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Abstract

In this paper we will introduce the new notion of generalizemmetric structures
defined by systems of closed differential forms. From a cablogical point of view,
we develop a unified approach to deformation problems arabksth a criterion for
unobstructed deformations of the generalized geometrictsires. We construct the
moduli spaces of the structures with the actionde€losedb-fields and show that
the period map of the moduli space is locally injective unither certain cohomolog-
ical condition (the local Torelli type theorem). We applyraapproach to general-
ized Calabi—-Yau structures and generalized r§tdructures and obtain unobstructed
deformations of generalized Calabi-Yau structures if dios”-property is satisfied.
We also have unobstructed deformations of generalizech)séi{uctures and show
that the period map of the moduli space of generalizedngblfuctures is locally

injective.
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Introduction

In the paper [6], the author introduced the notion of geoimestructures defined by
systems of closed differential forms which are based on ttieraof the gauge group of
the tangent bundle of a manifold. This approach providesstesyatic construction of
smooth moduli spaces of Calabi-Yau, hyperKahles, &dd Spin(7)-structures. In the
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paper [14] Hitchin presented generalized complex and gdimed Calabi—-Yau geom-
etries, which depend on the idea of replacing the tangendlbuoy the direct sum of
the tangent bundl§ and the cotangent bundle* of a manifold X. The generalized
complex geometry unifies different structures such as cexngliructures and symplectic
structures. There are many articles already written on rgéimed complex, generalized
Calabi-Yau and generalized Kahler geometries [14], [151],[[7], [8]. In this paper,
however, we will develop the generalized geometry from aewiiew point as in [6]
which is of general nature with some new applications. Stheee is an indefinite metric
on the direct sunT @ T*, the bundle of the Clifford algebra CK( of T & T* naturally
appears and we obtain various fibre bundles with fibres thegtdeps such as the spin
group and the Clifford group &which act on the differential forms oX by the spin
representation at each point ¥f We consider an orbiB(V) of the action of the Clifford
group Gy. Then we define #(V)-structure® on X to be a system of closed differential
forms in the orbitB(V) at eachx € X (see Section 3.1). We develop the deformation
problem of theB(V)-structures. We establish a criterion for unobstructefbrdeations
of the B(V)-structures and we show that the local Torelli type theoteids under the
certain cohomological condition (Theorems 3.2.5, 3.2.6 ar2.7). Then we apply our
approach to generalized Calabi-Yau structures and géredebUq)-structures. A gen-
eralized Calabi—Yau structur¢ is a non-degenerate, pure spinor which igl-alosed
differential form on a manifold [14]. A generalized Cala¥au structurep induces the
generalized complex structurg,, which is regarded as a generalization of both complex
structures with trivial canonical line bundle and symglestructure$. Since the set of
non-degenerate, pure spinors is an ofijt(V) of the action of G, generalized Calabi—
Yau structures introduced by Hitchin [14] are considere®&agV)-structures. Then our
criterion is applied to the generalized Calabi—Yau striegu

Theorem 4.1.6. Let¢ be a generalized Calabi—Yau structure on a compact mani-
fold X with the induced generalized complex structfje If the generalized complex
structure J, satisfies the dd-property we have unobstructed deformationsgoés gen-
eralized Calabi-Yau structures which are parametrized bypen set of the cohomology
group Hl(#gz, ). Further the period map P from the space of deformationg o6 the
de Rham cohomology group is locally injective., the local Torelli type theorem holds.

(Note that #, is the deformations complex of generalized Calabi—Yaucsires
and HX(#5,,) is the cohomology group of the complex#, see Section 4.)

The dd” -property is a generalization of the ordina®y-lemma in Kahler geom-
etry. Gualtieri showed that thdd” property holds for generalized Kahler structures

INote that generalized Calabi-Yau structures do not yieldmatrical structure such as Ricci-flat
Ké&hler metrics.
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[12]. The generalized Suj-structuré in [11] is a pair consisting ofd-closed non-
degenerate, pure spinogg and¢; on a 2 dimensional manifold such that the corres-
ponding pair of generalized complex structureg,( Jy,) yields a generalized Kéhler
structure. The generalized St){structure is regarded as a natural generalization of the
ordinary Ricci-flat Kéhler metrics. Since the set of gerieesl SUG)-structures is an
orbit Bsy(V) of the diagonal action of & on pairs of differential forms, generalized
SU(n)-structures are also considered 2s)(V)-structures. Deformations of generalized
SU(n)-structures seem to be complicated. Our systematic appydzowever, can be
adapted to obtain unobstructed deformations of genedal&d()-structures and the
local Torelli type theorem,

Theorem 4.2.4. Let ® = (¢o, ¢1) be a generalizedsU(n)-structure on a com-
pact manifold X of dimensio@n. Then we obtain unobstructed deformationsdofis
generalizedSU(n)-structures which are parametrized by an open set of the mathagy
group H(#g,). Further the period map of the moduli spa®sy(X) is locally inject-
ive, i.e., the local Torelli type theorem holds.

(Note that #,, is the deformation complex of generalized &Wétructures and
HK(#s,) is the cohomology group of the complexg) In Section 1, we give an ex-
position of the Clifford algebra of the direct suvhé V* and introduce various groups
such as spin, pin and the Clifford groupyGlt is important that the exponentiaP
(resp.€?) for a 2-formb e /\2V* (resp. a 2-vectoB € /\2 V) gives an element of
the spin group. The materials in this section are alreadyaegd in [21], [13] and
[14]. The bundle of the Clifford algebra CK( is decomposed into the direct sum
of the even Clifford bundle and the odd Clifford bundle. Inc&en 2, we introduce
subbundles Cf of CL(X) which carry a filtration of the even Clifford bundle and a
filtration of the odd Clifford bundle:

cLllcclL?ccLtc---,
CllccL®cclbic.-.-.

Further we discuss differential operators acting on déifeial forms onX which arise
as commutators between the exterior derivativand the action of the bundle of the
Clifford algebra CLK). The Clifford—Lie operators of order 3 are introduced infDe
inition 2.1.2 The exterior derivativel is a Clifford—Lie operator of order 3 and the
adjointe@ o d o €@ for a € CL? is also a Clifford—Lie operator of order 3 (Propos-
ition 2.1.8), which play a significant role in studying thefatenation problem. In Sec-
tion 3, the notion ofB(V)-structures is introduced. The Clifford group, ®f V & V*
diagonally acts on the direct sum bfskew-symmetric tensor@' A" V* Let ® =

1The generalized SWj-structure is called a generalized Calabi-Yau metricalcstire in [11] and
in order to avoid notational confusion, we use the termigplgeneralized SUX)-structures on which
the special unitary group Sb)( arise as the isotropy group.
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(¢1, ..., ¢) be an element of the direct su@' A V* and B(V) the orbit of G,
through ®. We fix the orbit 3(V). Let X be a compact manifolX of dimensionn.
(Note that we always consider a real manifold in this pap€ng orbit 3(V) yields the
orbit B(TxX) in @' A" TS X for each pointx € X and we have a fibre bundig(X) by

B(X) == | ) B(T(X) > X.

XeX

The set ofC* global sections of3(X) is denoted byEs(X) and then we define a
B(V)-structure® = (¢1,...,¢) on X to be aC*> global section of3(X) with dg¢; =0
foralli =1,...,1. (For simplicity, we write it byd® = 0.) We denote bytz(X)
the set of B(V)-structures onX:

Mp(X) = {® € Ex(X) | d® = 0}.
Then we define the moduli spa@8z(X) of B(V)-structures orX by the quotient space:
Ms(X) = Mi(X)/Diff o(X),

where Diff o(X) is an extension of the diffeomorphisms Hf by the action ofd-exact
b-fields (see Definition 3.1.2). Since the de Rham cohomoldggscpi] of each com-
ponentg; of ® € Mp(X) is invariant under the action df)Tf?o(X), we have the pe-
riod map:

|
Ps: M(X) > @D Hir(X).

