Note on Riemann's ξ-function

By Osamu Miyatare

(Received May 20, 1951)

A property of Riemann's ξ-function will be stated. The distribution of zeto points of a function similar to the former has been studied. This is an extension of the result of Pólya. ${ }^{1)} \$ 1$. Certain property of ξ-function and the definition of a function $Y(z)$. §2. Asymptotic formulae for Bessel functions. §3. Distribution of zero points of $Y(z)$.
$\S 1$. Riemann defined the following ξ-function ${ }^{2}$:

$$
\begin{equation*}
\xi(t)=\frac{1}{2}-\left(t^{2}+\frac{1}{4}\right) \int_{1}^{\infty} \psi(x) x^{-\frac{3}{4}} \cos \left(\frac{t}{2} \log x\right) d x, \tag{1}
\end{equation*}
$$

where $\psi(x)=\sum_{1}^{\infty} \exp \left(-n^{2} \pi x\right)$, and it satisfies the relation

$$
\begin{equation*}
2 \psi(x)+1=\frac{1}{\sqrt{x}}\left(2 \psi\left(\frac{1}{x}\right)+1\right) . \tag{2}
\end{equation*}
$$

 tion $f(z)$ respectively. Let us put as $z=x+i y$.

When $|x|<\frac{1}{4}$, it is

$$
\frac{1}{4 z^{2}-\frac{1}{4}}=-\frac{1}{2}\left(\int_{0}^{\dot{\infty}} \exp \left(\left(z-\frac{1}{4}\right) u\right) d u+\int_{0}^{\infty} \exp \left(-\left(z+\frac{1}{4}\right) u\right) d u\right)
$$

So that we have, for $|x|<\frac{1}{4}$,

$$
\begin{equation*}
\xi(2 i z)=\frac{1}{2}\left(4 z^{2}-\frac{1}{4}\right) \int_{0}^{\infty} \Psi(u)\left(e^{z u}+e^{-z u}\right) d u \tag{3}
\end{equation*}
$$

where

$$
\Psi(u)=\psi\left(e^{u}\right) e^{\frac{u}{4}}-\frac{1}{2} e^{-\frac{u}{4}} .
$$

It can easily be proved that $\Psi(-u)=\Psi(u)$, when we use the relation (2).
The distribution of the zero points of ξ-function will be explained, if the distribution of zero points of a function

$$
E(z)=\int_{-\infty}^{\infty} \Psi(u) e^{z u} d u
$$

were explained.
Let us now consider a suitable sequence of functions

$$
\begin{equation*}
\Psi_{1}(u), \Psi_{2}(u), \Psi_{3}(u), \ldots \ldots \ldots, \tag{4}
\end{equation*}
$$

where it is assumed that these functions are all even and they satisfy a convergence condition

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty}\left(e^{\frac{u}{4}}+e^{-\frac{u}{4}}\right)^{2}\left|\Psi(u)-\Psi_{n}(u)\right|^{2} d u=0
$$

Then, by using Schwarz's inequality, we can prove that the functions

$$
\Xi_{n}(z)=\int_{-\infty}^{\infty} \Psi_{n}(u) e^{z u} d u, n=1,2,3, \cdots \cdots
$$

tend to the function $\Xi(z)$ uniformly in a strip $|x| \leqq \frac{1}{4}-\varepsilon$, where ε is an arbitrary small positive number.

Accordingly, if such a suitable sequence (4) were found and the distributions of zero points of the functions $\Xi_{n}(z)$ were explained, the distribution of the zero points of $\boldsymbol{\Xi}(z)$ would be explained.

In this peper we take up a function

$$
\Phi(u)=\Sigma^{\prime}\left(e^{\frac{u}{4}}+e^{-\frac{u}{4}}\right) \exp \left(-n^{2} \pi\left(e^{u}+e^{-u}\right)\right)-\frac{1}{2}\left(e^{\frac{u}{4}}+e^{-\frac{u}{4}}\right)^{-1}
$$

where the summation Σ^{\prime} means the same as that of $\Pi_{p \leqq}\left(1-p^{-z}\right)^{-1}=\Sigma^{\prime} n^{-z}, N$ being a fixed positive number. And we define a function

$$
\begin{equation*}
Y(z)=\int_{-\infty}^{\infty} \Phi(u) e^{z u} d u \tag{5}
\end{equation*}
$$

and, in this paper, let us consider the distribution of its zero points.
$\S 2$. In order to solve the problem given in the preceding paragraph, we shall state some necessary functions and some of their properties.
$J_{\nu}(z)$ is the ordinary Bessel function of the first kind of order ν and argument z. When k is any constant

$$
J_{\nu}\left(z e^{k \pi i}\right)=e^{k \nu \pi i} J_{\nu}(z), \quad J_{-\nu}\left(z e^{k \pi i}\right)=e^{-k \nu \pi i} J_{-\nu}(z)
$$

