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Abstract
Let M be a positive quaternionic Kéhler manifold of dimensiam.4In earlier
papers, Fang and the first author showed that if the symmatfrl is greater than

or equal to fn/2] + 3, thenM is isometric toHP™ or Gr,(C™"2). The goal of this
paper is to give a more refined classification result for p@sitjuaternionic Kahler
manifolds (in particular, of relatively low dimension or tvievenm) whose fourth
Betti number equals one. To be precise, we show in this pdyaeriftthe symmetry
rank of M with by(M) =1 is no less thannj/2] + 2 for m > 5, thenM is isometric
to HP™.

1. Introduction and main results

A compact quaternionic Kéhler manifoM is a Riemannian manifold of real dimen-
sion 4n whose holonomy group is contained in the Lie gr&gm)Sp(1) in SQ(4m) for
m > 2. Such a manifold is callegositiveif it has the positive scalar curvature. It is
known that every quaternionic Kéhler manifold is Einsteo it is common to define
a 4-dimensional quaternionic Kéhler manifold to be bothsEim with non-zero scalar
curvature and self-dual. While many complete, non-compaari-symmetric quaternionic
Kéahler manifolds with negative scalar curvature are knowexist, so far the only known
examples of compact positive quaternionic Kéhler manifaddle symmetric (see some
similarities in [10] and [12] for positively curved Riemaan manifolds). Moreover, a
theorem of Alekseevsky asserts that there are no other a@inmpanogeneous positive
guaternionic Kahler manifolds (e.g., see [1]).

According to a result of LeBrun and Salamon in [13], everyifdas quaternionic
Kahler manifoldM is simply connected and the second homotopy graup a finite group
with 2-torsion, trivial orZ. More precisely,M is isometric toHP™ (resp.Gr,(C™*?2))
if 7o(M) = 0 (resp.rp(M) = Z). So its second Betti number is always less than or equal
to 1. Furthermore, for such quaternionic Kéahler manifolfidimension 4n all odd Betti
numbers vanish, so that the Euler characteristic of the fioldris always positive. Recall
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also that there exists a nice relationship between Bettibheusof different degrees such as

m-1
Y_26M=i 1)~ (M= 1)(m—3)bx = m(m — 1)z
i=0

(e.g., see [13] for more details).

On the other hand, it is also one of the interesting problenttatssify positive quater-
nionic Kahler manifolds in terms of the rank of its isometmnpgp. Strictly speaking, the
symmetry rank sym-rank(, g) (or simply sym-ranki{/)) of a Riemannian manifold with
a Riemannian metrig is defined as the rank of the isometry group Isbing). Equiva-
lently, it can be defined as the largest numbesuch that a -dimensional torus acts ef-
fectively and isometrically oM. This concept was first introduced by Grove and Searle
in [6] in order to measure the amount of symmetry\of

It is not so hard to see that the symmetry rank sym-rihkéf a positive quater-
nionic Kahler manifold of dimensionm is less than or equal tm+1. In [2] Bielawski
classified positive quaternionic Kahler manifolds of disien 4n with isometry rank
equal tom + 1. Moreover, in earlier papers [4] and [9], Fang and the firsh@ugave
a classification result of positive quaternionic Kéhler ifds with certain symmetry.
That is, we showed that if the symmetry rank is greater tharequal to /2] +
3, then M is isometric toHP™ or Gry(C™2). In fact, there have been some con-
crete classification results of positive quaternionic kéhhanifolds of low dimension.
For examples, Hitchin proved in [8] that every positive guaionic Kahler 4-manifold
must be isometric t€CP? and S*. In case of dimension 8, Poon and Salamon showed
in [14] that every positive quaternionic Kahler manifoldosid be isometric toHP?,
Gry(C* or G,/SO(4), i.e., the Wolf spaces. Moreover, in [7] H. Herrera and Rrrdra
gave the classification of positive quaternionic Kahlerdirdensional manifolds under
an isometricSt-action. As a consequence of their classification, such afoldris iso-

metric to HP3, Gr,(C®) or Gry(R’). HereGry(R’) means the oriented real Grassmann-
ian manifold of dimension 12.

The goal of this paper is to give a more refined classificatesult for positive
quaternionic Kéhler manifolds whose fourth Betti numbeuag one. To be precise,
in this paper we show the following theorem:

Theorem 1.1. Let M be a positive quaternionic Kéhler manifold of dimemnsio
4m with by(M) = 1. If the symmetry rank of M satisfies

m
sym-rank(M) > [E] +2, m=>5,
then M is isometric taHP™.