In order to discuss deformations of &(V)-structure ®, we introduce a suitable de-
formation complex # (Proposition 3.2.1):

0 E3X) 55 B0 L B B B2 S -

Each vector bundl€E“"*(X) is defined by the action of the Clifford subbundle CL
on @, that is, EX"}(X) = CL¥- ® and the differential operatad, is the restriction of
d to the bundleEX(X). An orbit B(V) is an elliptic orbit if the deformation com-
plex #; is an elliptic complex in degre& = 1, 2. We denote byS the direct sum

@0 /\° T*. Then we obtain the full de Rham complex:- Ls8sS ... The
cohomology group of the full de Rham complex is given by thé fle Rham co-
homology groupHjr(X) := EB';:O HP(X). Since the complex gt is a subcomplex
of the direct sum of the full de Rham complex, we have the rpépfrom the co-
homology groupsHX(#z) of the complex # to the direct sum of the full de Rham
cohomology group@I Hir(X). We say aB(V)-structure® is a topological structure
if the map pg is injective fork = 1,2 (Definition 3.2.3). Our criterion for unobstructed
deformations and the local Torelli type theorem is shown hedrem 3.2.5:
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Theorem 3.2.5. LetB(V) be an elliptic orbit and® a B(V)-structure on a com-
pact manifold X of dimension n. & is a topological structurethen ® is unobstructed
and there exists a neighborhood U @f in the moduli spacéliz(X) such that the re-
striction of the period map Hy: U — @' H;r(X) is injective. Furtherif an orbit 5(V)
is an elliptic and topological orbit on Xthe period map B: Mz(X) — @' Hir(X) is
locally injective at each pointthat is the local Torelli theorem holds.

In Section 4 we apply our approach to generalized Calabi-staictures and gen-
eralized SUf)-structures. A generalized Calabi—Yau structgreives rise to a gener-
alized complex structuref,, where d-closeness ofp implies the integrability of the
structure 7,. Deformations of generalized complex structures wereudsed from the
viewpoint of the Dirac structure and the Courant algebrdid],[ [23]. The relations
of deformations of generalized complex structuggsand deformations of generalized
Calabi—-Yau structure is given in Proposition 4.1.8. We can obtain generalizedehyp
Kahler, G and Spin(7)-structures as speck{V)-structures [10]. It must be noted that
the generalized exceptional structures @d Spin(7)-structures) are discussed by Witt
[27] from a different point of view. Our approach can be addpin these interesting
cases. We will discuss the deformation problems of otheciapstructures in a forth-
coming paper.

1. Clifford algebra and spin representation

1.1. The Clifford algebra preliminaries. Let V be ann dimensional real vec-
tor space and/* the dual space o¥. We denote byy(v) by the natural pairing be-
tweenv € V andn € V*. Then there is a symmetric bilinear forfn, ) on the direct
sumV & V* which is defined by

(1.1.2) (E1, B2) = %7}1(1)2) + %nz(vl):

whereEi = v +n € V@ V* fori =1, 2. We denote b}®k(V @ V*) the tensor
product ofk-copies ofV & V*. Then the tensor algeb®@(V & V*) of V ¢ V* is
given by

0 k
(1.1.2) Qv e Vv :=>" RV eV,
i=0

where ®°(V & V*) = R. We defineZ to be the two-sided ideal i®(V & V*) gener-
ated by all elements of the forle® E— | E|?1 for E € V@ V*, where| E|? = (E,E).
Then the Clifford algebra CIM & V*) is defined to be the quotient algebra:

(1.1.3) CLYV @ V*) = XV & V*)/L.
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The tensor product yields the product of the Clifford algelhich is called the Clifford
product. We denoted by - 8 the Clifford product ofe and g for «, g € CL(V & V*).
Then it turns out that the following relation holds

(1.1.4) E-F+F-E=2(E,F)1, E,FeVa®V*

Since the ideall is generated by tensors of degree 2, the Clifford algebravGhy *)
is decomposed into the even part and the odd part:

(1.1.5) CL{V @ V*) = CL®®"g CL°%
where CI®*"= Y"° Q% (V @ V*)/T and CLl°% = Y ®? XV @ V*)/Z. There

are two involutions of CLY & V*). The first one is the parity involution which is
defined by

(1.1.6)

- [+4a, (xeCL®™®),
“-= —a, (xe€ CLOdd),

for « € CL(V @ V*). If we reverse the order in a simple product= E; - E;,--- Ey €
CL(VeV*) of Ey,...,Ex € V®V*, we obtain the second involution of CL(V &V *):
(1.1.7) o(e) = Ex---Ez- E;.

Since there is the natural isomorphism between the skewngfric tensors/\*(V &

V*) and CL{V @ V*) asR-module, there is the metri¢, ) on CL(V & V*) which is
written as

(1.1.8) (o, B) = (1, 0(x)B),
for «, B € CL(V @ V*) (cf. [13]). The Clifford norm (e, o) of « is given by
(1.1.9) (o, a) = (1, 0(x)x).

Let APV* be the space of skew-symmetric tensor of degpeand S the direct sum
of the spaces of skew-symmetric tensors:

co p
(1.1.10) s=p AV
p=0

ThenE =v+1n €V & V* acts onS by the interior and the exterior product:

(1.1.11) E-¢=1iv+0nAd.
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Since we have the identity:
(1.1.12) E-(E-¢) =i,(n A @) +nA(i,0) = |E[*,
we have the action of CM @ V*) on S which is called the spin representation. Let
CL(V & V*)* be the group which consists of invertible elements of \CK V*). For
eachg e CL(V @V ™), the twisted adjoinAdg: CL(V@®V*) — CL(V @ V™) is given by
(1.1.13) Adg(a) := ¢ ag,
wherea € CL(V & V*) and § is the parity involution ofg as in (1.1.6), (cf. [21]). The
image Ady(V @ V*) is not contained irv @ V* for a generalg € CL(V & V*)*. The
Clifford group Gy (= Gg(V @ V*)) is a subgroup of CL\{ & V*)* defined by
(1.1.14) G = {ge CL(V @& V") |Ady(V & V*) CV @ V*}.

Since,&\ég is an orthogonal endmorphism ®f@V*, we have the short exact sequence:

(1.1.15) 1-> R* — G E) oV @ V") —id.

Since every elemerg of the Clifford group G, is written as a simple produd; - - - - -
Ex for E1, ..., Ex € V @ V*, it follows that the Clifford norm ofg € G is given by
o(g) - 9. We define the pin group PiX(4 V*) by

(1.1.16) Piny @ V") ={ge Gy |o(g)-g=£1},

and the spin group Spix(® V*) is defined by

(1.1.17) Spiny @ V*) := Pin(V & V*) N CL®""

Then we also have the short exact sequence using the adjajmt m

(1.1.18) 1 Zy — Spin(V @ V*) 2% sov @ v*) — id.

We denote by Spinthe identity component of SpiM(é V*). Then Spig is given by
(1.1.19) Spig = {g € Spin(V & V*) | o(9) -9 = 1}.

1.2. Spin representation. The Lie algebra so( @ V*) of the Lie group SO{ &
V*) is decomposed into three parts:

2 2
(1.2.1) soy @ V*) =EndV)® A\ Ve A V.
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In fact eacha € so(V @ V*) gives the endmorphism of & V* which is written as

(v %)

with A € End(V), be A?V*, B e A?V and A* € End(V*) is defined byA*(n)(v) =
n(Av) for v € V andn € V*, where a 2-fornmb is regarded as the homomorphism from
V to V* and a 2-vectoig is also considered as the one front to V. We denote by
g the embedding of GI\() into SOV @ V*),

(1.2.2) q: GL(V) — SOV & V*),

which is given by

(1.2.3) a(g) = (g (g*o)—l )

whereg € GL(V). Let Ad: Spin(V &V*) — SO & V*) be the adjoint map as in Sec-
tion 1.1. Since the kernel of the map Ad Zs, the inverse image Ad(q(g)) consists
of two elementsge and —gq, whereq(g) = Ad(ge) = Ad(—dal)-

REMARK The exponentiat® = 1+ b+ (1/2!)b? + - -- gives an element of Spjn
for b € A?V* which gives the action of the-filed. The exponentiat® = 1 + 8 +
(1/21)8% +--- is also an element of Spjrfor g € /\2 V.

Since Spin{ &V *) is the subgroup of CI\( &V *), the representation cB= A°V*
of the Clifford algebra CLY @ V*) yields the representationn of Spin(V & V*),

(1.2.4) Pspin: Spin(Y & V*) — GL(S).
We also denote byg, the linear representation of GIj on S= A" V*.

Lemma 1.2.1. Let g, be an element oSpin(V & V*) such that ¢g) = Ad(gq)
for g € GL(V). Then we have

(1.2.5) ,Ospin(gcl) = :|:|detg|1/2(péL(g))_1!

where |detg|*? denotes the positive square root of the absolute value ofdétermi-
nant of g.