Hankel function of the first kind is defined as

$$
H_{\nu}^{(1)}(z)=\left\{J_{-\nu}(z)-e^{-v \pi i} J_{\nu}(z)\right\} / i \sin \nu \pi
$$

and it has the following integral representation:

$$
\begin{equation*}
H_{\nu}^{(1)}(z)=\frac{1}{\pi i} \int_{-\infty+i\left(\arg z+\mu_{1}\right)}^{\infty+i\left(\pi-\arg z+\mu_{2}\right)} \exp (z \sinh t-\nu t) d t \tag{6}
\end{equation*}
$$

where $z \neq 0$ and $-\frac{\pi}{2}<\mu_{1}, \mu_{2}<\frac{\pi}{2}$.
By using this function, the function

$$
K_{\nu}(z)=\frac{\pi i}{2} e^{\frac{1}{2} \nu \pi i} H_{\nu}^{(1)}(i z)
$$

is defined. When z is real and positive, we can see from (6) that this function has the integral representation

$$
\begin{equation*}
K_{\nu}(z)=\frac{1}{2} \int_{-\infty}^{\infty} \exp (-z \cosh t-\nu t) d t \tag{7}
\end{equation*}
$$

Accordingly, from (5), we obtain

$$
\begin{equation*}
Y(z)=2 \Sigma^{\prime}\left\{K_{z+\frac{1}{4}}\left(2 n^{2} \pi\right)+K_{z-\frac{1}{4}}\left(2 n^{2} \pi\right)\right\}-R(z) \tag{8}
\end{equation*}
$$

where

$$
R(z)=\frac{1}{2} \int_{-\infty}^{\infty} \frac{e^{z u}}{e^{\frac{u}{4}}+e^{-\frac{u}{4}}} d u
$$

In the next place, we deduce the asymptotic formulae of $H_{z}^{(1)}(i a)$, when a is real and positive, the value of x is finite and y tends to plus infinity. In the following, δ means a fixed positive number. For example $\delta=1 / 40$. And we separate the interval ($0, \infty$) of a into five parts as

$$
\begin{array}{ll}
I_{1}: & 0 \leqq a<y-y^{\frac{1}{3}}+\delta, \\
I_{2}: & y-y^{\frac{1}{3}+\delta} \leqq a<y-y^{\frac{1}{4}}, \\
I_{3}: & y-y^{\frac{1}{4}} \leqq a<y+y^{\frac{1}{4}}, \\
I_{4}: & y+y^{\frac{1}{4}} \leqq a<y+y^{\frac{1}{3}}+\delta, \\
I_{5}: & y+y^{\frac{1}{3}}+\delta \leqq a<\infty .
\end{array}
$$

Then the following Theorems hold valid in each of these intervals. We can prove these Theorems, using the method of the steepest descent as in Watson [3] pp. 235-270.

Theorem 1. In the interval I_{1}, put as $z=i a \cosh \gamma$, then the asymptotic formula

$$
\begin{aligned}
& H_{z}^{(1)}(i a) \sim \frac{\exp \left(z(\tanh \gamma-\gamma)-\frac{i \pi}{4}\right)}{\sqrt{-\frac{\pi i z}{2} \tanh \gamma}} \sum_{0}^{\infty} \frac{\Gamma\left(m+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)} \frac{A_{m}}{\left(-\frac{1}{2} z \tanh \gamma\right)^{m}} \\
&\left.+\frac{\exp (-z(\tanh \gamma-\gamma)-i \pi}{4}\right) \\
& \sqrt{\frac{\pi i z}{2} \tanh \gamma} \sum_{0}^{\infty} \frac{\Gamma\left(m+\frac{1}{2}\right)}{\Gamma\binom{1}{2}} \frac{A_{m}}{\left(\frac{1}{2} z \tanh \gamma\right)^{m}}
\end{aligned}
$$

holds valid. If we put as $\gamma=\alpha+i \beta$, then the position of γ is decided as

$$
\begin{array}{ll}
« \leqq 0, \quad 0 \leqq \beta<\frac{\pi}{2} \text { for } x \geqq 0, \\
« \leqq 0, \quad 0 \geqq \beta>-\frac{\pi}{2} \text { for } x \leqq 0 .
\end{array}
$$

And $A_{0}=1, A_{1}=\frac{1}{8}-\frac{5}{24} \operatorname{coth}^{2} \check{\gamma}, \ldots \ldots$
From this result, we obtain the formula

$$
\begin{align*}
2 K_{z}(a)= & \sqrt{\frac{2 \pi}{y}} e^{\frac{\pi i z}{2}}\left\{\binom{y}{\pi}^{x} e^{i \phi\left(\frac{2 \pi}{a}\right)^{z} \exp (f(a))}\right. \\
& \left.+\binom{y}{\pi}^{-x} e^{-i \phi}\left(\frac{2 \pi}{a}\right)^{-z} \exp (-f(a))\right\} B(z)\left(1+0\left(y^{-\frac{3}{2} \delta}\right)\right), \tag{9}
\end{align*}
$$

where $\phi=y \log \frac{y}{\pi}-y-\frac{\pi}{4} . B(z)=\sqrt{ } z: \sqrt[4]{z^{2}+a^{2}}$ and

$$
f(a)=f(a, z)=z-\sqrt{z^{2}+a^{2}}+z \log \frac{1}{i}\left(z+\sqrt{z^{2}+a^{2}}\right)-z \log \frac{2 z}{i} .
$$