Finally, a remark is in order. After having submitted thigopafor publication, in
the subsequent paper [11] we were able to improve the lowendof the symmetry
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rank in Theorem 1.1 by one for positive quaternionic Kahlemifolds of real dimen-
sion 4n > 40 (here,m is an even integer greater than or equal to 10) wifh= 1. On
the other hand, note that Theorem 1.1 applies to any posjtie¢éernionic Kahler mani-
fold of real dimensior> 20 with by(M) = 1, under the stated condition of symmetry
rank. The method of the paper [11] is to use a more delicatenaegt of Frankel type
to positive quaternionic Kahler manifolds with certain syetry rank which works well
only for higher dimensional positive quaternionic Kahleamfolds. So we remark that
the methods of two papers are essentially of different eatur

We organize this paper as follows. In Section 2, we set upchasminology and
prove several important results for the proof of our mainoteen. In Section 3, we
give a proof of Theorem 1.1 through the stratification of tle@arected components of
the fixed point sets. Finally we remark that this paper is verych influenced by the
ideas in the papers [3] and [4].

2. Preparatory results

In this section we set up basic terminology and prove sevarmabrtant results for
the proof of our main Theorem 1.1. Throughout this paperL&lgroup actions on a
Riemannian manifold are assumed to be effective and isametr

Now we begin with the connectedness theorem of Fang and #teafithor in [3]
and [9]. To do so, first recall that a majp: N — M between two manifolds is called
h-connectedf the induced mapf,: 7j(N) — 7;(M) is an isomorphism for all < h
and an epimorphism for = h. If f is an imbedding this is equivalent to saying that
up to homotopyM can be obtained fronf (N) by attaching cells of dimension h+1.

Theorem 2.1. Let M be a positive quaternionic Kahler manifold of dimensio
dm. If N is a quaternionic Kahler submanifold of dimensidm, then the inclusion
N < M is (2n — m + 1)-connected. Furthermoyaf there is a Lie group G acting
isometrically on M and fixing N pointwis¢hen the inclusion map i€n—m+ 1+
3(G))-connectedwhere §(G) is the dimension of the principal orbit of G.

The first statement of Theorem 2.1 is due to Fang ([3], [4])ilevits second state-
ment is the extension to the case with group action which is @uthe first author
(I9]). The latter can be also considered to be an extensioth@fconnectedness the-
orem of Wilking in [15] and independently Fang, Mendonga, &uhg in [5] for posi-
tively curved manifolds to positive quaternionic Kahler mifalds.

We also need the following lemma.

Lemma 2.2. Let M be a positive quaternionic Kéhler manifold of dimemns#m
with an isometric T"*-action. Then there always exists an isolated fixed pointef t
T™Laction.
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Proof. We will show this lemma by contradiction. To do so, [soge that there
exists a fixed point componemt of dimension 4 in the fixed point set under tR&—1-
action. If we use a stratification of the fixed point sets untlex TX-subaction of
Tm-1.action we can consider a sequence of positive connecteergienic Kahler sub-
manifolds as follows.

(2.1) xeN=NfcNSc---cN;T D e m,

where each quaternionic submanifdif’ admits an isometrid@'~*-subaction ofT ™*-
action onM. So, in particular,N = N} is contained in positive quaternionic Kahler
strata N5 C N22 such thatN}? admits an isometricT 2-action. If N is isometric
G2/SO(4) then N should be isometric toCP?, since it is known that the only
4-dimensional positive quaternionic Kahler manifoldGn/S O(4) is CP?. But then we
claim that theT2-action onN22 should have a fixed point outsidd. Indeed, other-
wise the Euler characteristig of N coincides with that ofN3?, i.e., x(N3?) = 3. This
implies thatbg(N1?) = 1. On the other hand, since we have the relatigfNi?) =
2b,(N2?) (e.g., see [13])bs(N2?) should be even. This is a contradiction.

Next if NS is isometric toHP?, then it follows from Theorem 2.1 that the inclu-
sion of N§ into N3? is at least 3-connected. Hend&}? is also isometric taHP®. But
then, since the Euler characteristic Nf (resp.N22) is 3 (resp. 4), there should be an
isolated fixed point of thel 2-action onN3? outsideN$. But that fixed point is also an
isolated fixed point of thel ™-1-action onM. Hence we are done in this case.Nf
is isometric toGr,(C%), then, as in the above casjd?}Z is isometric toGr,(C%). Since
the Euler characteristic dfl$ (resp.N3?) is 6 (resp. 10), it follows from Theorem 0.1
of Frankel type in [3] there should be an isolated fixed poihthe T2-action onN3?
outside N which is also an isolated fixed point of tlie™1-action onM.