Proof. We decompose G| into the positive symmetric part and the orthogonal
group with respect to a positive-definite metdgg on V (the Cartan decomposition).
Thus g € GL(V) is uniquely written agg = hk whereh is positive symmetric andt is
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orthogonal. Then there is a unique symmetric endmorphissuch thate® = h and A
is described asA = Zi'j Aie ®07, where{g}_, is an orthogonal basis ar{@l}Tzl

denotes the dual basis. We defidg € A%(V & V*) C CL by
— 1 Al gl —gi
ACI_EZ i(e-0'—0!-e).
i

Thene® e Spin(V @ V*) satisfies Ad¢”) = q(e”) = q(h) and we have the equation:

(1.2.6) pspin(”) = |dete (o5, (€M)

The orthogonal elemerk is decomposed into a finite product of reflections, that is,
k=Rjo0---0Ry,

where R, is the reflection with respect ta; € V which is given by R, (ui) = —u;
and R, (v) = v for all v e V with gy(uj, v) = 0. We denote by, the dual 1-form
of u; with respect to the metrigy for i = 1,...,r. Then it turns out thatu; —
6y) - (Ui + 6y,) € SPINV @ V*) gives Ad((i —6y) - (ui +6,)) = q(R,) and we have
(Ui —60y) - (U +06y)-¢ = Ri ¢ for ¢ € \* V*. We definek by

;
1.2.7) ko = [ JCui = 6u,) - (ui + 6y,).

i=1
Then it follows thatk, € Spin(vV &V *) satisfies AdK) = q(k) and we have the equation:
(1.2.8) pspin(kel) = |detk|Y2(pg (k)™

(Note that|detk] = |[(—1)| = 1.) We definegy by e - ky. Then it follows that
Ad(ga) = Ad(e™) o Ad(ka) = g(h)q(k) = q(hk) = a(g). We also have

:Ospin(gcl) = pspin(eACI) o /Ospin(kcl)
= |dete®Y%(pg, (€) " o (o5 (K)
= |detg|"?(p& (@)

Then we also havespin(—da) = —|detg|¥?(pg, (9)) L. Hence we obtain the result[]
A lift of the map q is a mapp: GL(V) — Spin(V & V*) such that Acdbp = q:

SpinV & V*)

Ad

p

GL(V) —— SOV & V*).
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The compositionospino p gives rise to the representation of GL(on S. The following
lemma implies that there is the canonical Itof the mapq:

Lemma 1.2.2. There is the lift p GL(V) — Spin(V & V*) such that the repre-
sentationpspino p is given by

(1.2.9) pspin© P(Q) = |detg|"(pg (9)) .

Proof. From Lemma 1.2.1, it suffices to determine the sigrogh o p(g9). The

inverse image Adl(q(g)) is {gC|! _gcl}- If el SatiSfieSpspin(gcl) = |detg|1/2(p(’§L(g))*1,
we definep(g) to be g,. Otherwise, we chooseg. Thus we can choosp(g) which
satisfies the equation (1.2.9). ]

REMARK 1.2.3. There is the another lifp: GL(V) — Spin(vV & V*) with
Ad op = q which satisfies

pspin© P(g) = sgn(detg)|detg|”*(pg, (9))

for g € GL(V). Note thatplcL,v) = PloLyv) for the identity component GIV).

2. Clifford-Lie operators

2.1. Clifford—Lie operators. We use the same notation as in Section 1. Ket
be a real manifold of dimension. Then we consider the direct suineg T* of the
tangent bundlelT = T X and the cotangent bundle* = T*X. Let CL(X) = CL(T &
T*) be the Clifford bundle onX:

CL(X) := | CLTuX & Ty X) — X.

xeX

We also define the Clifford group bundle)(X) = G¢ (T & T*) by:

Ga(X) := | Ga(TaX & Ty X) — X.

xeX

Let = be the natural projection,
7 QT & T*) — CLX) = QT & T*)/Z.

We define CE' by the image:

i 2l
CL? = n<@ (To T*)).

1=0
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Then we have the filtration of CVe"
CLloccl?ccltc---.

We also define Ct*! by the image:

CL2i+l — ﬂ(@ %(T ® T*)),
1=0

which also gives the filtration of C,
CL'ccCL®*ccCL®C:---.

Let S(X) be the bundle of differential formg\* T*X on a manifoldX. By using the
spin representation on each fibre as in Section 1, the burfdteeoClifford algebra
CL(X) acts onS(X). Let Lg be the anti-commutatofd, E} = dE 4 Ed for a section
E of the bundleT @ T*. (For simplicity, we denote it by € CL' = T & T*.) For
E=v+0eT®T* we haveLg = L, + (d9), where L, is the ordinary Lie derivative
and @0) acts onS(X) by the wedge product. Next we consider a brack®t,[F] =
LEF —FLg forE,FeTpT*

Lemma 2.1.1. The brackefLg, F] is a section of T T*.

Proof. When we writtE =v+60, F=w+neT & T* then we have

[Le, F] =[£y + (dB), w + 1]
= [£y, w] + [Lo, n] + [(d6), w] + [(dF), n].

Since [@0), w] = —i,(d0) e (T® T*) and [£,, w] € T & T* is the ordinary bracket
of vector fieldsv and w, we have the result. O

In this paper Clifford algebra valued Lie derivatives play significant role.

DEerINITION 2.1.2 (Clifford—Lie operators). A Clifford—Lie operator of order3
on X is a differential operator acting 08(X) which is locally written as

L=> alELg +K,
i

on every open set) on X for someE; € CLY{TU @ T*U), al € C®(U) andK €
CL3(TU & T*U).
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Note that the operatdt acts on a differential fornp by Lo =", ;@ Ei-Lg ¢ +
K -¢ on an open set, whereK - ¢ denotes the spin representation of CL on the
differential form. Let{xy, ..., X5} be a local coordinates oK. We denote by the
vector fieldd/dx; and6' = dx'. Then the exterior derivative is locally written as

n
d= Z 0' AL,
i=0
Henced is the Clifford—Lie operator of order 3.

Lemma 2.1.3. Let a be a section o€L%(T & T*) which acts on &X) by the
spin representation. If L is a Clifford—Lie operator of ord8 then the commutator
[L,a] is also a Clifford—Lie operator of orde8.

Proof. Let f be a function onX and E = v + 6 a section ofT @ T*. Since
we have

Le(fa) = (Lef)a+ fLea,
whereLg f = £, f € C*®(X). We have the following equality on an open &éton X:
[L, fa] = L(fa)— falL
= ajELg(fa)— fal + K(fa)

ij
=Y a;E(Le fa+ f[L, a].

ij
Since Ei(Lg, fla e CL3(T @ T*), it is sufficient to show the lemma in the caae=
FiF, for FF e T@ T* (i = 1, 2). The bracketfg, F1F>] is given by

[Le, FiF] = Le(FiF2) — FiFLe
= [Le, Rl + FiLeF — FiFLe
= [Le, F1F2 + Fi[LE, F2l.

Hence it follows from Lemma 2.1.1 thaCE, F;F;] € CL2. The bracket EiLle,, F1F]
is given by

[E1LE,, F1F2] = E1Lg,FiFo — FIRELLE,
Ei[Le,, FiF] + E1FiFoLe, — FiFRElLE,

= [E1, F1F)LE, + E1[LE,, F1F].
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Since [E1, F1Fo] = 2(E1, F1)Fo — 2(Ey, F2)F1 € CLY = (T @ T%), it follows that the
bracket E1Leg,, F1F1] is a Clifford—Lie operator of order 3. SinceK| F1F;] cLs
for K e CL3, the result follows from the equation:

[L, F1F2] = |:E ajEiLg, F1F2:| +[K, F1F2]
ij
=Y aj[EiLe;, FiF] + [K, FiFa). 0
ij

Lemma 2.1.4. The commutatofd, a] is a Clifford—Lie operator of ordes.

Proof. Sinced is a Clifford—Lie operator of order 3, the result follows fino
Lemma 2.1.3. We shall give the following direct proof. We &dd, fa] = dfa —
fad = (df)a+ f[d, a] for a function f. Hence it is sufficient to show the lemma in
the casea = E 1 E,, whereE; e T®T* (i = 1,2). Then the bracked[a] is written as

[d, a] =dE;E, — E1Exd
= Lg, E; — E1dE; — E1Eod
= Lg Ex — E1Lg,
= ExLg, — EiLg, + [LEg,, B3]

Hence the result follows from{g,, E;] € cLt ccLe. ]

Proposition 2.1.5. For a;,a, € CL3(T @T*), [[d,a1],a,] is a Clifford—Lie operator
of order 3. Further we denote byAd, L the commutatofL, a]. Then the composition
Ad,, (Ada,( - - - Ad,, d) - - -) is a Clifford-Lie operator of orde8 for ay, . .., a, € CL?,

Proof. The result follows form Lemma 2.1.3 and Lemma 2.1.4. O

REMARK 2.1.6. In the case ddy,a, € End(T X), the bracket [f, a;], a,] is given
in terms of the Nijenhuis tensor @& and a,. In the casea, a; € /\2T, the bracket
[[d, a1], a] is the Schouten bracket. In general the brackdt §f], a;] is not a tensor
but a Clifford—Lie operator of order 3.