The absolute value of $\exp (f(a))$ decreases from 1 to 2^{-x}, when a increaes
from 2π to $y-y^{\frac{1}{4}}$ and x is positive, and increases from 1 to 2^{-x} when x is negative. Put as $a=r y$, then we obtain

$$
B(z)=\frac{1}{\sqrt[4]{1-r^{2}}}\left(1+O\left(y^{-\frac{1}{6}}\right)\right)
$$

Especially, for the bounded a, we have

$$
\begin{equation*}
2 K_{z}(a) \sim \sqrt{\frac{2 \pi}{y}} e^{\frac{\pi i z}{2}}\left\{\left(\frac{y}{\pi}\right)^{x} e^{i \phi}\left(\frac{2 \pi}{a}\right)^{z}+\left(\frac{y}{\pi}\right)^{-x} e^{-i \phi}\left(\frac{2 \pi}{a}\right)^{-z}\right\} \tag{10}
\end{equation*}
$$

Theorem 2. In the interval I_{2}, put as $z=i a \cosh \gamma$, then the asymptotic formula

$$
\begin{aligned}
H_{z}^{(1)}(i a) \sim & -\frac{2}{\sqrt{3} \pi} \exp (z(\tanh \gamma-\gamma)) \tanh \gamma \exp \left(\frac{z}{3} \tanh ^{3} \gamma\right) K_{\frac{1}{3}}\left(\frac{z}{3} \tanh ^{3} \gamma e^{-i \pi}\right) \\
& +\frac{2}{\sqrt{3} \pi} \exp (-z(\tanh \gamma-\gamma)) \tanh \gamma \exp \left(-\frac{z}{3} \tanh ^{3} \gamma\right) K_{\frac{1}{3}}\left(\frac{z}{3} \tanh ^{3} \gamma\right)
\end{aligned}
$$

hold valid, where r is in the same domain as in the Theorem 1.
From this result, we obtain the formula

$$
\begin{align*}
2 K_{z}(a) & =\sqrt{\frac{2 \pi}{y}} e^{\frac{\pi i z}{2}}\left\{\left(\frac{y}{\pi}\right)^{x} e^{i \phi\left(\frac{2 \pi}{a}\right)^{z} \exp (f(a)) O\left(y^{\frac{1}{6}}\right)}\right. \\
& \left.+\left(\frac{y}{\pi}\right)^{-x} e^{-i \phi}\left(\frac{2 \pi}{a}\right)^{-z} \exp (-f(a)) O\left(y^{\frac{1}{6}}\right)\right\} \tag{11}
\end{align*}
$$

Here, Landau's notation O is uniformly bounded with respect to all a in I_{2}.
Theorem 3. In the interval I_{3}, put as $z=i a(1-\varepsilon)$, then the asymptotic formula

$$
H_{z}^{(1)}(i a) \sim-\frac{2}{3 \pi} \sum_{0}^{\infty} e^{\frac{2}{3}(m+1) \pi_{i}} B_{m}(\varepsilon i a) \sin \frac{1}{3}(m+1) \pi \frac{\Gamma\left(\frac{m}{3}+\frac{1}{3}\right)}{\left(\frac{1}{6} i a\right)^{\frac{1}{3}(m+1)}}
$$

holds valid. Here $B_{0}(w)=1, B_{1}(w)=w, B_{2}(w)=\frac{w^{2}}{2}-\frac{1}{20}, \ldots \ldots$
From this result, we obtain the formula

$$
\begin{equation*}
2 K_{z}(a)=\frac{\sqrt[3]{6} \Gamma\left(\frac{1}{3}\right)}{2 \sqrt{3 \pi}} e^{\frac{\pi i z}{2}} \frac{1}{\sqrt[3]{\sqrt{y}}}-\left(1+O\left(y^{-\frac{1}{3}}\right)\right) \tag{12}
\end{equation*}
$$

Theorem 4. In the interval I_{4}, put as $z=i a \cos \gamma$, then the asymptotic formula

$$
H_{z}^{(1)}(i a) \sim \frac{e^{\frac{\pi i}{6}}}{\sqrt{3}} \exp (i z(\tan \gamma-\gamma)) \tan \gamma \exp \left(-\frac{i z}{3} \tan ^{3} \gamma\right) H_{\frac{1}{3}}^{(1)}\left(\frac{z}{3} \tan ^{3} \gamma\right)
$$

holds valid. If we put as $\gamma=\alpha+i \beta$, then the position of γ is decided as

$$
\begin{array}{lll}
0 \leqq k, & 0 \leqq \beta<\frac{\pi}{2} \quad \text { for } \quad x \leqq 0 \\
0 \leqq \alpha, & 0 \geqq \beta>-\frac{\pi}{2} \quad \text { for } \quad x \leqq 0
\end{array}
$$