Therefore we may assume that there is another fixed point aoemp N’ of
dimension> 4 outsideN in the fixed point set under th&2-action onN32. But then
N’ and N§ would intersect to each other by Theorem 0.1 of Frankel typ8]. Hence
N’ is contained inN$. If we apply the Theorem 0.1 of Frankel type in [3] d and
N’ in N once again, we can easily derive a contradiction. This cetaplthe proof
of Lemma 2.2. O

Next we need the following Proposition 2.3 which will be udefo prove some
important results at several places of this paper. Its rsi@te can be found in Prop-
osition 2.3 in [3] whose proof can be referred to the paperof7/Herrera and Herrera.
However, their paper contains the proof for more generallt®sFor the sake of reader’s
convenience, we briefly sketch a different and interestiogfwhich seems to be known
to experts.

To do so, first let us recall some definitions. &tbe a connected Lie subgroup of
the isometry group Isony). For anyx € M, the isotropy groupGy is a subgroup of
the holonomy groupam)SH1))x at x. So the isotropy representation is determined by
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two homomorphisms
ox: Gy = SAM)y, px: Gx = SAL)x.

We then say that an isometri@-action on M is of quaternionic typef px: Gy —
SH1), is trivial for any G-fixed pointx € M (see [3], Section 2 for more details about
the torus action of quaternionic type on a quaternionic Kéhanifold).

Proposition 2.3. Let M be a positive quaternionic Kahler manifold of dimensio
12 with an isometric T-action. If r = 4 or r = 3 and T3-action is of quaternionic
type then M is isometric téiP® or Gry(C5).

Proof. To show it, we consider the two cases, dependingfll). If by(M) > 1
then it follows from a result of LeBrun and Salamon ti\tis isometric toGr(C™*?2).
So we are done.

Now we assume thab,(M) = 0. Note that theT"-action on M has only iso-
lated fixed points, since is greater than or equal to 3. At each isolated fixed point
X, by considering the isotropy representation on the tangpate ofM at X we see
that there are exactly three positive quaternionic Kéhigmsanifolds of dimension 8
passing throughx and also three positive quaternionic Kéhler submanifoliddimen-
sion 4 passing througk. Since every 8-dimensional positive quaternionic Kahlanim
fold is known to be isometric to eithedP? or G,/SO(4) or Gry(C*). If any one of
the 8-dimensional positive quaternionic Kahler submadifis isometric toHP? then
M should be isometric t&HP?, since the inclusion of the 8-dimensional submanifold
into M is at least 3-connected by the connected Theorem 2.1. Asenpthof of
Lemma 2.2, we can conclude that the 8-dimensional positiagegnionic Kéhler sub-
manifold cannot be isometric tG,/SO(4).

Next we assume that all of the 8-dimensional positive quataeic Kahler sub-
manifolds are isometric t@r,(C*). Then we first claim that the Euler characteristic
of M is equal to 10. Since all the fixed points are isolated, it seffito show that the
action has 10 isolated fixed points. To see it, recall thataghasolated fixed poink,
there are exactly three positive quaternionic Kahler suiifolals of dimension 8 pass-
ing throughx and that each 8-dimensional positive quaternionic Kahtémsanifold
contains two 4-dimensional positive quaternionic Kéhlebraanifolds passing through
X. In what follows, we call such a 4-dimensional positive guatonic Kahler sub-
manifold atriangle, and its terminology seems reasonable in view of the mome m
image of CP? in symplectic geometry.

Now fix such an 8-dimensional positive quaternionic Kahlebreanifold N iso-
metric Gr,(C*). Then N contains six isolated fixed point, calleerticesand denoted
v, U2, ..., Vg Of the T"~l-subaction ofT"-action, since the Euler characteristic of
Gr,(C* equals 6. We next show that there are exactly four more testlfixed points
outsideN. To do so, letk be the number of vertices outsidé. Since there are exactly
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three triangles passing through each vertex and everygtéashares at least one vertex
in N, a simple combinatorial argument says that there is nodléalying outsideN
and that there are at leask/2 triangles which does not lie ilN. Thus we should
have ¥/2 < 6, so thatk < 4. Finally since the Euler characteristic bf is even, it is
easy to see that actually= 4 and so we can finish the proof of the claim.