Let a be a section of Cf and L an operator acting or5(X). We successively
define an operator (Ad L acting onS(X) by

(Ady)' L = [(Ada) 1L, al].
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We also define a formal power series (exp{Pd by

o.¢]

(xp(Ad)L = Y T (Ada) L

1=0
:d+[L,a]+%[[L,a], al +---.
Lemma 2.1.7. The power seriegexp(Ady))L is given by
(exp(Ad))L = e %o L o€
Proof. It follows from definition of (Ad)'L that

I m
(AdL = Y A

m=0

Then by a combinatorial calculation we have

KoK
k _ Kk I
Lak = |§:0: TR

Then we have
a a 1 2 1 3
Le® =e?| L + (Ady)L + E(Ada) L+ g(Ada) L+---
= e*(exp(Ady))L.
Hence the result follows. OJ

Proposition 2.1.8. If L is a Clifford—Lie operator of order3 and ae CL?, then
€20 L oe® = (exp(Ad))L is also a Clifford—Lie operator of ordeB. In particular
(exp(Ady))d is a Clifford—Lie operator of ordeB.

Proof. The result follows from Proposition 2.1.5 and Lemm&a.2 ]

3. Deformations of generalized geometric structures

3.1. Generalized geometric structures B(V)-structures). Let V be ann di-
mensional real vector space aMd the dual space o¥. As in Section 1 the space
of the skew-symmetric tensors:S /\* V* is regarded as the spin representation of
CL (= CL(V & V%)), which induces the representation of the Clifford groug G=
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Go(V @ V*). We consider the direct sum of the spin representationswhith
Ga(V @ V*) acts diagonally:

o (AV*;.“Z )

Let &y = (o1, - - -, ¢1) be an element of the direct su@I S. Then we have the orbit
B(V) of Gg(V & V*) through ®y:

B(V):={g-®v [ g€ Gu(V & V).

From now on we fix an orbit3(V). We also denote byA(V) the orbit of GL{)
through ®y,.

As in Lemma 1.2.2 in Section 1, we have the lft GL(V) — Spin(V ¢ V*) which
satisfies Acbp = q and (1.2.9). Thus we have,

pspin© P(Q) = [detg[Y*(p5 (9)~" for g e GL(V).
Since the action or@' S is diagonal, we have
(Idetg|"2p(@)) - Dv = (P& (@) " Pv,

for oy € @' S. Since the Clifford group is the extension of pin by tRé, it follows
that |detg|~Y/?p(g) € Gg. It implies that the GLY)-orbit A(V) is embedded into the
Ga(V @ V*)-orbit B(V):

(3.1.1) A(V) = B(V).

The inclusion (3.1.1) shows that the group, @& suitable for our construction, rather
than spin group. LeX be a compact manifold of dimensian As in Section 2 we
have the Clifford bundle CLX) and the Clifford group bundle &X) on X. For an
identificationh: V — T4 X for eachx € X, we define the seB(TxX) by B(TxX) =
h.(B(V)) € @' A* TS X. It follows from (3.1.1) that the orbif3(TxX) does not de-
pend on a choice of an identificatidnand thusB(Ty X) is canonically defined as the
submanifold of the direct sum of forn@I A* T X, which is in fact a homogeneous
space. Hence we have the fibre bungigX) — X:

B(X) := ] B(TX) - X.

xeX

Let H be the isotropy group of the action of,G/ & V*) at dy:

H:={geGu(VaV")|g: dy = dy}.
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Then B(X) is the fibre bundle with fibre ({V & V*)/H and B(X) is embedded into
the direct sum of differential form@I A” T*X. We denote byg(X) the set of C°-
sections of the fibre bundIB(X):

Ea(X) := C®(X, B(X)).

Each sectiond € £g(X) consists ofl differential forms on which the exterior derivative
d acts. LetDig(X) be the set ofd-closed sections oB(X):

Me(X) := (@ € Eg(X) | dPd = 0}.

DerINITION 3.1.1. A generalized geometric structure on X associated with the
orbit B(V) is ad-closed sectionb € Mg(X). For simplicity, we call ad-closed section
® a B(V)-structure onX.

The diffeomorphism group Dif{) naturally acts of)tg(X) by the pull back, since
GL(V)-orbit A(V) is a subset of the Clifford group orbB(V). We denote by Diff(X)
the identity component of Difi). Since the exponentia® is a section of the bundle
Spin,(X) for a 1-formy, we have the action o&" on B(V)-structuresiiz(X),

O e AD, (yeT*X).

Let 5Tﬁo(X) be the group generated by the composition of the action &H{) and
d-exact 2-forms:

Diff o(X) := {7 A f* |y € T*, f € Diffo(X)}.

Here the group’DTffo(X) is regarded as a subgroup of the automorphisms of the bundle
Spiny(X):
Spiny(X) —— Spiny(X)

|

X—— > X.

Hence the grouiffo(X) is an extension of Dif(X) by d-exact 2-formsd(A" T*):
l o~
0— d(/\ T*) — Diffo(X) — Diff o(X) — O.

DEeFINITION 3.1.2. A moduli spaceNtg(X) of B(V)-structures on Xis the quo-
tient space oftg(X) by the action ofDiff o(X):

Mg(X) := Mg (X)/Diff o(X).
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We denote byF the direct sumdd' A* T*X of the bundle of differential forms.
By using a Riemannian metric oK, we define the Sobolev spat£(X, F) consisting
of square integrable section & up to orders, where we takes sufficiently large. We
also defineC'(X, F) by sections ofF of classC' for s> | +n/2. Then it follows from
the Sobolev embedding theorem tha{(X, F) c C'(X, F). SinceMs(X) is a subset of
L2(X, F), we have a completiofit$;(X) of 905(X) with respect to the Sobolev norm
| llLz- We also have a completion Diff}(X) of Diff( X) and a completiorf)Tﬁ( X)® of

Diff( X) (cf. [4], Section 3 in [6].)

3.2. Main theorems (deformations ofB(V)-structures). Let B(V) be the fixed
orbit of the action of the Clifford group &V @ V*) as in Section 3.1 and a B(V)-
structure on a manifolX. In order to consider deformations &V )-structures ofd,
we introduce a deformation complex of tHV)-structure®. As in Section 2 there
are the filtration of the even Clifford bundle €£" and the one of the odd Clifford
bundle CLo%:

CcLlccL?cclic---,
cllccLl®ccléc---.
Then the action of Cf on ® gives vector bundle&*(X) on X:
E<}(X) := CL* . o,
which also carry the corresponding filtrations:
EYX)cEYX)CcE¥X)C---,
EO(X) c E’(X) CE*(X) C - --.
(Note that we shift the degree of vector bundles.) The vebtordle E™X(X) is the
line bundle generated by. The vector bundleE’(X) is generated byE - & for all
EeToT* over C°(X) andEY(X) is generated byE;-E,- @ for all E;,E; e T T*.

Each EX(X) is a subbundle of the direct sum of the bundle of differérfitlmms on
which the exterior derivativel diagonally acts.

Proposition 3.2.1. There is a differential comple#z ¢ for each® € Mp(X),
(#8.0) 0—E7Nx) 3 E%) B ENX) B B2 B

where g is given by the restriction [g«y,. The cohomology groups of the complex
#5. is denoted byHX(#5 ),

_ kerdy: T'(E(X)) — ['(E*T(X))
T imdi_r: D(E*Y(X)) — D(EX(X))’

Hk(#B,o) :
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Then the first conomology groupt#s o) is regarded as the infinitesimal tangent space
of deformations of thé3(V)-structure ®, where I'(EX(X)) denotes smooth global sec-
tions of the bundl&X(X).

(For simplicity, the complex #¢ is often denoted by # and the cohomology
group HX(#5,0) is also written asHX(#3).)

Proof. A section ofE }(X) is written asf ® for a function f. Henced(f®) =
df A ® and we see that the imagE (X)) is included inE°(X). We denote bylr
the anti-commutatod F + Fd acting on forms wherd= € T & T*. When we write
F=v+nforveT andn e T* the anti-commutatoLr is given by

Le=L,+ (dn) AV

where £, denotes the Lie derivative. Then we have
LE(f®) = L,(fD)+ (dn) A (fD)
= (L, )P+ L, @+ f(dn) A D,

where £, f € C*(X). Since GL[ X) is the subbundle of g(X), diffeomorphisms of
X act on&p(X). Hence we have

L, ® € TeEp(X).
A subset Go(X) with the identity of Gy(X) is given by the exponential of Gl
Geo(X) = {€* | a € CL?}.
Since the tangent spade x(X) is generated by the action of T & T*), we have
ToEp(X) = CL?- & = EY(X).