From this result, we obtain the formula

$$
\begin{equation*}
2 K_{z}(a)=\sqrt{\frac{2 \pi}{y}} e^{\frac{1}{2} \pi i z}\left(\frac{y}{\pi}\right)^{x} e^{i \phi}\left(\frac{2 \pi}{a}\right)^{z} \exp (f(a)) O\left(y^{\frac{1}{6}}\right) \tag{13}
\end{equation*}
$$

Here, Landau's notation O is uniformly bounded for all a in I_{4}, and the absolute value of $\exp (f(a))$ is decreasing with respect to a whether x is positive or negative and its approximated value for $a=y+y^{\frac{1}{4}}$ is \mathcal{L}^{-x}.

Theorem 5. In the interal I_{5}, put as $z=i a \cos \gamma$, then the asymptotic formula

$$
H_{z}^{(1)}(i a) \sim \frac{\exp \left(i z(\tan \gamma-\gamma)-\frac{\pi i}{4}\right)}{\sqrt{\frac{\pi z}{2} \tan \gamma}} \sum_{0}^{\infty} \frac{\Gamma\left(m+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\right.} \frac{A_{m}}{\left(\frac{i z}{2} \tan \gamma\right)^{m}}
$$

holds valid. Here, $A_{0}=1, A_{1}=\frac{1}{8}+\frac{5}{24} \cot ^{2} \gamma, \ldots \ldots$
From this result, we obtain the formula

$$
\begin{equation*}
2 K_{z}(a)=\sqrt{\frac{2 \pi}{y}} e^{\frac{1}{2} \pi i z}\left(\frac{y}{\pi}\right)^{x} e^{i \psi}\left(\frac{2 \pi}{a}\right)^{z} \exp (f(a)) B(z)\left(1+O\left(y^{-\frac{3}{2} \delta}\right)\right) . \tag{14}
\end{equation*}
$$

The absolute value of $\exp (f(a))$ is decreasing whether x is positive or negative and its approximated value for $a=y+y^{\frac{1}{4}}$ is 2^{-x}, and is

$$
\exp \left\{\left(-\sqrt{r^{2}-1}+\tan ^{-1} \sqrt{r^{2}-1}\right) y\right\}
$$

for $a=r y(r>1)$. And in the inteval I_{5}

$$
B(z)=\frac{\sqrt{i}}{\sqrt[4]{r^{2}-1}}\left(1+O\left(y^{-\frac{1}{6}}\right)\right) .
$$

In the last place, we obtain, by expanding the integrand in series,

$$
2 R(z)=\int_{-\infty}^{\infty} \frac{e^{-z u}}{e^{\frac{u}{4}}+e^{-\frac{u}{4}}} d u=2 \pi \sec 2 \pi z
$$

Accordingly

$$
R(z)=O\left(e^{-2 \pi y}\right) .
$$

S_{S}^{3}. The absolute value of $\Pi_{p} \leqq_{N}\left(1-p^{-z}\right)^{-1}=\Sigma^{\prime} n^{-z}$ is greater than a fixed positive number in $x \geq \frac{1}{2}$. Then we divide the series $\Sigma^{\prime} n^{-z}$ into two parts as

$$
S \equiv \Sigma^{\prime} n^{-z}=\Sigma_{n \leqq k}^{\prime}+\Sigma_{k<n}^{\prime} \equiv S_{1}+S_{2}
$$

and can make k so great that the absolute value of S_{1} is sufficiently near to that of S and the absolute value of S_{2} is sufficiently near to zero. Corresponding to this division of S, the function $Y(z)$ can be divided as

$$
Y(z)=Y_{1}(z)+Y_{2}(z)-R(z) .
$$

Moreover, if we put as

$$
2 \Sigma^{\prime} K_{z}\left(2 n^{2} \pi\right)=G(z),
$$

this function is also divided as

$$
G(z)=G_{1}(z)+G_{2}(z)=2 \Sigma_{n \leqq k}^{\prime} K_{z}\left(2 n^{2} \pi\right)+2 \sum_{n>k}^{\prime} K_{z}\left(2 n^{2} \pi\right) .
$$

And the relations

$$
\begin{align*}
& Y(z)=G\left(z+\begin{array}{l}
1 \\
4
\end{array}\right)+G\left(z-\frac{1}{4}\right)-R(z), \tag{15}\\
& Y_{1}(z)=G_{1}\left(z+\begin{array}{l}
1 \\
4
\end{array}\right)+G_{1}\left(z-\frac{1}{4}\right) \tag{16}
\end{align*}
$$

hold valid. And, as the function $G(z)$ is even, we can see that

$$
\begin{align*}
& Y(i y)=2 \Re G\left(\frac{1}{4}+i y\right)-R(i y) \tag{17}\\
& Y_{1}(i y)=2 \Re G_{1}\left(\frac{1}{4}+i y\right) \tag{18}
\end{align*}
$$

Lemma 1. The function $Y_{1}(z)$ has infinitely many zero points on the imaginary axis. And they do not accumulate in the finite region.