Next we assume that the Euler characteristidvbfequals 10. Then we show that
M is isometric toGr,(C®). We show it by provingby(M) # 0. If by(M) = 0 then it
follows from bg(M) = 2by(M) that bg(M) = 0. Recall next that the Euler character-
istic of M is given by the sum of the sigi-1 associated to 10 isolated fixed points.
So in our case the signature is zero. Since the signatu@rC?) equals 2, there are
exactly four+1 and exactly two-1 vertices among the six verticesg, vy,...,vs. More-
over, since the signature &fl is zero, there are exactly three vertices vg, v9 Whose
sign are all-1. Again a simple combinatorial argument gives rise to a reafttion
to the signature oM. This completes the proof of Proposition 2.3. [l

We also need the following Proposition 2.4 which is analegtu Theorem B in
[3]. Indeed, Fang proved the same result with a weaker agsumm — 2 on the
lower bound of the symmetry rank, but a stronger assumption 10 on the dimen-
sion. A key ingredient with which we are able to weaken theafigion condition in
Theorem B of [3] is the refined connectedness Theorem 2.1eabov

Proposition 2.4. Let M be a positive quaternionic Kahler manifold of dimensio
4m with an isometric T—1-action of quaternionic type. If m is greater than or equal
to 5, then M is isometric ttHP™ or Gr,(C™*2).

Proof. Since the Euler characteristic bf is not zero, there exists a fixed point
x € M of the T™L-action. As in the proof of Lemma 2.2, if we use a stratifica-
tion of fixed point sets under th&*-subaction of T™!-action we can find a quater-
nionic Kahler manifoldN containingx which lies in the fixed point set under tr&-
subaction of T™-1,

Now we need to consider two cases, depending on the codiomendi the sub-
manifold N. If the codimension ofN in M is 4, then it follows from Theorem 1.2 of
Fang thatM is isometric toHP™ or Gro(C™?). Hence we are done in this case.

On the other hand, if the codimension Nf in M is at least 8 then we can con-
sider a sequence of connected quaternionic Kahler suboldsifis follows.

4(m=2
(2.2) x}=N2CNfcNEc..-c N2 = N M,
where for each X i <m—1 the quaternionic submanifoINi“(i’l) admits an isometric

Ti-subaction ofT™l-action on M. Observe that the codimension dF in M is ac-
tually equal to 8 by considering the chain (2.2) more clasélext if we apply the
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connectedness Theorem 2.1 to the above chain (2.2), wenobtai
(2.3) ma(N§) = 7p(NF?) = - - = mp(N2™ 2)) = (M),

provided thatm is greater than or equal to 5. Since the isotropy group of tite s
manifold N4 2 has rank 1 by constructiorN3? can be assumed to admit an iso-
metric T3-action which is of quaternionic type. Thus it follows fromoposition 2.3
that N is isometric toHP® or Gr,(C®). Thus by (2.3)72(M) is either 0 orZ. Hence
M is also isometric tdHP™ or Gro(C™*?) by the rigidity result of LeBrun and Salamon

in [13]. This completes the proof. O

We close this section with the following lemma necessarytfa proof of The-
orem 1.1 which is an immediate consequence of Theorem 1.2]in [

Lemma 2.5. Let M be a positive quaternionic Kahler manifold of dimensim
(m > 3) with by(M) = 1 which admits an isometric'Saction. If N is a positive quater-
nionic Kahler submanifold of codimensieh of M in the fixed point set of the'S
action then M is isometric taHP™.

Proof. It follows from Theorem 1.2 of [4] thaM is isometric to HP™ or
Gry(C™*). Since bs(Gro(C™2)) is not equal to 1,M should be isometric tdHP™.
O

3. Proof of Theorem 1.1

The goal of this section is to give a proof of our main Theoreth To do so, we
assume first tham (m > 6) is even and lek = [m/2] + 2. We may assume without
loss of generality that there is no stratum of codimensiony4Theorem 1.2 of Fang
in [4] or Lemma 2.5.

In what follows, we denote by Fif(<, M) the fixed point set under the action of
TK on M. Let x be a fixed point ofTX-action onM, and letN be a positive quater-
nionic Kahler submanifold passing throughof M of the lowest codimension> 8.
Then N should admit an isometrid* 1-subaction of theTX-action onM. For 1<i <
k, let N; = Fix(T', M)y be a connected component of the fixed point set Fix\).
Then there is a chain of positive connected quaternioniclé¢asubmanifolds ofM
as follows.