Hence we have
L,® e EYX).

Then it follows thatZg(E~Y(X)) ¢ EX(X). We also have
d(F-®) = Lr® — Fdd = L .
Hence we havel(E°(X)) c EX(X). For F;, F, € T @ T* we have
Lr,(Fo- ®) = [LF, F2]® + Fo- L, ®.

It follows from Lemma 2.1.1 that{dg, F2] € T & T*. Hence fromLg, @ € EY(X) we
have L (E°(X)) C E?(X). We shall show thatdEX(X) c E¥*1(X) by induction onk.
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We assume thalEX"2(X) c E¥}(X) and £r(E*2(X)) c E¥(X) for somek > 1 and
foral FeT®T* ThenforF, F,b e T®T* ands e Ek*Z(X) we have

d(Fi-F2-9) = Lg(F2-8)—F1-dFR;-s
=[Lr, Fo]-s+ F2- Lgs
—Fi-LgSs+ Fi-F-ds.

It follows from our assumptionds € EX"}(X) and Lgs € E¥(X)) thatd(F; - F,-s) €
EX"Y(X) since [£f,, F2] - s € EXY(X) ¢ E¥*}(X). Henced(EX(X)) c EX*}(X). For
F;eT®T* we also have

L (F1-F2-8) =[Lr, Fo]-Fi-s+ Fo- Li(Fi-9)
=[Lr, Fo]-Fi-s+ F-[LR, Fi] -s
+ F- F1'£F3S.

Hence it follows from our assumptiofirs € EX(X) that Lr,(F1 - F - 5) € E¥3(X).
Hence £ (EX(X)) ¢ EX*?(X). We have already shown that our assumption holds for
k = 1, 2. Therefore we havdEX(X) c E¥*1(X) for all k by induction. The tangent
space of the orbit of)TfTo(X) is given by the Lie derivative,® and dy A & for
veT andy € T*. Hence it follows that the imagd(I'(E°(X)) is the tangent space
of f)Tffo(X). As we see, the tangent space&f(X) is global sections oE}(X). Hence
the infinitesimal tangent space of deformationsdofis given by the first cohomology
group H(#g). O

The direct sum@®' S (= @' A\* T*) is invariant under the action of the exterior
derivatived which yields the direct sum of the full de Rham complex. Thiea tom-
plex #z ¢ is the subcomplex of the direct sum of the full de Rham com;@kS:

@ AT

dg do d

0— > EY(X) E%(X) EY(X) E?(X) e

| | | |

@I/\*T* - @I/\*T* - @I/\*T* - @I/\*T*

We denote by' Hix(X) (= @' D7 HP(X,R)) the direct sum of the full de Rham

cohomology group. Then we have the mp§’®:

|
Pl o1 H(#5.0) = EP Har(X).
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Since the action oﬁTﬁo(X) on Mz(X) preserves the de Rham cohomology clagk +
([#4], - - -, [¢n]) of a B(V)-structure® = (¢4, - - -, ¢), we have the mapps:

|
Ps: Mp(X) > @D Hir(X).
The mapPg is calledthe period map

DEFINITION 3.2.2.  An orbitB(V) is elliptic if the differential complex # is ex-
act in degreek = 1, 2, that is, the symbol complex of the differential compiéx is
exact in degrek = 1, 2.

DEFINITION 3.2.3. LetB(V) be an orbit of G(V & V™) as before andK a com-
pact manifold of dimensiom. A B(V)-structure® on X is a topological structureif
the mapsp'g,d): HX#s.0) — @' Hir(X) are injective fork =1, 2. An orbit B3(V) is a
topological orbiton X if every B(V)-structure onX is a topological structure.

Clearly the elliptic condition depends only on the choiceaaf orbit B(V). How-
ever the topological condition relies on the choice oB@/)-structure® on X.

DEFINITION 3.2.4. A B(V)-structure® on X is unobstructedif for each repre-
sentativea of the infinitesimal tangent space'#s), there exists a smooth one param-
eter family of deformationsb; € Dﬁtg(x) with ®¢ = ® such that

OICI>|
— 0= q,
dat tlt=0

where |t| < ¢ for sufficiently small constant > 0.

If ® is unobstructed, each infinitesimal tangent generatesaladeformations and
the space of deformations @ is locally given by an open set dfil(#z). From the
viewpoint as in [6], we have the following criterion for urgihucted deformations of
B(V)-structures and the local Torelli-type theorem:

Theorem 3.2.5. Let B(V) be an elliptic orbit and® a B(V)-structure on a com-
pact manifold X of dimension n. & is a topological structurgthen ® is unobstructed
and there exists a neighborhood U &f in the moduli spacéz(X) such that the re-
striction of the period map fHuy: U — @' Hir(X) is injective. Furtherif an orbit B(V)
is an elliptic and topological orbit on Xthe period map B: Mp(X) — @' Hir(X) is
locally injective at each pointthat is, the local Torelli theorem holds.

Theorem 3.2.5 is reduced to the following Theorems 3.2.6 &R&d7.
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Theorem 3.2.6. Let ® be aB(V)-structure on a compact manifold X of dimen-
sion n as inTheorem 3.2.5If ® is a topological structurethen there exists a neigh-
borhood U of® in the moduli spacediz(X) such that the restriction of the period
map Rslu: U — @' Hjx(X) is injective.

(Note that Theorem 3.2.6 is regarded as a generalizatiomeofMoser’s stability
theorem for symplectic structures and volume forms.)

Theorem 3.2.7. Let ® be a B(V)-structure as inTheorem 3.2.5 If pécb is in-
jective then @ is unobstructed.

The proof of Theorem 3.2.7 is given in the next Section 3.3e Tést of this sec-
tion is devoted to proof of Theorem 3.2.6.

Let U be a neighborhood oft in Mz(X). For ¥ € U, we have vector bun-
dles EX, = CL**'. ¥ and the differential complex #& = (Ej,, d) which gives the
cohomology groupsH*(#z,¢) and the mapslg o, : H*(#s,4) — P Hi(X).

In order to obtain Theorem 3.2.6, we shall show the followiagnma:

Lemma 3.2.8. Let {®,}°; be a sequence di(V)-structures which converges to
a B(V) structure @, that is

lim ®n =@ € Mp(X),
where we use the Sobolev nofim|| ;. We denote b)Eﬁ(X) the vector bundleCL***.
@, and by#z, the deformation complekE’} with cohomology groups ¥#s,). If
the map § ,: H¥(#35,0) — Hgr(X) is not injective for all n then the map b, is not
injective alsg where k=1, 2

Lemma 3.2.8 shows that the injectivity of the mpé is an open condition, that
is, if pf 4 is injective for ® € Ms(X), then there exists an neighborhoddof & such
that p};’w is also injective for allw € U.

Proof of Lemma 3.2.8. We take a Riemannian metric on the ro&hiX. Then
we have the Laplaciam\,x = djdq + di_1d; ; defined by the complexE;} acting
on sections ofEK(X). We denote byHK(#5 ) the kernel of the Laplaciar\,y. Since
the complex #,, is elliptic in degreek = 1, 2, the cohomology groupl®(#z,,) is iso-
morphic toHK(#5,). We also have the ordinary Laplaciaxn which acts on@I Sand
we denote byl the L2-projection to the harmonic forms with respecta If p'g'n is
not injective, we have, € CL¥*! such thata, - @, is a non-zero element K (#5.n)
satisfying I(a, - ®,) = 0. For each®, we can take a sectiog, of the fibre bundle
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Gei(X) such thatg, - &, = ¢ and g, — id asn — oo. By the left multiplicationLg,
of gn, we identify EX(X) with EX(X) = CL¥*}(X)- &,

Lg,: ER(X) = EX(X),
an - Pp = O+ ay - Py = (Adg, an) - ©.

Then the elliptic operatoiz , on EX(X) is defined by

Apn=LgApnlyl.
We putb, = Adg, a,. Then we have

Apnbn-® = LgApn(@n - ®n) = 0.
We takea, such that the Sobolev norm &f, - ® is normalized,
llon - @z = 1.
Then from Rellich lemma there exists a subsequefige- ®},, which converges to
b-® e EY(X) with respect to the nornt2. Since Apmbm - © = 0, using the elliptic
estimate, we have,
[[bm - @[l 2 = Caflbm - ®[[Lr = Calbm - 2,

whereC; # 0 does not depend om for i = 1, 2. Hence we have the bound,

0#Cs=[b- .
The family of elliptic operato{ Ag m}m also converges to the operattrs ¢ asm —

oo, Where Ag ¢ denotes the Laplacian of the complex ¢ acting onEX.
Hence we have

Ag(b- @) = 0.