Proof. By using the asymptotic formula (10), we obtain

$$
\begin{equation*}
G_{1}\left(\frac{1}{4}+i y\right) \sim \sqrt{\frac{2 \pi}{y}} e^{-\frac{1}{2} \pi y+\frac{+}{8} i}\left(\frac{y}{\pi}\right)^{\frac{1}{4}} e^{i \phi} \Sigma_{n \leqq x}^{\prime}\left\{^{\left.n^{-\frac{1}{2}-2 i y}+\left(\frac{y}{\pi}\right)^{-\frac{1}{2}} e^{-2 i \phi} n^{\frac{1}{2}+2 i y}\right\} . ~ . ~}\right. \tag{19}
\end{equation*}
$$

The second series in the right hand side is negligible, compared with the first series when y is sufficiently large. So that we can say that the argument of $G_{1}\left(\begin{array}{l}1 \\ 4\end{array}+i y\right)$ increases infinitely when y tends to infinity. On the other hand, from (18), the purely imaginary zero points of $Y_{1}(z)$ are obtained as the points satisfying the condition

$$
\arg G_{1}\left(\frac{1}{4}+i y\right)=\frac{\pi}{2} \times \text { odd number. }
$$

Accordingly the function $Y_{1}(z)$ has infinitely many purely imaginary zero points. These zero points do not accumulate in the finite region, because the function $Y_{1}(z)$ is an integral function. Q. E. D.

Lemma 2. Let \& be any small positive number, then the function $Y_{1}(z)$ has no zero point in the strip $\varepsilon \leqq x \leqq \frac{1}{4}$, when y is sufficiently large.

Proof. From (10) and (16), we obtain

$$
\begin{align*}
& Y_{1}(z) \sim \sqrt{\frac{2 \pi}{y}} e^{\frac{\pi i z}{2}}\left(\frac{y}{\pi}\right)^{\frac{1}{4}} \Sigma^{\prime} \frac{1}{\sqrt{n}}\left\{\left(\frac{y}{\pi}\right)^{x} e^{i\left(\phi \vdash \frac{\pi}{8}\right)} n^{-2 z}+\left(\frac{y}{\pi}\right)^{-x} e^{-i\left(\phi+\frac{\pi}{8}\right)} n^{2 z}\right\}, \\
&|x| \leqq \frac{1}{4} \tag{20}
\end{align*}
$$

Accordingly

$$
\begin{equation*}
Y_{1}(z) \sim \sqrt{\frac{2 \pi}{y}} e^{\frac{\pi i z}{2}}\left(\frac{y}{\pi}\right)^{x+\frac{1}{4}} e^{i\left(\phi+\frac{\pi}{8}\right)} \Sigma^{\prime} n^{-2 z-\frac{1}{2}}, \quad \varepsilon \leqq x \leqq 4 \tag{21}
\end{equation*}
$$

While the asymptotic formula (20) holds valid uniformly in the strip $|x| \leqq \frac{1}{4}$, the formula (21) does not hold valid exactly, unless the larger we make y according as the smaller ε is. And the right hand side of the formula (21) has no zero paint in the strip $\varepsilon \leqq x \leqq \frac{1}{4}$. So that the function $Y_{1}(z)$ has no zero point in the same strip, when y is sufficiently large.

Lemma 3. Let ε be any small positive number, then there are infinitely many y 's, satisfying the simultaneous inequalies

$$
\begin{equation*}
|y \log n|<\varepsilon(\bmod 2 \pi), \quad\left|\phi(y)+\frac{\pi}{8}\right|<\varepsilon(\bmod 2 \pi), \tag{22}
\end{equation*}
$$

where the number of the integers n is finite. And there is such y that its magnitude is greater than an arbitrary positive number.

Proof. Let $x_{1}, x_{2}, \ldots \ldots, x_{N}$ be N given positive numbers, y be an arbitrary positive integer. Then there are an integer t smaller that y^{N} and N integers β_{1}, $\beta_{2}, \ldots \ldots, \beta_{N}$, as satisfy the inequalities

$$
\left|t x_{q}-\beta_{q}\right|<\frac{1}{y}, \quad q=1,2, \ldots \ldots, N .
$$

(Dirichlet's Theorem)
Put, in these inequalities, $y / 2 \pi, \log q$ and $2 \pi / \varepsilon$ in place of t, x_{q} and y respectively, then we have the first inequalities of (22). And as $\phi \sim y \log y, \phi$ varies very quickly when the sufficiently large y varies. So it is possible that the inequalities (22) hold valid simultaneously by making y vary within the limit of validity of the first inequalities of (22). That is, at least one y that satisfies (22) exists. Next, let y_{i} 's be solutions of

$$
\begin{equation*}
\left|y_{i} \log n\right|<\frac{\varepsilon}{2^{i+1}}(\bmod 2 \pi), \quad i=1,2,3, \ldots \ldots \tag{23}
\end{equation*}
$$

In the above Dirichlet's Theorem, t is an integer and non zero, so that the solutions $y_{i} \mathrm{~s}$ of (23) are all greater than 1 . Then the numbers

$$
y=y_{1}, y_{1}+y_{2}, y_{1}+y_{2}+y_{3}, \ldots \ldots
$$

all satisfy the first inequalities of (22), and this sequence tends to infinity. We can, here, make y vary slightly in order that the second of (22) also may hold valid.
Q. E. D.