3.2) Xe€NKkC N1 C---C N =NCM = No.

Clearly each positive quaternionic Kahler manifdll admits an isometrid@ ' -action
for each 0<i < k. Then we can show the following lemma.

Lemma 3.1. Either the T*-action on M always has an isolated fixed point or M
is isometric toHP™.
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Proof. We assume tha?l is not isometric toHP™. We shall show the lemma
by contradiction. So, suppose that there is no isolated fpaidt under theT K-action.
Then we should have diM > 4 and so we have dild; = dimN > 4k. By assumption,
we also have dinN; < 4(m — 2). This implies that the inclusion ofl; into M is at
least 6-connected by Theorem 2.1, since we have

1 1 1
2.—dimN;—-dmM +2=-dimN; —m+ 2
! | 17 [ + > I 1 +
m
> —_ = _— — =
>2k—m+1 2(2+2) m+2=6
Hence by a theorem of Whitehead we hdu¢N;) = by(M) = 1.

Next we show that we may assume that the difference Miirs dim N, is greater
than or equal to 8. To see it, if we assume that there is a ctevhquDsitive quater-
nionic Kahler submanifold of codimension 4 M, whose isotropy group is a circle of
the T* L-action onN;. Then sincebs(N;) = 1, by Lemma 2.5N; is isometric toHP'
for somel < m— 2. This in turn implies thatr,(M) = 0, so thatM is isometric to
HP™. Thus we have a contradiction. Hence we can conclude

dim Ny — dim N, > 8.

This implies dimN; < 4m — 8. Since dimN, > 4(k — 1), we can also show that the
inclusion of N, into N; is also at least 6-connected, since we have

Zédim Nz—%dimN1+22 2k—1)—(M—-2)+2
=2(ZJ+2-1)-m+4=6.
Hence again we havia;(N2) = by(N;) = 1. A similar argument as above shows that
dimN, —dimN3 > 8, dimN; <4(m-6), and dimN;> 4(k—2).
Repeating this arguments, for> 0 we have the following relations:
(3.2) dimN; —dimNj;; >8, dimN; <4m-—2i), and dimN; >4k—i + 1).
Moreover, from (3.2) we have
2+%(k—i +l)§2+:—édim Ny <k-—i.

Thus we have
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In case ofm = 6, by the assumption on the symmetry rami, admits an iso-
metric T®-action. It is also true by the above discussion that theiistsa positive
guaternionic submanifoldN of codimension at least 8 (i.e., of dimension at most 16)
with the symmetry rank at least 4. But as in the previous chsecvdimension oN in
M must be exactly 8. Thus diis = 0. But it is impossible in view of the assumption
we started with.

Next we need to deal with the case of ewvan> 8. If m is greater than or equal
to 8, again there exists a chain of positive connected quiatdc Kéhler submanifolds
of the form

(3.3) Nk C Nk-1 C -+ C Nm-2)2 C N(m-a)/2
. C N(mfe)/z C N(m,g)/z C---CNy=NCM = Ny,

where dimN; — dimNjy; > 8 for 0 < i < (m — 8)/2 and N; admits an isometric
Tk-I-action for each 0< j < k. By the connectedness Theorem 2.1 as above, we
have by(N;) = by(M) = 1 for 0 <i < (m — 6)/2. Furthermore, since the dimension
Nk is assumed to be at least 4, it follows from the chain (3.3} tha difference
dimN; —dim N; 41 is, in fact, exactly same as 8 for0i < (m—8)/2. HenceNm_s)2

has dimension 24, admits an isometric at I€B%action, and satisfies(Nm—e)2) = 1.

But then theT®-action on Nm—-6),2 has an isolated fixed point by Lemma 2.2, and this
isolated fixed point is also an isolated fixed point of fhk-action onM. This is a
contradiction to our assumption. Alternatively, by comsidg the chain (3.3) directly,
we can show thatNy would be actually an isolated fixed point. This is again a con-
tradiction to the assumption that there is no isolated fixethtp This completes the
proof of Lemma 3.1. []

Now let x be such an isolated fixed point ®-action onM as in Lemma 3.1. Then
we may assume without loss of generality that there is a ipesifuaternionic Kahler
submanifoldN of M passing throughx whose dimension is no more thama{ 2). By
assumption, in this case we have dig = 0 and thus dimN; > 4(k — 1).