Sincegm — 1 (M — 00), the sequencganm - Pm} = {gy! * bm - P}m converges tdo - &
(n — 00). Hence it follows fromIl(ay, - ®,) = 0 that

M(b-®) =0.
Henceb- ® # 0 is an element of kep,lm and we have the result. [l

We shall show that the dimensiddl(#s ) is constant for all¥ in a sufficiently
small U:
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Proposition 3.2.9. Let ® be a B(V)-structure on a compact manifold X for an
elliptic orbit B(V). If @ is a topological structurethen there exists a neighborhot
of @ in Mp(X) such thatdim H(#3z y) = dim H(#z ), for all W € U.

Proof. Taking the quotienQ¥, = EB' S/EX,, we obtain the quotient complex
{(Qu, dg)} and the short exact sequence:

I
0—>E’&,—>@S—>ny—>0.

SinceEy, and @' S are elliptic, it follows that the quotient comple®;, is also elliptic.
(This follows from the long exact sequence of the symbol dergs.) Then we have
the long exact sequence,

1

= Hi(Hse) —> GB Hin00) — HI(QG) — H2(Hsa) 2% 69 Har(X) —

It follows from Lemma 3.2.8 that the mags;; , and p3 , are injective for all¥ e u.
Thus we have the exact sequence,

0— Hi(tsy) =5 EB Hir(X) > HY(Q}) — 0.
Then we have
|
dim @ Hir(X) = dim H'(#s,4) + dim HY(Q}).

Since dimH(#35.¢) and dimH(Q3,) are upper semi-continuous i (see [17]) and
dim Hjz(X) is invariant, it follows that dinH(#s,4) = dim H(#z,¢) for all ¥ in a
sufficiently small neighborhootl of . O

Proof of Theorem 3.2.6. Led be a neighborhood ob such that for every e
U, the mapp} , is injective and dinH(#3,¢) = dim H(#z6) holds. Let{®} be
a smooth family ofB(V)-structures in the neighborhodd parametrized by € [0, 1].
We assume that the-closed form®; belongs to the same de Rham cohomology class
as @ for all t, that is, there exist#\: such that

(3.2.1) D — Do = dA.

Since the grou@Tﬁo(X) is generated by the action of DjtiX) and the action of
d-exactb-fields, Theorem 3.2.6 is reduced to the following propositi
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Proposition 3.2.10. Let ®; be as in the proof ofTheorem 3.2.6 Then there exist
a smooth family of diffeomorphisnfs;} and a smooth family of d-exa2tforms {dy}
such that

(3.2.2) e A frdp = dg, for all t e]0, 1].
Proof. By differentiating the equation (3.2.2), we have
(3.2.3) %(e“” A fFdy) =0, Vtelo, 1],
which is equivalent to
(3.2.4) e Adp A D+ €M A fF D+ e A Dy = 0.
By the left action of f,~%)*(e~9"), we have
(frD Ay A fr@) + () P + & = 0.

We set (,1)*7 = 7. Since (f,1)*f, @, is given as the Lie derivativet, ®; for a
vector field v, it follows from (3.2.1) that

(3.2.5) ) A ®y + L, D +dA = 0.

Since @, is d-closed, we have

(3.2.6) L, ® = di, dr.

We substitute (3.2.6) in (3.2.5) and we have

(3.2.7) 7)) A D¢ + diy, @ = d(r + v) - Dy = —d A,

where ¢ + 1) € T & T* acts on®; by the Clifford multiplication. We denote by
EX(X) the vector bundle Ct*t- @, and #s, the complex{E;(X)}. Then @ + v) -
is a section ofE2(X) and —d; = —dA, is a section ofE}(X). Hence—d A, yields the
class—[dA] € H(#3,) of the deformation complex #:

d d
0 “ 1 ™
EOSENS ...

Then we see that the classdA;] € H(#3,) vanishes since the clasgdA] is rep-
resented by thel-exact form and the mapllgyt is injective. If we take a metric on the
manifold X, we have the adjoint operatal; and the Green operatds; of the com-
plex #s;. Since dimH(#z,) is a constant, the Green opera®f depends smoothly
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on the parameter. We define a sectiom; of E?(X) by
(3.2.8) B = —diGidA;.
Then from the Hodge theory of the elliptic complex, we have
(3.2.9) dB = —dA.
SinceB; is written ask; - ®; for E; € T d T, we obtainv; + y; = E; such that a smooth
family {v; + 1} satisfies the equation (3.2.7). By solving the equatign®)* f't*cbt =

L, ®, we have the smooth familyf;} with fo = id. We also obtain: solving the equa-
tion (f.1)*x = 7. Hence we havd f;} and {dy:} which satisfy the equation (3.2.2).
L]

3.3. Construction of deformations. This subsection is devoted to proof of The-
orem 3.2.7.

Proof of Theorem 3.2.7. LeK be ann-dimensional, compact manifold with a
B(V)-structure®. We take a Riemannian metric 4. (Note that this metric is in-
dependent of the structuré@.) The bundle G(X) = Gy(T & T*) acts on the fibre
bundle B(X) transitively. Hence every global sectidx(X) is written asg- ® for a
sectiong of Gy(T @ T*). The subset (T @ T*) with the identity of G(T & T*)
is given by

(3.3.1) Go(Te T ={e®|acCLYT & TH).

Hence every deformation ab in £z(X) is given bye*- ® for a sectiona of CLA(T &
T*). In order to obtain a deformation @b in Mz(X), we introduce a formal power
series int:

1 1
(3.3.2) a(t) = ast + 5aztz + §a3t2 4+ -,

eacha; is a section of CE(T @ T*). We define a formal power seriggt) by
(3.3.3) g(t) = exp@(t)) € Geo(T & TH)I[t]].

The group Go(T & T*) acts on differential forms and we have
a(t) 1
€ -<I>=<I>+a(t)-<b+5a(t)-a(t)-<b+---

(3.3.4) 1
= <I>—|—(a1-<I>)t+E((az—i—al-al)-(b)tz—ir---.
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The equation that we want to solve is,
(eq.) def® . o = 0.

At first we takea; such thatda, - ® = 0 as an initial condition. It follows from
Lemma 2.1.7 that we have

(3.3.5) e 0. d. e = exp(Adyy)d,

where exp(Adg)d is the operator acting on differential forms which is defirdthe
power series irt:

l (o]
exp(Ady)d = d + > Ady, d
k=1

=d+[d, a(t)] + %[[d, at)], at)] +---
=d+[d, ]t + %([d, a] + [[d, a1], a))t? + - - -,

where Adj, d = [AdK d, a(t)]. Hence the (eg) is equivalent to the equation
(eq,) (exp(Adyt))d)® = 0.

Then it follows from Proposition 2.1.5 that exp(4g)d is a Clifford—Lie operator of
order 3 and we have

(3.3.6) (exp(Ad)d)® € E3(X).
From (3.3.5), we have
(3.3.7) de® . » = 2V . (exp(Ady)d) .

We denote by (t)); the i-th homogeneous part of a power serieét) in t. Then
from (3.3.7), we have

(3.3.8) eV - d)g = Y (V) (exp(Adkg))d)yj; ®.
My

Sinceda; - ® = 0, we have

(3.3.9) (exp(Ad))d)p) - @ = (exp(Adh)d)py - ¢ = 0.

Thus it suffices to determiney satisfying €¢,) by induction onk. We assume that
a, ..., a1 have been determined so that

(3.3.10) (exp(Aq(t))d)“]d) =0, (| =0,1,..., k= 1).



DEFORMATIONS OF GENERALIZED CALIBI-YAU STRUCTURES 821
Then it follows from (3.3.8) that
(33.11) eV - @)g = (exp(Adyy)d)g .
Then form (3.3.6), we see that
(3.3.12) etV . o)y € EX(X).

The k-th part €8 . @) is written as
) 1
(3.3.13) oe - D) = Edak-d>+0h<,

where Ol (= Olx(ay,...,ak 1)) is the non-linear term depending only an,...,ax 1.
Sinceda, - ® € dEX(X) ¢ E%(X), it follows from (3.3.13) that

(3.3.14) OR € E%(X).
Since OR is d-exact, we have the cohomology class {Pb H?2(#z). Then we have

Lemma 3.3.1. There exists a sectiony asatisfying (det® . ®)yq = 0 if and only
if the class[Oby] € H2(#3) vanishes.