Theorem 6. The function $Y_{1}(z)$ has only purely imaginary zero points in the strip $|x| \leqq \frac{1}{4}$, when the ordinate of y is sufficiently large. And the number of these zero points whose ordinates are smaller than y, is approximately

$$
\frac{y}{\pi} \log \frac{y}{\pi}+O(y) .
$$

Proof. Consider a rectangle R whose vertices are $A_{0}\left(\frac{1}{8}, y_{0}\right), A_{n}\left(\frac{1}{8}, y_{n}\right)$ $B_{n}\left(-\frac{1}{8}, y_{n}\right)$ and $B_{0}\left(-\frac{1}{8}, y_{0}\right)$, where $y_{0}<y_{n}$. And determine y_{0} and y_{n} in the following way. First, let y_{0} be sufficiently large so that the asymptotic formula (21) may hold valid sufficiently exactly on $A_{0} A_{n}$. Secondly, let y_{0} and y_{n} be solutions of the inequalities (22) of the Lemma 3. y_{0} is fixed and y_{n} tends to infinity. Here, the n 's in (22) are these which appear in the series of $Y_{1}(z)$.

Along the boundary of the rectangle R, let z make one round in the positive sense and we examine the variation of the $\arg Y_{1}(z)$. Let the variation of $\phi+\arg$ $\Sigma^{\prime} n^{-2 z-\frac{1}{2}}$ which arises when z moves along $A_{0} A_{n}$, be θ_{n}. Then the variation of $\arg Y_{1}(z)$ is written as $\theta_{n}+\varepsilon_{n}$, where the absolute value of ε_{n} is sufficiently small. When ε in (22) is sufflciently small, the variation of the argument of the series of (20) along $A_{n} B_{n}$ is $-\frac{\pi}{8}+\varepsilon_{n}^{\prime}$. In the same manner, the variation of $\arg Y_{1}(z)$ along $B_{0} A_{0}$ is $\frac{\pi}{8}+\varepsilon_{0}^{\prime}$, where the absolute value is ε_{0}^{\prime} is also sufficiently small. Accordingly the variation of $\arg Y_{1}(z)$ along the boundary of the rectangle R is

$$
\begin{equation*}
2 \theta_{n}+2 \varepsilon_{n}+\varepsilon_{n}^{\prime}+\varepsilon_{0}^{\prime} \tag{24}
\end{equation*}
$$

Next, we enumerate the number of the zero points of $Y_{1}(z)$ on the imaginary axis. As has already been stated in the proof of the Lemma 1, the purely imaginary zero points of $Y_{1}(z)$ are given as the points which satisfy the condition arg G_{1} $\left(\frac{1}{4}+i y\right)=\pi / 2 \times$ odd number. On the other hand, from (10), we obtain

$$
\begin{equation*}
G_{1}\left(\frac{1}{4}+i y\right) \sim \sqrt{\frac{2 \pi}{y}} e^{-\frac{\pi}{2} y} e^{\frac{\pi i}{8}}\left(\frac{y}{\pi}\right)^{\frac{1}{4}} e^{i \phi} \Sigma^{\prime} n^{-\frac{1}{2}-2 t y} \tag{25}
\end{equation*}
$$

So, if we put the variation of $\phi+\arg \sum^{\prime} n^{-\frac{1}{2}-2 t y}$ which arises when y varies from y_{0} to y_{n}, as ϑ_{n}, then the variation of $\arg G_{1}\left(\frac{1}{4}+i y\right)$ is $\vartheta_{n}+\varepsilon_{n}^{\prime \prime}$, where the absolute value of $\varepsilon_{n}^{\prime \prime}$ is sufficiently small. Accordingly, the number of purely imaginary zero points of $Y_{1}(z)$ which are contained in the rectangle R, is not smaller than $\frac{1}{\pi}\left(\vartheta_{n}+\varepsilon_{n}^{\prime \prime}\right)-1$. From this result and (24), we can conclude that the number μ of zero points which are not purely imaginary is not greater than

$$
\frac{1}{2 \pi}\left(2 \theta_{n}+2 \varepsilon_{n}+\varepsilon_{n}^{\prime}+\varepsilon_{0}^{\prime}\right)-\frac{1}{\pi}\left(\vartheta_{n}+\varepsilon_{n}^{\prime \prime}\right)+1
$$