We first assume thain is greater than or equal to 8. Thus there is a chain of
positive connected quaternionic Kéhler submanifolds ag¢3i8) such that diniN; —
dimNjy; > 8 for 0<i < (m—6)/2. As in the proof of Lemma 3.1, we see that the
difference dimN; —dimN;; equals 8 for 0<i < (m—6)/2. Moreover, by construction,
for 0 <i < (m—6)/2 the inclusion ofN; into N;_; is at least 6-connected\(; is as-
sumed to be an empty set), so that we hby@\;) = by(M) = 1 andmo(N;) = 72(M).
Hence form > 8 we have a positive quaternionic Kahler submanifbldof dimension
24 whose fourth Betti number equals 1 and the symmetry rardt ieast 5. On the
other hand, since the isotropy group Nf has rank one, th@* l-action onN; can
be assumed to be of quaternionic type without loss of geiteralherefore theT®-
subaction on the 24-dimensional quaternionic Kéhler nadahifs also of quaternionic
type. Hence the proof of Theorem 1.1 for the casemof 8 now follows from Prop-
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osition 2.4 and the assumptidn(M) = 1.
Now it remains to consider the case wf= 6. For this case, it suffices to prove
the following lemma.

Lemma 3.2. Let M be a positive quaternionic Kéhler manifold of dimensi
with by(M) = 1 and the symmetry rank 5. Let N be a positive quaternionic Kahler
manifold of codimension at leag with an isometric T-action as above. Then M is
isometric toHP®,

Proof. First note that by considering the chain (3.1) theirnedsion ofN in M
is exactly 8. Then we need to consider the following two caskpending on the
second Betti numbelb,(N). If by(N) > 1 then it follows from the theorem of LeBrun
and Salamon thaN should be isometric t@r,(C®). Since by constructiomro(N) =
72(M) and 75(Gro(C®)) = Z, we haverr,(M) = Z. But this implies thatM is isometric
to Gro(C™?) by the theorem of LeBrun and Salamon again. Sibgr.,(C™?)) is
strictly greater than 1, this case does not occur.

Next assume thalh,(N) = 0. Then the isometricd *-action has an isolated fixed
points as before. Thus for each fixed poite M, there are exactly four positive
quaternionic K&hler submanifolds of dimension 12 equippét an isometricT 3-action
passing through, and exactly six positive quaternionic Kéhler manifoldsdohension
8 equipped with an isometri€t-action passing through. According to the classifi-
cation of positive quaternionic Kéhler manifolds by Hearemd Herrera in [7], every
12-dimensional positive quaternionic Kahler manifdd with an isometricS*-action is

isometric to eitheHP? or Grs(R”) or Gro(C®). If N’ is isometric toHP3, then»(M)
is trivial, so thatM should be isometric t6iP™. Hence we are done. N’ is isometric

to Gra(R’), then it follows from Proposition 2.3 thal’ would be isometric to either
HP3 or Gr,(C®), which does not make any sense at all. Thus it remains toidemthe
case thatN’ is isometric toGr,(C®). But in this casera(N’) = 2(M) is isomorphic to

Z. HenceM is isometric toHP™ or Gr,(C™*2). But sincebs(Gr,(C™"?)) is not equal

to 1, M should be isometric t¢iP™. Note that instead of using the result of Herrera
and Herrera in [7] as above, one may directly use ProposRi8nto show thatM is
isometric toHP™. This completes the proof of Lemma 3.2. ]

The proof for the case of odoh > 5 is completely parallel to that of even > 6.
So let us highlight only the points different from the caseseénm. First of all, since
m is odd, we need to lek = (m+3)/2 = [m/2]+2. Then the inclusion fronN;; into
N; in the proof of Lemma 3.1 is now at least 5-connected faf i0< (m—5)/2. Then
we can use a 20-dimensional positive quaternionic Kahlerifold with b, = 1 and the
symmetry rank at least 4 in order to finish the proof for> 7. Finally we also need
to consider the casm = 5 which is analogous to Lemma 3.2. But in this case there
is a 12-dimensional positive quaternionic Kahler subnadiN’ with the T3-subaction
of quaternionic type. Hence we can apply Proposition 2.2ttogr with the assumption
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bs(M) = 1 to conclude thatM is indeed isometric tdHP°. This completes the proof
of Theorem 1.1.
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