Proof. The equationd@® - ®);q = 0 is written as
1
(3.3.15) dac ® = —on,
where OR only depends oray, ..., a-1. The L.H.S. of (3.3.15) is an element of the
image dE(X) in the complex #:

N BN
The R.H.S. of (3.3.15) is also @-closed element oE? which yields the class [Qb e
H?(#g). If we haveay satisfying the equation (3.3.15), then the classJQlanishes.
The complex # is an elliptic complex and we have the Green operddg) of the
complex #. If the class [OR] vanishes, we can obtaia by using the Green operator:

1
Fak D = —d*G#B(ObK) e EL

Then a, satisfies the equation (3.3.15). []

We call [Ohk] the k-th obstruction class. (Note that [¢Jocan be defined if the
lower obstruction classes vanish.) Since,@bd-exact, we have that the class [Qle
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H2(#g) is contained in the kernel of the mapg. Hence if the mapp3: H?(#z) —
Hir(X) is injective then [Of] vanishes. Hence from (3.3.11), we haag satisfying
(exp(Adyt))d)pg® = 0. By induction, we have a formal power seria) which is a
solution of the equationéf,). The rest is to show the convergence of the power series
a(t). The convergence can be shown essentially by the same dhathim [6]. We also
have the smoothness of solutions by the standard elliptjalaeity method. Hence the
result follows. O

4. Generalized Calabi-Yau and generalized SWj-structures

4.1. Generalized Calabi-Yau structures. Let V be a real vector space of di-
mension & and 7 (V) the set of complex structures oh. We denote by/\'}O V¢ the
space of complex forms of type,(0) with respect toJ € J7(V). Let B(V) be the set
of pairs consisting of complex structurdsand a non-zero complex form of typa, 0):

PV) = {(J. €2,)

n,0
Jejw)o¢QJeﬁQ@}
J
Then we have the projectiom, from $3(V) to complexn-forms A" V¢:

m: (V) = \ Vé.

DEFINITION 4.1.1. A complexr-form @y onV is an SL,(C)-structureif Qy be-
longs to the imager,(P(V)). The set of SL(C)-structures orV is denoted byAs (V).

Hence each S|(C)-structureQy is a complex form of typer(, 0) with respect to
a complex structurel € 7(V). Conversely for each SI(C)-structure2y we define a
complex subspace ké&r, by

kerQy := {v e Ve | 1,Qu = 0}.

Then the complexified vector spadk: is decomposed into k&2, and the conjugate
spaceker Qy:

4.1.1) Ve = kerQy & kerQy.

The decomposition (4.1.1) gives the complex structdren V such thatQy is the
complex form of type 1§, 0) with respect toJ. Then we have the map from the set of
SL,(C)-structures to the set of complex structures:

Asi(V) = J(V).
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An SL,(C)-structureQy is written asQy = 61 A---A0", where{0',...,0"} is a basis
of the space of complex forms of type (1, 0) with respectJtoThen it follows that
the real linear group GI\() acts onAg (V) transitively with isotropy group SKC)

and As| (V) is the orbit which is described as the homogeneous space:

AsL(V) = GL(V)/SLa(C).

The real Clifford group G(V @ V*) acts on/\" V* ® C by the spin representation
as in Section 1. When we consider complex forms as pairs offoeas, we can ap-
ply the viewpoint in Section 3 and then the Calabi—-Yau stmed naturally arise as
Bs.(V)-structures.

DEFINITION 4.1.2. LetBs. (V) be the orbit of G including SL,(C)-structures
AsL(V),

As (V) C Bsi(V).

We call an elemenpy of Bs (V) is ageneralized Calabi-Yau structumn V (i.e., non-
degenerate, pure spinor) aiftd; (V) the orbit of generalized Calabi—Yau structures

Let X be a compact manifold of dimensiom.2Then by applying the construction
as in Section 3, we definBs (V)-structures onX to be generalized geometric structures
corresponding to the orbifs (V). The Bs.(V)-structures coincide with the generalized
Calabi—-Yau structures introduced by Hitchin [14] since fie¢ of non-degenerate, pure
spinors ofV @& V* forms the orbitBs (V). We shall apply our deformation theory to
generalized Calabi—Yau structures. [ (V)-structure¢ on X gives the complex #,
of vector bundlegEX, } on X:

-1 0 1 2
0—Eg -Eg - Eg - Eg —---.

We denote byH*(#z,) the cohomology group of the complexs#. Let L, be the
vector bundle onX which is defined by

Ly ={Ee(T®T*)®C|E-¢=0.
Then we have a decomposition:
(4.1.2) TeTHIRC =L, Ly,

where L, is the conjugate bundle df,. The decomposition (4.1.2) gives rise to the
generalized complex structugg, which is defined by

B +\/__1E' (E (S] L¢):
Js(E) = {_mE, (E € Ly).
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We call J; the induced generalized complex structure. We denotd\by_d, the i-th
wedge product ofL; which acts ong by the Clifford multiplication. Then we define
a vector bundleU; by

i
U, = AL,

fori =0,...,2n. The bundleU," is the line bundle generated gy The vector bundle
EX, is described in terms dfl}.

Lemma 4.1.3. We have the following identification as real vector bundles

(4.1.3) EQ = U, ",
(4.1.4) Eg =U,"® U, "2
(4.1.5) B3 = U, "o U,

In general we have

k
(4.1.6) EZ = Pu,?,
i=0
k o
(4.1.7) EZ ~Pu,"a
i=0

Proof. We consider the complex forgh = ¢R¢ + /—1¢'™ as the pair of real
forms @Re,¢'™). Then applying the construction in Section 3, we have theorebun-
dles EX, generated by

EX = {(a-¢7° a-¢'™) | ae CLY}.

Then we have the complex fora- ¢R¢+ /—1a-¢'™ = a-¢. From the decomposition
(4.1.2), we have the identification:

k 2
CL*®C = CL*(Ly, ® Ly) =P ALy & Ly).
i=0

SinceLy - ¢ = {0}, We have an identification:

k 2
(4.1.8) EXt=CL*. ¢ = @ /\L—¢.¢
1=0

k

(4.1.9) =Ppu;".
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. 2k~ MK —n+2i+1
Similarly we havekEg; = P;_o U, . Ol

Proposition 4.1.4. The complexts,, is elliptic, that is, the orbit Bs_ is an ellip-
tic orbit.

Proof. Since there is the inclusion €2 c CL¥, we have the inclusiofE&? ¢
E‘gL and then the quotient is given by

EIéL/EléT_Z ~ U(;n+k+l,
for k > 1. We define a complefs, = {E%, )} by replacingE™* by E™' ® C, that is,

B {E—l ®C, (k=-1),
EX, (k # —1).

Then there is a map [2] by shifting its degree franto *x + 2:
~ 2] ~
ES > ES2
Thus we have the short exact sequence:
—e (2] —e+2 .
(4.1.10) 0—E5 —E"“—>U; =0,

which yields the following commutative diagram:

0 0 0
-1 0 1
I—> Est®C Es. Est
0——Egl®C = Es E2 E3
0 Ufn U*n+l U7n+2 U7n+3 U7n+4 ..
o — Y — U, — U, U,
0 0 0

It follows from U™ = A' L, - ¢ that the quotient complexU(;"**, 9) is an ellip-
tic complex. Hence from the commutative diagram, we see tt@tcomplex #,, is
elliptic by induction on degreé. []
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The complex ), 9) is the deformation complex of generalized complex stmestu
which is introduced in [11]. Then the exterior derivatideacting onuf is decomposed
into two projectionsd and 9, that is,

d=9+29,

p1 3 pd | p+l
U¢ <—U¢—>U¢ .

We define an operatat’ by
d7 = V-1 — 9).
The dd7 -property is introduced and discussed in [14], [12], [2]:

DEFINITION 4.1.5. A generalized complex manifoldX(.7) satisfies thedd” -
property if and only if the following three conditions are equivalent
e ac /\"T*is d-closed andd”-exact,
e ac \*"T*is d-exact andd”-closed,
e a=dd’b for somebe A" T*.

Theorem 4.1.6. Let¢ be a generalized Calabi-Yau structure on a compact mani-
fold X with the induced generalized complex structyge If the generalized complex
structure 7 satisfies the dd-property we have unobstructed deformationsgoés gen-
eralized Calabi—Yau structures which are parametrized bypen set of the cohomology
group Hl(#gz, ). Further the period map P from the space of deformationg o the
de Rham cohomology group is locally injective., the local Torelli type theorem holds.