i. e.,

$$
\mu \leqq \frac{1}{\pi}\left\{v . o . \arg \sum^{\prime} n^{-\frac{3}{1}-2 t y}-v . o . \arg \sum^{\prime} n^{-\frac{1}{2}-2 t y}+\varepsilon_{n}-\varepsilon_{n}^{\prime \prime}+\left(\varepsilon_{n}^{\prime}+\varepsilon_{0}^{\prime}\right) / 2\right\}+1
$$

where the notation " $v . o$." means "variation of".
The arguments of $\Sigma^{\prime} n^{-\frac{3}{4}-2 i y}$ and $\sum^{\prime} n^{-\frac{1}{2}-2 t y}$ are sufficiently near to those of $\Pi_{p \leqq N}\left(1-p^{-\frac{3}{4}-2 i y}\right)^{-1}$ and $\Pi_{p \leqq \mathrm{~N}}\left(1-p^{-\frac{1}{2}-2 t y}\right)^{-1}$ respectively. So the difference $v . o$. $\arg \Sigma^{\prime} n^{-\frac{3}{4}-2 i y}-$ v.o. $\arg \Sigma^{\prime} n^{-\frac{1}{2}-2 i y}$ is sufficiently near to

$$
\begin{equation*}
\arg \Pi_{p \leqq N}\left(p^{\frac{1}{2}+2 i y}-1\right)\left(p^{\frac{3}{4}+2 i y}-1\right)^{-1} \tag{26}
\end{equation*}
$$

As the radii $p^{\frac{1}{2}}$ and $p^{\frac{3}{4}}$ of two circles whose centers are both the point 1 are greater than 1 , the absolute value of $\arg \left(p^{\frac{1}{2}+2 i y}-1\right)\left(p^{\frac{3}{4}+2 i y}-1\right)^{-1}$ does not surpass $\pi / 2$ for all values of y. So the value of (26) does not surpass a finite value for all values of y. Accordingly the v.o. $\Sigma^{\prime} n^{-\frac{3}{4}-2 i y}-v . o . \arg \Sigma^{\prime} n^{-\frac{1}{2}-2 i y}$ is finite for all value of y. So that μ is finite whatever large value of y_{n} we may adopt. As has already been shown in the Lemma 1, the function $Y_{1}(z)$ has infinitely many zero points in the strip $|x| \leqq \frac{1}{4}$. So that the zero points of $Y_{1}(z)$ whose ordinates are sufficiently large, are all purely imaginary.

When y is a sufficiently large positive number, the number of zero points whose ordinates are greater than zero and smaller than y, is approximately

$$
\frac{1}{\pi}\left(\phi(y)+v . o . \Sigma^{\prime} n^{-\frac{1}{2}-2 i y}\right)
$$

i. e.,

$$
\frac{y}{\pi} \log \frac{y}{\pi}+O(y)
$$

Next, let us consider the whole function $Y(z)$.
Lemma 4. On the boundary of the rectangle R, we have $\left|Y_{2}(z) / Y_{1}(z)\right|<1$.

Proof. We divide the summation $Y_{2}(z)$ into five parts: $2 \pi \leq a<y-y^{\frac{1}{3}+\delta}$, $y-y^{\frac{1}{3}+\delta} \leqq a<y-y^{\frac{1}{4}}, y-y^{\frac{1}{4}} \leqq a \leq y+y^{\frac{1}{4}}, y+y^{\frac{1}{4}} \leqq a<y+y^{\frac{1}{3}+\delta}$ and $y+y^{\frac{1}{3}+\delta} \leqq a<\infty$, where $a=2 n^{2} \pi$, and name the summations corresponding these parts as $\sum_{1}, \Sigma_{2}, \Sigma_{3}, \Sigma_{4}$ and \sum_{5} respectively.

We obtain

$$
\Sigma_{2}=\sqrt{\frac{2 \pi}{y}} e^{\frac{\pi i z}{2}} \Sigma^{\prime}\left\{\left(\frac{y}{\pi}\right)^{x} e^{i \psi} n^{-2 z} O\left(y^{\frac{1}{6}}\right)+\left(\frac{y}{\pi}\right)^{-x} e^{-i \psi} n^{2 z} O\left(y^{\frac{1}{6}}\right)\right\}
$$

from the asymptotic formula which has already been given. Then, on $A_{0} A_{n}$, we obtain

$$
\begin{aligned}
\Sigma_{2}: Y_{1}(z)= & \Sigma^{\prime}\left\{n^{-2 z} O\left(y^{\frac{1}{6}}\right)+\left(\frac{y}{\pi}\right)^{-2 x} e^{-2 t \phi} n^{2 z} O\left(y^{\frac{1}{5}}\right)\right\} \\
& :\left(\frac{y}{\pi}\right)^{\frac{1}{4}} e^{\frac{\pi i}{8} \Sigma^{\prime} n^{-2 z-\frac{1}{2}}} .
\end{aligned}
$$

