number. On the other hand, from (10), we obtain 

(25) 

So, if we put the variation of <ft+arg'E 1 n-~-uv which arises when y varies from 

Yo to y,., as iJ,, tben the variation of arg G1( ~~+ z"y) is iJ,.+ t~, where the absolu­

te value of .~ is sufficiently small. Accordingly, the number of purely imaginary 

zero points of Y1(z) which are contained in the rectangle R, is not smaller than 

l(iJ,.+e;;)-1. From this result and (24), we can conclude that the number 11 
iT 

of zero points whkh are not purely imaginary is not greater than 

1.(28,+2<,.+ e~+ <0
1 ) -1_( lJn+ e~)+ 1, 

~iT iT 

i.e., 

___.- 1 { .._, 1 -"-uv .._, 1 -1-uv , ( 1 1 j } p.~- v.o.arg.<:..J n ·J -v.o.arg.<:..J n 2 +en-en+ <n+e0 ) 2 +1, 
iT 

where the notation "v. o." means "variation of". 

The arguments of '2: 1 n-~ - 2iv and '2: 1 n-~-2 ; 11 are sufficiently near to thœe of 

IIP~N(l-p-4-2iY)- 1 and TIP~'N(l- p-~-2w )- 1 respectively. So the difference v. o. 

arg '2: 1 n-!{-uu- v. o. arg '2: 1 n-!-2; 11 is sufficiently near to 

arg IIP~.N' (p~+ 2 i 11 -1)(p~+ 2 i 11 -1)- 1 • (26) 

As the radii p~ and p~- of two circles whose centers are bath the point 1 are grea­

ter than 1, the absolute value of arg(p~+ 2 i 11 -1)(pt+z;v_1)- 1 does not surpass 

rr/2 for aU values of y. So the value of (26) does not surpass a finite value for 
_;) __ 2i!l "'1 _:t_2iV 

ali values of y. Accordingly the v. o. '2: 1 n 4 -v. o. arg .<:..J n 2 is finite for 

ail value of y. So that p. is finite whatever large value of y,. we may adopt. As 

has already been shawn in the Lemma 1, the function Y1(z) bas infinitely many 

zero points in the strip lx 1 <-:Î-· So that the zero points of Y 1Cz) whose ordinates 

are sufficiently large, are all purely imaginary. 

When y is a sufficiently large positive number, the number of zero points 

whose ordinates are greater than zero and smaller than y, is approximately 

l_(ifi(y)+v. o. 'E' n-!-z;v), 
iT 

i.e., 

Q. E. D. 

Next, let us consider the whole function Y(z). 

Lemma 4. On the bvundary of the rectangle R, we have 1 Y z(z)/Y 1Cz)l <L 
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Proo/. We divide the summation Y 2(z) into five parts: 2TC;5;a<y- yf+o, 
__!+(; J__ _l.. J. _1_ }_..0 l+ô 

y--y' 5a<y-y•, y-y',;:;a;;:::y+y 4 , y+y•;S:a/y+y3 · and y+y3 5a<oo, where 

a=2n2 TC, and name the summations corresponding these parts as '2::1> '2::2, '2::3, '2::4 
and '2:: 5 respective! y. 

We obtain 

'2::2 =~~TC /f L; 1 {(; r irDn-2• 0(y!) + (~ r" e-i1'n2•Q(y1)} 

from the asymptotic formula which bas already been given. Then, on A 0An, we 
obtain 

1 y \ 1 "'' : ( ;r-j'e·~-L:'n-2•-~. 

And when y becomes sufficiently large, the number of terms of '2::2 decreases suffi­

ciently. So the numerator in the right hand side can be considered as of order 
1 

O(y24). And the absolute value of '2::' n- 2·-~ in the denominator is greater than 
5 

a fixed positive number. Accordingly the a hove ratio is of order O(y -24). On 

AoBo and A11Bn, we obtain 

'2::2: Y 1(z )= '2::'1( ~ r irDn-2•Q(yt) + ( ~-(" e-irDn2•Q(y~) ( 

: '2::' (X)*·/1-~ 1(' X)"' iC1'+S)n-2"+ (X)-" e -i(7' +i )n2•(1 TC l/nÎTC TC • 

The denominator in the right hand side is sufficiently near to 

L:'(L )'r -1=l(L)"'n-2"+ (L)-"n2"( 
'li:· ~nl TC ,TC ' 

1 1 
so that it is of order O(y4 + 1" '). Accordingly, the above ratio is of order O(y-::2- 1 " 1 ). 

Eventually, on the boundary of the rectangle R, the absolute value of '2::2 is ne­

gligible, compared with that of Y 1Cz ). 
""" In the same manner, '2:: 3 and '2:: 4 are both of order e--to(y-1·), so that they 

are also negligible, compared with Y 1(z) on the boundary of the rectangle R. 

In the next place, let us consider '2::1 and I:s. From the asymptotic formula 

(9). We obtain 

'2::1 = ~2; /-!!- ( ~l '2::' ); l (~-ri?' n-2"0(1)+ ( ~-r" e -i5(l n2• 0(1)H t 11- r2 r1. 

The interval between terms of this series grow greater in the similar manner as a 

geometrical seriesdoes. So the absolute val~e of L;n-2"-~/V1-r2 is of o(;}k)' 
when x>O. In the same way y- 2"'2:: n2•-:r ;vr=-~=o(}1J. Accordingly, if k 

is sufficiently large, the absolute value of '2::1 is very small, compared with that of 

Y lz) on the boundary of R. In the same way, we can conclude that the absolute 

value of I:s is also negligible, compared with that of Y ,(z). R(?) is also nepJi­

gible, 
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Consequently, from Rouche's Theorem, the number of zero points of Y(z), 

contained in R is equal to th at of Y 1 ( z ). 
The purely imaginary zero points of Y(z) are such y's that satisfy the condition 

argc(f+iy)=; x odd number + o(e-2"'11 rr 1 ) , 

where u. is the absolute value of c(f+ z"y) and its magnitue is O(y-~~ e -;"), And, 

on the abscissa 1-, the asymptotic formula of c( {'-+ z"y) is sufficiently near to that 

of G1 (} + z'y ). So we obtain the following Theorem. 

Theorem 7. The !unctz"on Y(z) has only purely {maginary zero points in the 

domain z'n which y z's suffiâently large, and the number of the zero points z'n 

o;;;:::y;;;:::Y is 
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2) Riemann, B: Werke. 
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