Proof. SinceUﬁ is the eigenspace of the action G with eigenvaluey/—1p, we
have the decompositiof\" T* = @,__, U;. If an exact formda™ is an element of
Ut for a™ e UJ", we havedda™ = 39al™ = 0. Hence applying theld”-property

we have
(4.1.11) da™ = dd7b = 2+/—199b = 2+/—1ddb,

for be U Then we haveda™ = dy for y = 2¢/~19b € U2 From our decom-
position, a forma is written as

m
a= a,
2

. K .
wherea® € U}’ for somem. If dais an element ofy"_ U/, then applying the

dd7 -property successively, we hawa = db for b Z';;l_n Uqf‘. Similarly if da €
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AZ"T* (resp.dae A°YT*) then applying theld” -property we see thata = db for
be A\°T* (resp.b e A®*"T*). Hence it follows from Lemma 4.1.3 that ifa € EX,
thenda = db for b € E§* (k = 1). It implies that the maml: HX(#5s,) — Hir(X)
is injective fork > 1. []

Gualtieri also shows that thed” -property holds for generalized Kéhler structures
[12]. By applying his theorem, we obtain

Theorem 4.1.7. Let ¢ be a generalized Calabi-Yau structure on X with the in-
duced generalized complex structugg. If there exists another generalized complex
structureZ such that the pair(Z, J,) gives a generalized Kahler structure on, ¥en
¢ is a topological structure.

Proof. The result follows from the proof of Theorem 4.1.6. []

We denote byH*(#s, ) the cohomology group of the compléis, = {Eg, }. The
short exact sequence (4.1.10) in the proof of Propositidnd44gives the long exact
sequence:

coo > H Y (#y) — H(#s,) — HZ(U;) — H (s, ) - H(#5,,),
where HBK(U(;) denotes the cohomology group of the complék
HA(Ug) = (kerd: U, " — U M) (U, et

In particular, H52(U(;) is the infinitesimal tangent space of deformations of galiwsd

complex structures (cf. [6], [11]). It follows from the th#d”-property that the map
H¥(#s,,) to HX*(U;) is surjective. Thus we have the short exact sequence:

(4.1.12) 0— H™'(f#sy) — H'(Fisy,) — HZ(U;) — 0.
Then we have

Proposition 4.1.8. Let ¢ be a generalized Calabi-Yau structure on X afigthe
induced generalized complex structure i satisfies the dd-property then deforma-
tions of 7, as generalized complex structures are unobstructed andl sieformations
are induced from deformations of generalized Calabi—Yaucstres.

Proof. The exact sequence (4.1.12) implies that the m;’gp-#(#gﬁ) — Hg(Uq;)

is surjective. The cohomology groug*(#s,, ) is the infinitesimal tangent space of de-
formations of generalized Calabi-Yau structures m%%(qu) is the one of generalized
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complex structures. Thus it follows from Theorem 4.1.6 tHaformations ofJ; as
generalized complex structures are unobstructed and se&dkrmations are induced
from deformations of generalized Calabi—Yau structures. L]

REMARK 4.1.9. Li [22] showed the following result: LelX(¢) be a generalized
Calabi—-Yau manifold. If there is another generalized caxptructureZ such that the
pair (Z,J,) is a generalized Kéahler structure, then small deformatioin7, as general-
ized complex structures are unobstructed and paramewydﬂlaZ(U;;). Li used the de-
formation theory developed by [11] and solved the genezdlilzlaurer—Cartan equation
to obtain unobstructed deformations of generalized coxpteuctures. By using The-
orem 4.1.7 and Proposition 4.1.8, we can give a differenbfpod Li’s result (see [7],
[9] for more detail about the relation between our defororattheory of generalized
Calabi-Yau structures and the deformation theory of gdmerhcomplex structures).

4.2. Generalized SUf)-structures. Let wy be a real 2-form on a real vector
spaceV of dimension A. As in Section 4.1, an SI(C)-structure2y gives rise to the
complex structureJ on V and then the associated bilinear fogyn is given by

ogv(u, v) = wy(Ju,v), (U, vevV).

DEFINITION 4.2.1. A pair Qy,wy) is an SU(n)-structureon V if the following
three conditions hold:
(1) Qv Awy =0,
(2) QuAQy = chwl, wherec, is a constant which depends only nrand Qy denotes
the complex conjugate a2y,
(3) The associated bilinear forgy, is positive-definite.

The condition (1) implies thaty is a form of type (1, 1) with respect td and
then it follows from (3) thatwy is a Hermitian form. The equation (2) is called the
Monge—Ampere condition. Leflsy(V) be the set of SUY)-structures orvV. Then the
real linear group GLY) acts onAsy(V) transitively with the isotropy group Suy.
Hence Asy(V) is the orbit of GL{) which is described as the homogeneous space:

Asu(V) = GL(V)/SU[).

We consider the pairty, e/=1v) for an SUf)-structure v, wy) which consists of
two non-degenerate, pure spinQx, and eV=1ov | where

1 1
eV v = 14 V-lwy + 51V —loy)® + 31 (v —Lloy)® + -

DEFINITION 4.2.2. The orbitBsy(V) of the Clifford group G through the pair
(Qv,eﬂ‘w) is calledthe generalizedsU(n) orbit. An element ¢y o, ¢v 1) Of the orbit
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Bsu(V) is a generalizedsU(n)-structure on \/ Note that the orbi3sy(V) is embedded
into the space of pairs of complex formg* V¢ @ A" V. Let X be a compact mani-
fold of dimension 2. Then as in Section 3, we defigeneralizedSU(n)-structures on
X to be Bsy(V)-structures onxX.

Let (¢o, #1) be a generalized Sdj-structure on a compact manifold of dimen-
sion . Since it consists of two generalized Calabi—-Yau strustgeand ¢;, we ob-
tain the pair (o, J1) of the induced generalized complex structures>un Since the
set of generalized Kahler structures also forms an orbit gf iGturns out that the pair
(Jo,J1) is a generalized Kahler structure. By applying thé” -property, we obtain the
following theorem on deformations of generalized 8)Jgtructures:

Theorem 4.2.3. The orbit Bsy(V) of generalizedSU(n)-structures is an elliptic
and topological orbit on X.

Theorem 4.2.3 implies the following:

Theorem 4.2.4. Let ® = (¢o, ¢1) be a generalizedU(n)-structure on a compact
manifold X of dimensio2n. Then we obtain unobstructed deformations®ofis gen-
eralized SU(n)-structures which are parametrized by an open set of the mahagy
group Hl(#s,,). Further the period map of the moduli spa8Bsy(X) is locally in-
jective i.e., the local Torelli type theorem holds.

Proof of Theorems 4.2.3 and 4.2.4. Lek(¢,) be a generalized Sud)-structure
with the generalized Kahler structurgl, J1) on X. We denote by £, = {E&y.d} the
deformation complex of generalized SiKstructure §o, ¢1). Then it suffices to show
that each map

2
pIBSU: HI(#BSU) g @ H(TR(X' C)

is injective fori = 1,2. We have the eigenspace decompositiof\6fT * = @g}n U(;
for eachj = 0, 1. Since [y, J1] = 0, we then have the simultaneous decomposition
into eigenspaces:

AT - @ v

[p+al=n
p+q=n (mod 2)

where UP4 = Udf; N Ugl. EachEy, consists of pairs of differential forms and then
the projections; to the first component induces the map from#to #z,. We de-
note by K* = (K*, d) the complex defined by the kernel af. Then we have a short
exact sequence:

(4.2.1) 0— K* - E&, = ES — 0,
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that is,
KO K1 K2
Est ESu Esu E&y
Est E Es =

If E-¢1 =0 forrealE € T @ T*, then we see thaE = 0. It implies thatK® =~ {0}.
Similarly K and K? are respectively given by

(4.2.2) K~y n+?

(423) K2 ~ Ul,—n+1 o U—1,7n+1 @ Ul,—n+3 o U—l,—n+3.

The C(_)mplex K*, d) is a subcomplex of the full de Rham complex and we have the
map pi : H'(K*) — Hix(X). By applying the Hodge decomposition of generalized
Kéhler manifold in [12], it turns out thapiK is injective for each (cf. Section 1.3 of

[7D. We denote byS® the full de Rham complex as in Section 3, whefe=SS =
@J?”:O A T*X, for all i. Then there is the splitting short exact sequence:

0-S >SS >SS -0,

where S* @ S is the direct sum ofS* and S*. The short exact sequence (4.2.1) is a
subsequence of the splitting short exact sequence:

0 K* E2, E2 0

T

0—sS—>SpS——S ——0

Hence we have the diagram of long exact sequences:

i —— HI(K*) ———— Hi(#p,) ———— H (#py) —— - - -

pi{ pzsul l%

0 —— Hir(X) —— Hir(X) & Hjr(X) —— Hir(X) —— 0,

where the sequence at the top is the long exact sequence lgjvére short exact se-
quence (4.2.1). Since,  and p, are injective, it follows thatpj,_ is injective fori.
Hence the results follows. [l
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