And when y becomes sufficiently large, the number of terms of Σ_{2} decreases sufficiently. So the numerator in the right hand side can be considered as of order $O\left(y^{\frac{1}{24}}\right)$. And the absolute value of $\Sigma^{\prime} n^{-2^{z-\frac{1}{2}}}$ in the denominator is greater than a fixed positive number. Accordingly the above ratio is of order $O\left(y^{-\frac{5}{24}}\right)$. On $A_{0} B_{0}$ and $A_{n} B_{n}$, we obtain

$$
\begin{aligned}
& \Sigma_{2}: Y_{1}(z)=\Sigma^{\prime}\left\{\left(\frac{y}{\pi}\right)^{x} e^{i \phi} n^{-2 z} O\left(y^{\frac{1}{6}}\right)+\left(\frac{y}{\pi}\right)^{-x} e^{-i \phi} n^{2 z} O\left(y^{\frac{1}{6}}\right)\right\} \\
& : \Sigma^{\prime}\left(\frac{y}{\pi}\right)^{\frac{1}{4}} \frac{1}{\sqrt{\prime}}\left\{\left(\frac{y}{\pi}\right)^{x} e^{i\left(\phi+\frac{\pi}{8}\right)} n^{-2 z}+\left(\frac{y}{\pi}\right)^{-x} e^{\left.-i\left(\phi+\frac{\pi}{8}\right)_{n^{2 z}}\right\}}\right.
\end{aligned}
$$

The denominator in the right hand side is sufficiently near to

$$
\Sigma^{\prime}\left(\frac{y}{\pi}\right)^{\frac{1}{4}}-\frac{1}{\sqrt{n}}\left\{\left(\frac{y}{\pi}\right)^{x} n^{-2 x}+\left(\frac{y}{\pi}\right)^{-x} n^{2 x}\right\},
$$

so that it is of order $O\left(y^{\frac{1}{4}+|x|}\right)$. Accordingly, the above ratio is of order $O\left(y^{-\frac{1}{2}-|x|}\right)$. Eventually, on the boundary of the rectangle R, the absolute value of Σ_{2} is negligible, compared with that of $Y_{1}(z)$.

In the same manner, Σ_{3} and \sum_{4} are both of order $e^{-\frac{\pi y}{2}} O\left(y^{-\frac{1}{3}}\right)$, so that they are also negligible, compared with $Y_{1}(z)$ on the boundary of the rectangle R.

In the next place, let us consider Σ_{1} and Σ_{5}. From the asymptotic formula (9). We obtain

$$
\left.\left.\Sigma_{1}=\sqrt{\frac{2 \pi}{y}} e^{\frac{\pi i z}{2}}\left(\frac{y}{\pi}\right)^{\frac{1}{4}} \Sigma^{\prime} \frac{1}{V^{\prime} \bar{n}}\right\}\left(\frac{y}{\pi}\right)^{x} e^{i \phi} n^{-2 z} O(1)+\left(\frac{y}{\pi}\right)^{-x} e^{-i \phi} n^{2 z} O(1)\right\}\left(\frac{4}{1} \overline{1-r^{2}}\right)^{-1}
$$

The interval between terms of this series grow greater in the similar manner as a geometrical series does. So the absolute value of $\sum n^{-2 z-\frac{1}{2}} / \sqrt[4]{1-r^{2}}$ is of $O\left(\frac{1}{\sqrt{k}}\right)$, when $x \geq 0$. In the same way $y^{-2 x} \sum n^{2 z-\frac{1}{2}} / \sqrt[4]{1-r^{2}}=O\left(\frac{1}{\sqrt{k}}\right)$. Accordingly, if k is sufficiently large, the absolute value of \sum_{1} is very small, compared with that of $Y_{1}(z)$ on the boundary of R. In the same way, we can conclude that the absolute value of \sum_{5} is also negligible, compared with that of $Y_{7}(z) . \quad R(z)$ is also negligible,

Consequently, from Rouche's Theorem, the number, of zero points of $Y(z)$, contained in R is equal to that of $Y_{1}(z)$.

The purely imaginary zero points of $Y(z)$ are such y 's that satisfy the condition

$$
\arg G\left(\frac{1}{4}+i y\right)=\frac{\pi}{2} \times \text { odd number }+O\left(e^{-2 \pi y} u^{-1}\right),
$$

where $\%$ is the absolute value of $\mathrm{G}\left(\frac{1}{4}+i y\right)$ and its magnitue is $O\left(y^{-\frac{1}{4}} e^{-\frac{\pi y}{2}}\right)$. And, on the abscissa $\frac{1}{4}$, the asymptotic formula of $\mathrm{G}\left(\frac{1}{4}+i y\right)$ is sufficiently near to that of $\mathrm{G}_{1}\left(\frac{1}{4}+i y\right)$. So we obtain the following Theorem.

Theorem 7. The function $Y(z)$ has only purely imaginary zero points in the domain in which y is sufficiently large, and the number of the zero points in $0 \leqq y \leqq Y$ is

$$
\frac{Y}{\pi} \log \frac{Y}{\pi}+O(Y)
$$

References

1) Pólya, G: Acta Math., 1926.
2) Riemann, B: Werke.
3) Watson. G. N: Theory of Bessel Functions (Cambridge), 1922
